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Abstract. We define a Lie bialgebra cohomology as the total cohomology
of a double complex constructed from a Lie algebra and its dual, we show that
its 2–cocycles classify Lie bialgebra formal deformations and we prove the usual
cohomological condition (i. e. H2 = 0) for formal rigidity. Lastly we describe
the results of explicit computations in low–dimensional cases.

1. Introduction

Lie bialgebras were first introduced by Drinfel’d in [9] as the algebraic structures
underlying quantized enveloping algebras (quantum groups). They can be de-
scribed as Lie algebras provided with a Lie bracket on the dual satisfying a suitable
compatibility condition. Already in Drinfel’d’s work many interesting examples of
Lie bialgebras based on complex semisimple Lie algebras were given. A few years
later De Smedt in [8] proved the existence of a non trivial Lie bialgebra based on
any Lie algebra. The classification of such structures was, at that time, a natural
problem to pose. The first positive result was obtained for real compact Lie al-
gebras ([14, 15]). More recently, in [7], a complete classification of Lie bialgebras
with reductive double was given (recall that the double is an orthogonal Lie alge-
bra containing both the starting Lie algebra and its dual as maximal isotropic Lie
subalgebras).

Still a classification of Lie bialgebras is out of reach, just for similar reasons
as for the Lie algebra classification. As an example, classifying the subclass of
triangular Lie bialgebras of semisimple complex Lie algebras contains the problem
of Frobenius Lie subalgebras classification as a special case. This last problem
is known to be quite hard in general (apart from the trivial sl2 case) as it does
not allow induction on dimension. In the nonsemisimple case only a bunch of
low–dimensional examples were thoroughly studied.

In view of these obstacles, and in analogy with the Lie algebra case, an
alternative approach is to understand the geometry of the algebraic variety of Lie
bialgebra laws on a given vector space. For Lie brackets, for example, interesting
general results, together with a quite accurate description in low dimension are
given in [6].
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In this paper we show how the usual deformation and cohomology argu-
ments can be described in this situation. More precisely we will define a Lie
bialgebra cohomology as the total cohomology of a double complex constructed
from a Lie algebra and its dual. We will show that its 2–cocycles classify Lie bial-
gebra formal deformations, the coboundaries coinciding with trivial ones. We will
then prove the usual cohomological condition (i.e. H2 = 0) for formal rigidity.
Lastly we describe the results of explicit computations in low–dimensional cases.

2. The variety of Lie bialgebras

Let V be a finite dimensional vector space over the field K .

Definition 2.1. A Lie bialgebra structure D = (V, µ, δ) is a pair of operations
(µ, δ) on V such that:

1. µ : ∧2V → V is a Lie bracket;

2. tδ : ∧2V ∗ → V ∗ is a Lie bracket (here tδ denotes the transpose map of
δ : V → ∧2V ).

3. δ is a 1–cocycle w.r.t. the adjoint action ad(2) of (V, µ) on ∧2V , i.e.:

δ([X, Y ]) = ad
(2)
X δ(Y )− ad

(2)
Y δ(X) , ∀X, Y ∈ V. (1)

Let us introduce some notations. Let D = (V, µ, δ) be a Lie bialgebra. We
will reserve gothic letters for Lie algebras and denote with g the Lie algebra (V, µ)
and with g∗ the Lie algebra (V ∗, tδ). The double of a Lie bialgebra (see [11] for its
definition) is a Lie algebra structure on V ⊕ V ∗ and will be denoted with d . We
will often denote a Lie bialgebra simply as the pair (µ, δ), the underlying vector
space being fixed. The set of all Lie bialgebras on V can be thus identified with a
subset of the vector space (∧2V ∗ ⊗ V )⊕ (∧2V ⊗ V ∗). We will denote such subset
as D(V ) (and often omit reference to V ). When V is an n–dimensional vector
space we will also write Dn for D(V ). Let us remark that identity (1) can be
rewritten as (see [11]):

〈[X1, X2], [ψ1, ψ2]〉 = 〈X1, [X2 · ψ1, ψ2]〉 − 〈X2, [X1 · ψ1, ψ2]〉 (2)

−〈X2, [ψ1, X1 · ψ2]〉+ 〈X1, [ψ1, X2 · ψ2]〉

for all Xi ∈ V and for all ψi ∈ V ∗ , where X ·ψ (resp. ψ ·X ) denotes the coadjoint
action of g on g∗ (resp. of g∗ on g).

