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On closed abelian subgroups of real Lie groups
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Abstract. Let G be a locally compact real Lie group such that all
abelian subgroups of G/G0 are finite. Assume that A ⊆ G is an closed
abelian subgroup. Then A is isomorphic to Rn ×Tm ×Zk × F where F is
a finite abelian group. If C ⊆ G is a closed solvable subgroup, then C is
compactly generated.

1. Introduction

The structure of locally compact abelian groups is well known. However, there
seems to be no citable information on the explicit structure of closed abelian
subgroups of locally compact real Lie groups with finitely many connected com-
ponents. (It is clear that we have to restrict ourselves to locally compact Lie
groups.) In the following we provide such a reference. Moreover, as an application
we can prove that in such Lie groups all closed solvable subgroups are compactly
generated.

In the whole note, G denotes a real Lie group. Following [3], we call a locally
compact abelian group elementary when it is isomorphic to Rn × Tm × Zk × F
with a finite abelian group F and n,m, k ∈ N0 . Our aim is to prove that each
closed abelian subgroup A of G, where all abelian subgroups of G/G0 are finitely
generated, is elementary. First, we restrict ourselves to a connected Lie group
G. We shall consider a representation ρ:G → Gl(n,R) with elementary kernel.
Finally, we show that this implies our hypothesis.

M. Moskowitz has shown that a locally compact abelian group is isomor-
phic to Rn×Zk×C with a compact abelian group C if and only if it is compactly
generated, i.e., there is a compact subset which generates it algebraically ([7, The-
orem 2.5]). A Lie group has no small subgroups. A closed subgroup of a Lie group
is a Lie group with respect to the induced topology. Thus a compact abelian
subgroup of a real Lie group is isomorphic to Tm × F with finite abelian group
F . In general, the identity-component of a topological group is generated by each
1-neighborhood, thus the identity-component of a locally compact group is com-
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pactly generated. We denote the identity-component of a G by G0 . Summing up
these remarks we get the following statement where G is not necessarily connected:

Proposition 1.1. Let A be a closed abelian subgroup of a locally compact
real Lie group G and A0 its identity component. The following conditions are
equivalent:

1. A is elementary.

2. A is compactly generated.

3. A/A0 is finitely generated.

In particular, discrete abelian subgroups of a locally compact Lie group
G with finitely many connected components are finitely generated. Moreover, it
would be sufficient that all discrete abelian subgroups of G are finitely generated.
But we will see that this would not simplify the proof. First of all, we consider
an example which shows that discrete subgroups, in general, can be far away from
being finitely generated.

Example 1.2. We consider the projective special linear group PSl(2,R). Then
PSl(2,Z) is a discrete subgroup and isomorphic to the free product Z(2) ∗ Z(3),
where the cosets

x =

[(
0 1
−1 0

)]
and y =

[(
−1 1
−1 0

)]

are the generators (c.f. [8, p. 187]). Moreover, PSl(2,Z) contains the free group
F (a, b) with the two generators a = xy and b = xy2 . The commutator group
F ′(a, b) ⊆ F (a, b) ⊆ PSl(2,R) is a free subgroup of infinite rank. Since it is a
subgroup of a discrete subgroup of PSl(2,R), it is discrete itself, but not finitely
generated.

Thus our statement cannot be generalized to arbitrary abelian subgroups.

2. Preliminaries

We summarize some classical results which are useful in our context.

Theorem 2.1. Let A be a locally compact abelian group and B a closed sub-
group. Then A is compactly generated if and only if B and A/B are compactly
generated.

One can find a proof of this statement in [7, Theorem 2.6]. We can prove a
little bit more. For this, we need the following classical lemmas:

Lemma 2.2. Let G be a topological group and N a closed normal subgroup.
Assume that B is a closed subgroup containing N . Then B/N is closed.

Lemma 2.3. Let H1, H2 be topological groups and ρ:H1 → H2 a surjective
group homomorphism. If H1 is compactly generated then so is H2 .
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Proposition 2.4. Let G be a locally compact group and N a closed normal
subgroup. If N and G/N are compactly generated then G is compactly generated.

Proof. Let B be a compact set which generates G/N and q the quotient
map q:G → G/N . Now we consider q−1(B). Since G is locally compact, for
each x ∈ q−1(B) there is a compact neighborhood Kx and a open neighborhood
Ox ⊂ Kx . Thus we have B ⊆ ⋃

x∈q−1(B) π(Ox). Since B is compact we find a
finite set S ⊆ q−1(B) such that B ⊆ ⋃

x∈S π(Ox) ⊆
⋃
x∈S π(Kx) = π(

⋃
x∈S Kx).