The Jacobi identity for µ (resp. for tδ ) consists of a set of quadratic
equations identifying the subvariety of Lie algebras on V (resp. on V ∗ ). The
cocycle condition (1) fixes another set of quadratic equations identifying the variety
of Lie bialgebras on the vector space V .

To be more explicit, once we fix a basis {X1, . . . , Xn} in V we have:

µ[Xi, Xj] =
∑
k

ckijXk, δ(Xi) =
∑
j,k

γjki Xj ∧Xk .
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The cocycle condition (1) expressed in the 2n3 –coordinates (ckij, γ
ij
k ) translates

then into the family of n4 equations:

n∑
k=1

ckpqγ
ij
k =

n∑
k=1

(γkjq c
i
pk + γkjp c

i
kq + γikq c

j
pk + γikp c

j
kq) (3)

for every i, j, p, q = 1, . . . , n . These are the equations of the algebraic subvariety
Dn of Lie bialgebras on an n–dimensional vector space, in the variety Lien×Lien .
It is easily verified that such variety is a cone with vertex in the origin. We will
denote the corresponding projective variety as P(D).

As an example consider the two–dimensional case. If g = (V, µ) is any
2–dimensional Lie algebra it is easily verified that every linear map δ : g → ∧2g

defines a Lie bialgebra on V . Therefore D2 ' K2 ×K2 .

Definition 2.2. Given two Lie bialgebras, (V1, µ1, δ1) and (V2, µ2, δ2) a vector
space isomorphism f : V1 → V2 is said to be a Lie bialgebra isomorphism if it is
a Lie algebra isomorphism between (V1, µ1) and (V2, µ2) such that δ2(f(X)) =
(f ⊗ f)δ1(X).

Bialgebra isomorphisms define an action of GL(V ) on the algebraic variety
D(V ) given by

f · (α1, δ1) = (α2, δ2)

and such that

α2(f(X), f(Y )) = fα1(X, Y ) , δ2(f(X)) = (f ⊗ f)δ1(X) .

The orbits of this action can be identified with isomorphism classes of Lie bialge-
bras on V . The space of orbits is non Hausdorff. In fact, the trivial (0, 0) Lie
bialgebra has isomorphism class lying in the closure of every orbit. Even more also
in P(D) orbits are not necessarily closed. The already cited two–dimensional case
provides an easy example of an orbit space equivalent to a 5–point space with non
Hausdorff topology. More explicitly one can find the following equivalence classes:
P0 = (0, 0, 0, 0), P1 = {(a, b, 0, 0)

∣∣ (a, b) 6= (0, 0)} , P2 = {(0, 0, α, β)
∣∣ (α, β) 6=

(0, 0)} , P3 = {(a, b, α, β)
∣∣ aα + bβ = 0} , P4 = {(a, b, α, β)

∣∣ aα + bβ 6= 0} .
Let us note that for our definition of isomorphism the Lie bialgebras P1

and P2 are not isomorphic, although one can be obtained by the other simply by
interchanging the role of g and g∗ . It is of course possible to give a weaker notion
of Lie bialgebra isomorphism which takes into account this duality.

We finally remark that Lie bialgebras, at present, are classified up to iso-
morphisms over real or complex numbers only in dimension ≤ 3 ([10]).

3. Deformations

Definition 3.1. A formal deformation of a Lie bialgebra D = (µ, δ) on V is a
family of Lie bialgebra structures Dt = (µt, δt) on V such that

µt = µ+ tµ1 + . . .+ tnµn + . . .

δt = δ + tδ1 + . . .+ tnδn + . . .

where for every n ∈ N , µn ∈ Hom(∧2V, V ) and δn ∈ Hom(V,∧2V ).
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Examples: Let µt be a formal deformation of a Lie product µ0 . Then
(µt, 0) is a formal deformation of the Lie bialgebra (µ0, 0). Let µt be a formal
deformation of a Lie product µ0 and let δ0 : V → ∧2V satisfy the cocycle identity
for every t ∈ C . Then(µt, δ0) is a formal deformation of (µ0, δ0). An explicit
three–dimensional example of this form can be found in [2].

Given a family αt = (µt, δt) on V such that µi ∈ Hom(∧2V, V ) and
δi ∈ Hom(V,∧2V ) let us impose that it is a Lie bialgebra deformation. Then
three conditions have to be satisfied: µt is a Lie bracket, δt is a Lie cobracket, and
δt is a µt–1–cocycle with values in ∧2V . These conditions have to be identically
satisfied for coefficients of powers of t . In t0 this simply amounts to require that
(µ, δ) is a Lie bialgebra. At every degree in t one gets three equations which we
will call deformation equations for Lie bialgebras. To write them explicitly let us
fix the following notation: for every X ∈ V the operation X ·µ y on a 2-vector
y ∈ ∧2V is defined by linearity from X ·µ (Y1∧Y2) = µ(X, Y1)∧Y2 +Y1∧µ(X, Y2).
The deformation equations in degree 1 are, then, given by∑	 µ1(µ0(X, Y ), Z) + µ0(µ1(X, Y ), Z) = 0 (4)∑	 tδ1(tδ0(x, y), z) + tδ0(tδ1(x, y), z) = 0 (5)

δ1(µ0(X, Y ))−X ·µ0 δ1(Y ) + Y ·µ0 δ1(X) = (6)

= −δ0(µ1(X, Y )) +X ·µ1 δ0(Y )− Y ·µ1 δ0(X)

where
∑	 stands for the sum over cyclic permutations of arguments, for any

X, Y, Z ∈ V , x, y, z ∈ V ∗ .

Definition 3.2. Two formal deformations (µ1
t , δ

1
t ) and (µ2

t , δ
2
t ) are said to be

equivalent if there exists a family of vector space isomorphisms fn ∈ End(V ) such
that if ft = Id + tf1 + . . . + tnfn + . . . then (µ2

t , δ
2
t ) = ft · (µ1

t , δ
1
t ). A trivial

deformation is a deformation equivalent to the constant one.

Let us remark that for a fixed Lie bialgebra (µ, δ) and for any given s ∈ ∧2g

one can ask whether (µ, δ + ds) is again a Lie bialgebra. If it is then it is called a
twisting of (µ, δ). In our context one can consider the family (µ, δ+tds) and impose
deformation equations on it. The first and last deformation equations are then
trivially verified (respectively because the product is undeformed and a coboundary
is always a cocycle). The second deformation equation gives the infinitesimal
condition on s to define a twist. Lie bialgebras twisting were extensively used in
[10] to classify real and complex 3–dimensional Lie bialgebras.

4. Cohomology and tangent space

Let D0 = (µ0, δ0) be a fixed Lie bialgebra. We would like to define a cohomology
related to Lie bialgebra deformations. Let us consider

Cp,q = Hom(∧pV,∧qV ) and Cn =
⊕

p+q=n+1
p,q 6=0

Cp,q.

In particular C0 = 0, C1 ' V ⊗V ∗ and C2 ' (∧2V ⊗V ∗)⊕ (V ⊗∧2V ∗). For any
ξn ∈ Cn we will denote with ξn =

∑
p+q ξp,q its direct sum decomposition.
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Let us consider the following coboundary operator:
for every ξp,q ∈ Hom(∧pV,∧qV ), ∂µ0 is the differential on p-cochains for the
cohomology of g with coefficients in ∧qg . Explicitly:

∂µ0(ξp,q)(Y1 ∧ . . . ∧ Yp+1) =
∑p+1

i=1 (−1)i+1Yi · ξp,q(Y1 ∧ . . . Ŷi . . . ∧ Yp+1)

+
∑

j<k(−1)j+kξp,q(µ0(Yj, Yk) ∧ Y1 ∧ . . . Ŷj . . . Ŷk . . . ∧ Yp+1)

where the action in the first sum is the adjoint action of g on ∧qg (and thus
depends on µ0 ). So ∂ = ∂µ0 : Cp,q → Cp+1,q . To define a second coboundary ∂̄δ0
remark that Hom(∧pV,∧qV ) can be identified to Hom(∧qV ∗,∧pV ∗) as follows:

〈ξ̃p,q(f1 ∧ . . . ∧ fq), X1 ∧ . . . ∧Xp〉 = 〈f1 ∧ . . . ∧ fq, ξp,q(X1 ∧ . . . ∧Xp)〉 (7)

where 〈, 〉 is the usual duality pairing between V and V ∗ . Let ∂̄δ0 be the
differential on q–cochains for the cohomology of g∗ with coefficients in ∧pg∗ .
Explicitly:

∂̄δ0(ξ̃p,q)(f1 ∧ . . . ∧ fq+1) =

q+1∑
i=1

(−1)i+1fi · ξ̃p,q(f1 ∧ . . . f̂i . . . ∧ fq+1)+

+
∑
j<k

(−1)j+kξ̃p,q(
tδ0(fj, fk) ∧ f1 . . . f̂j . . . f̂k . . . ∧ fq+1)

where the action in the first sum is the adjoint action of g∗ on ∧pg∗ (and thus
depends on δ0 ). So ∂̄ = ∂̄δ0 : Cp,q → Cp,q+1 . Let us observe that

∂µ0 : Hom(∧pV,∧qV )→ Hom(∧p+1V,∧qV ), and
∂̄δ0 : Hom(∧pV,∧qV )→ Hom(∧pV,∧q+1V ).