Thus,
⋃
x∈SKx is a compact subset of G whose image under q contains B . Since

N is compactly generated there is a compact subset C such that N = 〈C〉. Then
C ∪ ⋃x∈S Kx is compact and generates G.

A group G is called polycyclic if there is a Jordan-Hölder series G = G0 ⊇
G1 ⊇ . . . ⊇ Gn = {1} such that each factor Gn/Gn+1 is cyclic. L. Auslander
and R. Tolimieri have shown the following Theorem (cf. [1, Theorem 1]):

Theorem 2.5. Let C be a closed solvable subgroup of Gl(n,R) then the group
C/C0 is polycyclic.

Let C be a solvable group, C(0) = C , C(m) = C(m−1) ′ the iterated com-
mutator groups. We denote by the length l(C) of C the smallest natural number
such that C(n) = {0}. In [10, Proposition 4.1] is proved the following:

Proposition 2.6. Let C be a solvable group. Then the following statements
are equivalent:

1. C is polycyclic.

2. C is finitely generated.

3. C(k−1)/C(k) is finitely generated for all k = 1, . . . , l(G).

A. I. Mal’cev has shown the following ([6, Theorem 8]):

Theorem 2.7. If every abelian subgroup of a solvable group C is finitely gen-
erated then C(k−1)/C(k) is finitely generated for all k = 1, . . . , l(G).

Proposition 2.6 and Theorem 2.7 imply:

Corollary 2.8. If every abelian subgroup of a solvable group C is finitely gen-
erated then C is finitely generated itself.

We know that C0 is compactly generated and that C/C0 is finitely gener-
ated, in particular compactly generated. By Proposition 2.4, we get the following:

Corollary 2.9. If C ⊆ Gl(m,R) is a closed solvable subgroup of C , then C is
compactly generated.

The following proposition is very useful in this context. It was proved by
D.Z̆. Djoković ([4, Proposition 5]).
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Proposition 2.10. Let U be an analytic subgroup of a Gl(n,R). Then there is
a faithful representation ω:U → Gl(m,R) such that ω(U) is closed in Gl(m,R).

If G is a connected real Lie group, Ad(G) is a not necessarily closed analytic
subgroup of Gl(g). Since g is a real vector space we have Gl(g) ∼= Gl(n,R) for
n = dim g. If we set π := ω ◦ Ad, then π(G) is closed, and by the canonical
decomposition of homomorphisms, π(G) ∼= G/ ker π .

Corollary 2.11. Let G be a connected real Lie group. Then there is a repre-
sentation π:G→ Gl(m,R) such that π(G) is closed and ker π is the center Z of
G. Moreover, G/Z is isomorphic to π(G).

If we have a closed subgroup C of G which contains Z , then π(C) ∼= C/Z
is closed by Lemma 2.2. So, it is useful to examine the smallest closed subgroup
M of G such that M contains both C and Z . In our context, it is sufficient to
suppose that C is solvable.

Proposition 2.12. Let G be a locally compact real Lie group. Let C be a
closed subgroup and Z the center of G. Set M := CZ . Then M ′ = C ′ and,
moreover, C(k) = M (k) . If, in addition, C is solvable then M is a closed solvable
subgroup which contains the center of G, and l(M (k)) = l(C(k)) = l(C(k)).

Proof. Denote by (v, w) for v, w ∈ G the commutator vwv−1w−1 . A simple
computation yields (c1z1, c2z2) = (c1, c2) for all c1, c2 ∈ C and z1, z2 ∈ Z . Note
that M ′ consists of finite products of commutators of M . So, let (m1, m2) with
m1, m2 ∈M be an arbitrary commutator of M . Then there are sequences (cn)n∈N ,
(dn)n∈N with cn, dn ∈ C for all n ∈ N and sequences (zn)n∈N , (un)n∈N with
zn, un ∈ Z for all n ∈ N such that m1 = limn→∞ cnzn and m2 = limn→∞ dnun .
Since the commutator is continuous we get (m1, m2) = limn→∞(cnzn, dnun) =
limn→∞(cn, dn) ∈ C ′ . But C ′ is a subgroup of G. Thus finite products of
commutators of M are contained in C ′ , too. This implies M ′ ⊆ C ′ , hence
M ′ ⊆ C ′ .

On the other hand, C ′ ⊆ M ′ , hence C ′ ⊆ M ′ . By [2, III.9.1], we get
C(k) = M (k) . The rest follows immediately.

We need some information about the structure of the center.