Let us define, lastly,

dξ =
∑

p+q=n+1

(∂µ0ξp,q + (−1)n∂̄δ0ξp,q).

Proposition 4.1. The map d is a coboundary map for the cochain complex
Cn .

The proof of this statement, which can be obtained with a direct, although
involved computation, is postponed to the appendix. We will denote the cohomol-
ogy of this complex with H∗(µ0,δ0) = H∗D . Let us remark that being C0 = 0 we

have H0
D = 0, H1

D = Z1
D = {f ∈ End(V )

∣∣ ∂f = ∂̄tf = 0} .

Proposition 4.2. Let Dt = (µt, δt) be a Lie bialgebra deformation of D0 =
(µ0, δ0). Then its derivative in 0 defines a two cocycle Z2

D0
. If the deformation is

trivial then the cocycle is a coboundary.

Proof. Let (µt, δt) be a Lie bialgebra deformation of (µ0, δ0). Then the defor-
mation equation of degree one (4) says that µ1 should be a µ0 Lie 2–cocycle, i.e.
∂µ0µ1 = 0, the deformation equation (5) that tδ1 should be a tδ0 Lie 2–cocycle,
i.e. ∂̄δ0δ1 = 0. What remains to be proven is that the equation (6), which is the
linear part of the compatibility condition (1), is equivalent to ∂µ0δ1 = −∂̄δ0µ1 .
This last statement follows easily from the following lemma.
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Lemma 4.3. The differential ∂̄1
δ0

(µ) coincides with the map

(X, Y ) 7→ X ·µ δ0(Y )− Y ·µ δ0(X)− δ0(µ(X, Y )) .

Proof The differential is dual to the map

(ϕ, ψ) 7→ ϕ ·tδ0 tµ(ψ)− ψ ·tδ0 tµ(ϕ)−t µ(tδ0(ϕ, ψ)) .

So what we have to prove is:
〈X ∧ Y, ϕ ·tδ0 tµ(ψ)− ψ ·tδ0 tµ(ϕ)−t µ(tδ0(ϕ, ψ))〉
= 〈X ·µ δ0(Y )− Y ·µ δ0(X)− δ0(µ(X, Y )), ϕ ∧ ψ〉

It is easy to see that 〈X ∧ Y,t µ(tδ0(ϕ, ψ))〉 = 〈δ0(µ(X, Y )), ϕ ∧ ψ〉 . In order to
compute the other terms, we observe a general formula:

〈X ∧ Y, ϕ ·tδ0 Ψ〉 = 〈δ0(X) ∧ Y −X ∧ δ0(Y ), ϕ ∧Ψ)− 〈X ∧ Y,t δ0(Ψ) ∧ ϕ〉
for an arbitrary 2-form Ψ. In a similar way one has the following:

〈X ·µ y, ϕ ∧ ψ〉 = 〈X ∧ y, tµ(ϕ) ∧ ψ − ϕ ∧ tµ(ψ)〉+ 〈X ∧ µ(y), ϕ ∧ ψ〉
for arbitrary 2-vector y . So the equation above becomes:

〈δ0(X) ∧ Y −X ∧ δ0(Y ), ϕ ∧ tµ(ψ)〉
−〈X ∧ Y,t δ0(tµ(ψ)) ∧ ϕ〉

−〈δ0(X) ∧ Y −X ∧ δ0(Y ), ψ ∧ tµ(ϕ)〉+ 〈X ∧ Y,t δ0(tµ(ϕ)) ∧ ψ〉
= 〈X ∧ δ0(Y ), tµ(ϕ) ∧ ψ − ϕ ∧ tµ(ψ)〉+ 〈X ∧ µ(δ0(Y )), ϕ ∧ ψ〉
−〈Y ∧ δ0(X), tµ(ϕ) ∧ ψ − ϕ ∧ tµ(ψ)〉 − 〈Y ∧ µ(δ0(X)), ϕ ∧ ψ〉

and then:
〈δ0(X) ∧ Y −X ∧ δ0(Y ), ϕ ∧ tµ(ψ)− ψ ∧ tµ(ϕ)〉
−〈X ∧ Y,t δ0(tµ(ψ)) ∧ ϕ−t δ0(tµ(ϕ)) ∧ ψ〉

= 〈X ∧ δ0(Y )− Y ∧ δ0(X), tµ(ϕ) ∧ ψ − ϕ ∧ tµ(ψ)〉
+〈X ∧ µ(δ0(Y ))− Y ∧ µ(δ0(X)), ϕ ∧ ψ〉 .

It is clear that the left hand halves of both terms cancel, so the equation becomes:
−〈X ∧ Y,t δ0(tµ(ψ)) ∧ ϕ−t δ0(tµ(ϕ)) ∧ ψ〉
= 〈X ∧ µ(δ0(Y ))− Y ∧ µ(δ0(X)), ϕ ∧ ψ〉 .

This last identity can be easily verified from definitions.

This completes the first part of the proof. Let us start now from a trivial
Lie bialgebra deformation αt = α+ tα1 +O(t2). Then, by definition, there exists
ft such that ft · αt = α0 . But this means exactly that αt = (µt, δt) is such that
ft · µt = µ0 and ft · tδt = tδ0 are trivial Lie algebra deformations. Therefore
µ1 = ∂µ0f1 and δ1 = ∂̄δ0f1 . But this implies that α1 = df1 .

Corollary 4.4. The space of two–cocycles Z2
(µ0,δ0) coincides with the tangent

space of D(V ) in the point (µ0, δ0).

Proof. From the proof of the preceding proposition it is evident that the Lie
bialgebra 2–cocycle condition coincide with deformation equations of degree 1.
On the other deformation equations in degree 1 are the same as the linear part of
the algebraic equations of the variety, which define its tangent space(as a scheme).

As an example consider the case of (µ, 0)–structures in D(V ), where an easy
computation shows that Z2

(µ,0) = Z2(g, g) ⊕ Z1(g,∧2g). The first term describes
Lie algebra deformations of µ , while the second term describes Lie cobrackets on
the dual. Of course the same result holds true for (0, δ).
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Definition 4.5. A Lie bialgebra is said to be formally rigid if all its deforma-
tions are locally trivial.

Proposition 4.6. If H2
(µ0,δ0) = 0 the Lie bialgebra (µ0, δ0) is formally rigid.

Proof Let us consider a deformation with coboundary tangent vector αt = α +
tdf + O(t2). Let ft = 1 − tf . Then one can prove that µt is equivalent, via ft ,
to µ′t , such that µ′1 = 0, and at the same time δt is equivalent to δ′t , with δ′1 = 0.
In fact, the equality µ′t = ft · µt (resp. δ′t = ft · δt ) at order 1 in t says exactly
that µ′1 = 0 ⇔ µ1 = ∂µ0f (resp. that δ′1 = 0 ⇔ δ1 = ∂̄δ0f ). This procedure
can be iterated to build at step r a Lie bialgebra endomorphism fr such that
αrt = αr−1

t · (1− trfr) and αr1 = . . . = αrr = 0. This implies that µ1
r = . . . = µrr = 0

and δ1
r = . . . = δrr = 0. Then one can formally construct f = Πr(1 − trfr) and

verify that f · αt is a constant deformation.

Examples

1. Let (µ0, δ0) be a generic complex 2–dimensional Lie bialgebra. Non empty
cochain spaces are C1 ' V ⊗ V ∗ , C2 ' V ⊕ V ∗ , C3 = C , Cp = 0, ∀p ≥ 4.
The 3–cocycle condition is trivial for dimension reasons and the 2-cocycle
condition turns out to be identically verified as well. The trivial Lie bialgebra
(µ0, δ0) = (0, 0) has trivial coboundaries and therefore H1 = C1 = V ⊗ V ∗ ,
H2 = C2 = V ⊕V ∗ , H3 = C . Let us consider the bialgebra (µ0, δ0) = (1, 0),
where 1 denotes the non trivial 2–dimensional Lie algebra [X, Y ] = X .
Then the horizontal coboundary is trivial. An explicit computation shows
that dimB2(1, 0) = 2 and therefore H2(1, 0) ' C2 . The Lie bialgebra the
bialgebra (µ0, δ0) = (0,1) has, obviously, the same cohomology. For the
two remaining cases, again by explicit computations, one can prove that
H2(1,1) ' H2(1,−1) ' C .