Proposition 2.13. The center Z of a connected real Lie group is elementary.

Proof. By [5, Chap. XVI], the center is contained in a connected closed abelian
subgroup A of G. Since A is connected it is compactly generated. Since Z is
closed in G, hence closed in A, it is compactly generated by Theorem 2.1.

¿From Theorem 2.1 we get immediately:

Corollary 2.14. Each closed subgroup of the center is elementary.
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3. Results

First we restrict ourselves to a connected Lie group G. By Proposition 1.1, we
have to prove that each closed ablian subgroup of G is compactly generated.

Theorem 3.1. Let G be a connected real Lie group and A a closed abelian
subgroup. Then A is elementary.

Proof. Let Z be the center of G. By Corollary 2.11, there is a representation
π:G→ Gl(m,R) with kernel Z such that π(G) is closed and G/Z ∼= π(G). Let A
be a closed abelian subgroup of G and A1 := AZ . Lemma 2.2 implies that π(A1)
is a closed abelian subgroup of Gl(m,R). By Corollary 2.9, we know that π(A1)
is compactly generated. Hence, by Theorem 2.1, π(A1) is elementary. We note
that π(A1) is isomorphic to A1/Z . If we apply Theorem 2.1 again and Proposition
2.13, we see that A1 is elementary, and hence A as a closed subgroup of A1 is
elementary, too.

We note that we can generalize this result to a wider class of Lie groups:

Theorem 3.2. Let G be a locally compact real Lie group where the abelian
subgroups of G/G0 are finitely generated. Then the closed abelian subgroups of G
are elementary.

Proof. Let A be an abelian subgroup of G. By group theory, we know that
A/(A∩G0) is isomorphic to (A/A0)/((A∩G0)/A0). By our assumption, A/(A∩G0)
is finitely generated. By Theorem 3.1 and Proposition 1.1, (A∩G0)/A0 is finitely
generated, too. Theorem 2.1 implies that A/A0 is finitely generated. By Theorem
2.1, and since A0 is compactly generated, A is elementary.

It is clear that the abelian subgroups of G/G0 are finitely generated if G/G0

is finite. Hence we get:

Corollary 3.3. If G/G0 is finite then the closed abelian subgroups of G are
elementary.

Note that it is not sufficient to require that G/G0 is finitely generated. In
[9, p. 56], we find the following example:

Example 3.4. Let H =

〈(
1 0
1 1

)
,

(
2 0
0 1

)〉
⊆ Gl(2,Q). This group is

metabelian and contains an abelian subgroup, namely H ′ , which is isomorphic to
the additive group of dyadic rationals, hence not finitely generated. If G/G0 is
isomorphic to H together with the discrete topology, we have an example for our
claim.

Now we turn to solvable closed subgroups of real Lie groups. First, we
assume that G is connected.

Theorem 3.5. Let G be a connected real Lie group and C ⊆ G a closed
solvable subgroup. Then C is compactly generated.
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Proof. We prove the statement by induction on the length of C . If l(C) = 1,
then C is abelian, hence compactly generated because of Theorem 3.1. Now
assume that the claim is true for length n. Suppose that l(C) = n + 1. Denote
by Z the center of G. We set M = CZ . By Proposition 2.12, we have M ′ = C ′ .
We note that l(M ′) = l(C ′) = l(C ′) = n. By assumption, C ′ is compactly
generated. On the other hand, by Corollary 2.11 there is a representation π of
G in a Gl(m,R) such that π(G) is closed and ker π = Z . In particular by
Lemma 2.2, π(M) ∼= M/Z is closed solvable in Gl(m,R). By Corollary 2.9, it
is compactly generated. Since, by Proposition 2.13, Z is compactly generated,
too, M is compactly generated because of Proposition 2.4. Lemma 2.3 implies
that M/C ′ is compactly generated. Furthermore, it is abelian. By Lemma 2.2,
C/C ′ is closed in M/C ′ . By Proposition 2.1, C/C ′ is compactly generated and
by Proposition 2.4, C is compactly generated.

Now we will consider the case where G is not connected.

Theorem 3.6. If G is a locally compact real Lie group such that all abelian
subgroups of G/G0 are finitely generated. Then all closed solvable subgroups of G
are compactly generated.

Proof. Assume that C is solvable. Then C ∩G0 is a solvable closed subgroup
of G0 , hence by Theorem 3.5 compactly generated. Moreover, C/(C ∩ G0) ∼=
CG0/G0 ⊆ G/G0 is solvable and by Corollary 2.8 finitely generated. By Proposi-
tion 2.4, this implies that C is compactly generated.
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