2. Similar computations, although slightly more involved, can be performed
in the three–dimensional case as well. As an example let us first consider
the real cohomology for the real Lie bialgebras on sl(2;R), as listed in [1].
Once a basis is fixed, let’s say the usual Cartan–Weyl basis {H,E, F} , the
cobracket can be given as

δ(H) = −2αH ∧ E + 2βH ∧ F
δ(E) = γH ∧ E + 2βE ∧ F
δ(F ) = γH ∧ F + 2αE ∧ F .

In this basis 2–cochains can be represented as a pair of 3× 3 matrices with
real entries. The 2–cocycle condition can then be computed and results in a
system of linear homogeneous equations in matrix coefficients. It then turns
out that dimZ2(α, β, γ) = 7, for every α, β, γ (as in the cited reference) and
that in all cases H2 = 0, except for (α, β, γ) = (0, 0, 0) where dimH2 = 1.

3. Analogously, in the standard Heisenberg case H1,λ ([5]), where Lie bialgebras
are classified by a scalar parameter λ such that in the usual [X,Y ] = H basis
the cobracket is

δ(X) = X ∧ Y − λH ∧ Y, δ(Y ) = 0, δ(H) = H ∧ Y (8)
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similar computations allow to show that dimZ2(λ) = 10, and H2(λ) = C
3

if λ 6= 0 and H2(0) = C4 .

Note: In [3, 4] a different bialgebra cohomology was introduced to classify
Lie bialgebra extensions. It is an analogue of Lie bialgebra cohomology with
coefficients on the base field and it seems plausible that a suitable generalization
of Lie bialgebra cohomology with coefficients in a module should include both our
definition and Benayed’s definition as special cases.

5. Appendix

We simply want to prove that Cp,q is a double complex and d is the boundary
on the total complex. We then have to verify that the two differentials ∂µ0 and
∂̄δ0 commute. This will be done by explicit computation. First we will need the
following lemma, which can be easily verified.

Lemma 5.1. Let Xi ∈ V and φ, ψi ∈ V ∗ , i = 0, . . . , p. Let φ · (ψ0 ∧ · · · ∧ ψp)
denote the wedge adjoint action of V ∗ on ∧pV ∗ and φ · (X0 ∧ . . .∧Xp) denote the
wedge coadjoint action. Then:

〈X0 ∧ · · · ∧Xp, φ · (ψ0 ∧ · · · ∧ ψp)〉 = −〈φ · (X0 ∧ · · · ∧Xp), ψ0 ∧ · · · ∧ ψp〉 .

Let now f : ∧pV → ∧qV . Then we will consider the following maps:

tf : ∧q V ∗ → ∧pV ∗ ∂f : ∧p+1 V → ∧qV
∂̄(tf) : ∧q+1 V ∗ → ∧pV ∗ t∂f : ∧q V ∗ → ∧p+1V ∗

t∂̄(tf) : ∧p V → ∧q+1V ∂̄(t∂f) : ∧q+1 V ∗ → ∧p+1V ∗

∂(t∂̄(tf)) : ∧p+1 V → ∧q+1V t∂̄(t∂f) : ∧p+1 V → ∧q+1V

We want to prove that t∂̄(t∂f) − ∂(t∂̄(tf)) = 0. Let X0, . . . , Xp ∈ V and
ψ0, . . . , ψq ∈ V ∗ and prove that:

〈t∂̄(t∂f)− ∂(t∂̄(tf)) (X0 ∧ · · · ∧Xp), ψ0 ∧ · · · ∧ ψq〉 = 0 . (9)

We introduce some simplified notation suitable for long computations. If
X = X0 ∧ . . . ∧Xp then we define

X i = (−1)iX0 ∧ . . . X̂i . . . ∧Xp and X ij = (−1)i+jX0 ∧ . . . X̂iXj . . . ∧Xp

so that the definition of a Lie coboundary is written as

∂f(X) =
∑
i

Xi · f(X i) +
∑
i<j

f([Xi, Xj] ∧X ij)

and similarly a dual notation may be introduced in order to write a shorter formula
for a dual coboundary. (As a rule of notation in what follows we will omit the
∧ operator and use the standard hat notation for omitted terms.) Computing
explicitly the l.h.s. of (9) we obtain∑

i

−〈(∂f)(ψi ·X), ψi〉 +
∑
i<j

〈∂f(X), [ψi, ψj] ∧ ψij〉 (10)

+
∑
h

〈Xh, ∂̄(tf)(Xh · ψ)〉 −
∑
h<k

〈[Xh, Xk] ∧Xhk, ∂̄(tf)(ψ)〉
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Now we want to render ∂f(ψi · X) and ∂̄(tf)(Xh · ψ) explicit. The first
element equals

∂f(ψi · (X0 . . . Xp)) =
∑
k

∂f(X0 . . . (ψi ·Xk) . . . Xp)

where

∂f(X0 . . . (ψi ·Xk) . . . Xp) =

+
∑
h 6=k

(−1)hXh · f(X0 . . . X̂h . . . ψi ·Xk . . . Xp)+(−1)k(ψi ·Xk) · f(X0 . . . X̂k . . . Xp)

+
∑
s<t, 6=k

(−1)s+tf([Xs, Xt]X0 . . . X̂sXt . . . ψi ·Xk . . . Xp)

+
∑
s<k

(−1)k+sf([Xs, ψi ·Xk]X0 . . . X̂sXk . . . Xp)

+
∑
s>k

(−1)k+sf([ψi ·Xk, Xs]X0 . . . X̂kXs . . . Xp)

Here we introduce some additional notation; we define:

ψ ·k X = X0 ∧ . . . (ψ ·Xk) . . . ∧Xp

and we also define X ij = −Xji for i > j , so the previous formula is written as:

∂f(ψi ·k X) =
∑
h 6=k

Xh · f((ψi ·k X)h) + (ψi ·Xk) · f(Xk)

+
∑
s<t, 6=k

f([Xs, Xt] ∧ (ψi ·k X)st) +
∑
s 6=k

f([ψi ·Xk, Xs] ∧Xks)

Similarly, the dual formula is obtained:

∂̄(tf)(Xh ·i ψ) =
∑
j 6=i

ψj · tf((Xh ·i ψ)j) + (Xh · ψi) · tf(ψi)

+
∑

s<ts,t 6=i

tf([ψs, ψt] ∧ (Xh ·i ψ)st) +
∑
t6=i

tf([Xh · ψi, ψt] ∧ ψit)

Then (10) can be rewritten as:

−
∑

i

∑
k

{∑
h 6=k〈Xh · f((ψi ·k X)h), ψi〉+ 〈(ψi ·Xk) · f(Xk), ψi〉

+
∑

s<ts,t 6=k〈f([Xs, Xt] ∧ (ψi ·k X)st), ψi〉+
∑

s 6=k〈f([ψi ·Xk, Xs] ∧Xks), ψi〉
}

+
∑

i<j

∑
h〈Xh · f(Xh), [ψi, ψj] ∧ ψij〉

+
∑

i<j

∑
h<k〈f([Xh, Xk] ∧Xhk), [ψi, ψj] ∧ ψij〉

+
∑

h

∑
i

{∑
j 6=i〈Xh, ψj · tf((Xh ·i ψ)j)〉+ 〈Xh, (Xh · ψi) · tf(ψi)〉

+
∑

s<ts,t 6=i〈Xh, tf([ψs, ψt] ∧ (Xh ·i ψ)st)〉+
∑

t6=i〈Xh, tf([Xh · ψi, ψt] ∧ ψit)〉
}

−
∑

h<k

∑
i〈[Xh, Xk] ∧Xhk, ψi · tf(ψi)〉

−
∑

h<k

∑
i<j〈[Xh, Xk] ∧Xhk, tf([ψi, ψj] ∧ ψij)〉.
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Note that the summation on the right side of line 3 and the summation on the
right side of line 6 cancel each other. So the total summation is equal to

−
∑

i

∑
k

{∑
h 6=k〈Xh · f((ψi ·k X)h), ψi〉+

∑
s<t,s,t 6=k〈f([Xs, Xt] ∧ (ψi ·k X)st), ψi〉

+〈(ψi ·Xk) · f(Xk), ψi〉+
∑

s 6=k〈f([ψi ·Xk, Xs] ∧Xks), ψi〉
}

+
∑

i<j

∑
h〈Xh · f(Xh), [ψi, ψj] ∧ ψij〉

+
∑

h

∑
i

{
−
∑

j 6=i〈f(ψj ·Xh), (Xh ·i ψ)j〉+
∑

s<t,s,t 6=i〈f(Xh), [ψs, ψt] ∧ (Xh ·i ψ)st〉

−〈f((Xh · ψi) ·Xh), ψi〉+
∑

t6=i〈f(Xh), [Xh · ψi, ψt] ∧ ψit〉
}

+
∑

h<k

∑
i〈f(ψi · ([Xh, Xk] ∧Xhk)), ψi〉.

Lemma 5.2. The sum on the left side of line 1 and the sum on the left side of
line 4 cancel.

Proof
∑

i

∑
k

∑
h 6=k 〈Xh · f((ψi ·kX)h), ψi〉+

∑
h

∑
i

∑
j 6=i 〈f(ψj ·Xh), (Xh ·i ψ)j〉

= −
∑

i

∑
k

∑
h 6=k
∑

j 6=i〈f((ψi ·k X)h), (Xh ·j ψ)i〉
+
∑

h

∑
i

∑
j 6=i
∑

h 6=k〈f((ψj ·k X)h), (Xh ·i ψ)j〉
and simply exchanging indices i and j in the second sum one has the thesis.

Lemma 5.3. The right side summation on line 1, plus the sum on line 3, plus
the right side summation on line 4, plus the sum on line 6, can be rewritten as:
−
∑

h

∑
i<j〈f(Xh), (Xh · [ψi, ψj]) ∧ ψij〉 +

∑
i

∑
h<k〈f((ψi · [Xh, Xk]) ∧Xhk), ψi〉.

Proof −
∑

i

∑
k

∑
s<t,s,t 6=k〈f([Xs, Xt] ∧ (ψi ·k X)st), ψi〉

+
∑

i<j

∑
h〈Xh · f(Xh), [ψi, ψj] ∧ ψij〉

+
∑

h

∑
i

∑
s<t,s,t 6=i〈f(Xh), [ψsψt] ∧ (Xh ·i ψ)st〉

+
∑

h<k

∑
i〈f(ψi · ([Xh, Xk] ∧Xhk)), ψi〉

= −
∑

i

∑
k

∑
s<t,s,t 6=k〈f([Xs, Xt] ∧ (ψi ·k X)st), ψi〉

+
∑

i

∑
h<k〈f((ψi · [Xh, Xk]) ∧Xhk), ψi〉

+
∑

i

∑
h<k

∑
t6=h,k〈f([Xh, Xk] ∧ (ψi ·t X)hk), ψi〉

−
∑

i<j

∑
h〈f(Xh), (Xh · [ψi, ψj]) ∧ ψij〉

−
∑

i<j

∑
h

∑
s 6=i,j〈f(Xh), [ψi, ψj] ∧ (Xh ·s ψ)ij〉

+
∑

h

∑
i

∑
s<t,s,t 6=i〈f(Xh), [ψs, ψt] ∧ (Xh ·i ψ)st〉

Remarking that the first sum cancels with the third and the fifth with the sixth
one gets the claimed result.

Applying the lemma, then, we obtain that the total summation is

= −
∑

h

∑
i<j〈f(Xh), (Xh · [ψi, ψj]) ∧ ψij〉+

∑
i

∑
h<k〈f((ψi · [Xh, Xk]) ∧Xhk), ψi〉

−
∑

i

∑
k〈(ψi ·Xk) · f(Xk), ψi〉 −

∑
i

∑
k

∑
s 6=k〈f([ψi ·Xk, Xs] ∧Xks), ψi〉
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−
∑
h

∑
i

〈f((Xh · ψi) ·Xh), ψi〉+
∑
h

∑
i

∑
t6=i

〈f(Xh), [Xh · ψi, ψt] ∧ ψit〉

=−
∑
h

∑
i<j

〈f(Xh), (Xh · [ψi, ψj]) ∧ ψij〉+
∑
h

∑
i

∑
j 6=i

〈f(Xh), ([Xh · ψi, ψj]) ∧ ψij〉

+
∑
i

∑
h

〈f(Xh), (ψi ·Xh) · ψi〉 −
∑
i

∑
k

∑
h 6=k

〈f([ψi ·Xk, Xh] ∧Xkh), ψi〉

−
∑
h

∑
i

〈f((Xh · ψi) ·Xh), ψi〉+
∑
i

∑
h<k

〈f((ψi · [Xh, Xk]) ∧Xhk), ψi〉

=−
∑
h

∑
i<j

〈f(Xh), Thij ∧ ψij〉+
∑
i

∑
h<k

〈f(Sihk ∧Xhk), ψi〉

where

Thij = Xh · [ψi, ψj] + (ψi ·Xh) · ψj − (ψj ·Xh) · ψi − [Xh · ψi, ψj]− [ψi, Xh · ψj],
Sihk = ψi · [Xh, Xk]+(Xh · ψi) ·Xk−(Xk · ψi) ·Xh−[ψi ·Xh, Xk]−[Xh, ψi ·Xk].

Now it is enough to consider that the cocycle identity implies Thij = 0, see (2),
and that the dual cocycle identity implies Sihk = 0, to deduce that both sums are
zero.
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