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Abstract. We give a description of maximal abelian subalgebras and cen-
tralizers of elements in the Lie algebra sa2(k) = {D ∈ Der k[x, y]| div D = 0}
over an algebraically closed field k of characteristic 0. This description is given
in terms of closed polynomials.
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1. Introduction

The special affine Cremona group SAn(k) over a field k consists of all automor-
phisms F = (f1, . . . , fn) of the polynomial algebra k[x1, . . . , xn] with det(JF ) = 1,
where JF is the Jacobian matrix of F . From [4] it follows that the Lie algebra
san(k) of the infinite dimensional algebraic group SAn(k) consists of all deriva-

tions D =
n∑

i=1

ai(x1, . . . , xn) ∂
∂xi

, ai(x1, . . . , xn) ∈ k[x1, . . . , xn] of the algebra

k[x1, . . . , xn] with div D =
n∑

i=1

∂ai

∂xi
= 0.

The aim of this paper is to give a description of centralizers of elements
in the Lie algebra sa2(k) and to describe all maximal abelian subalgebras of this
algebra over an algebraically closed field k of characteristic 0. The investigation of
the structure of subalgebras in sa2(k) is of great interest, because many problems
(in particular the Jacobian conjecture for n = 2) are closely connected with
properties of subalgebras in sa2(k).

To describe centralizers of elements in sa2(k) we represent this Lie algebra
as a quotient algebra of the Lie algebra P2(k) of all polynomials in two variables
with multiplication rule [f, g] = det(J(f, g)), where det(J(f, g)) is the Jacobian
of polynomials f, g ∈ k[x, y] . In fact, P2(k) is a Poisson algebra but we mainly
consider it as a Lie algebra. Using results from [3], it is easy to obtain a description
of centralizers of elements and of maximal abelian subalgebras in P2(k)(see also
[5]). This description is given in terms of closed polynomials, i. e., polynomials
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f ∈ k[x, y] for which the subalgebra k[f ] is integrally closed in k[x, y] . Using some
results from [1], one can replace here closed polynomials by irreducible ones.

Notations in the paper are standard. The ground field k is algebraically
closed of characteristic 0. The center of a Lie algebra L is denoted by Z(L). It is
easy to show that Z(P2(k)) = k, where k is considered as a subalgebra in P2(k).
For a polynomial f ∈ k[x, y] we denote by k[f ] the (associative) subalgebra in
k[x, y] generated by f . The one-dimensional vector subspace of k[x, y] spanned on
f is denoted by kf . A polynomial f(x, y) ∈ k[x, y] is called a Jacobian polynomial
if there exists a polynomial g such that [f, g] = det(J(f, g)) ∈ k∗ (see, for example
[2], p.245).

2. Closed polynomials

Lemma 2.1. The Lie algebra sa2(k) is isomorphic to the quotient algebra of
P2(k) by Z(P2(k)) = k , i. e.,

sa2(k) ' P2(k)/k.

Proof. Any element f(x, y) of the Lie algebra P2(k) induces the inner deriva-
tion ad f : P2(k) → P2(k), ad f(g) = [f, g] of the Lie algebra P2(k). The linear
mapping ad f is also a derivation of the associative algebra k[x, y] . It is easy to
see that the kernel of the homomorphism of Lie algebras ad : P2(k) → Der(k[x, y])
coincides with k , where k is considered as a subalgebra in P2(k). Since ad f =

−∂f
∂y

∂
∂x

+ ∂f
∂x

∂
∂y

, we get div(ad f) = − ∂2f
∂y∂x

+ ∂2f
∂x∂y

= 0. Therefore, ad f ∈ sa2(k).

This proves ad(P2(k)) ⊆ sa2(k).

Let us show that ad is a surjective map. Let D = P (x, y) ∂
∂x

+Q(x, y) ∂
∂y

be

an element of sa2(k). Then ∂P
∂x

+ ∂Q
∂y

= 0. This condition guarantees the existence

of a polynomial ϕ(x, y) (a potential) such that ∂ϕ
∂x

= Q(x, y), ∂ϕ
∂y

= −P (x, y).

For ϕ we obtain [ϕ, x] = −∂ϕ
∂y

= P (x, y), [ϕ, y] = ∂ϕ
∂x

= Q(x, y), in other words

ad(ϕ) = D . This proves the surjectivity of the map ad. Using that ker ad = k ,
we obtain P2(k)/k ' sa2(k).

Lemma 2.2. 1) A polynomial f ∈ k[x1, . . . , xn] \ k is closed if and only if k[f ]
is a maximal element in the partially ordered set (with respect to inclusion)

M = {k[h] | h ∈ k[x1, . . . , xn] \ k}.

2) Let D be a derivation of k[x, y], D 6= 0. Then ker D = k[f ] for some closed
polynomial f .

Proof. 1) See [3], Lemma 3.1.

2) From [3], Theorem 2.8, it follows that ker D = k[f ] for some polynomial
f . The subalgebra ker D = k[f ] is integrally closed in k[x, y] by the Lemma 2.1
from [3]. Therefore the polynomial f is closed.

Let f, h ∈ k[x1, . . . , xn] . We call a polynomial h a generative polynomial of f if
h is closed and if f ∈ k[h] , i. e., f = F (h) for some F (t) ∈ k[t] .
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Lemma 2.3. Let f ∈ k[x, y] \ k . The polynomial f is closed in the following
two cases:

1) when f is irreducible;

2) when f is a Jacobian polynomial.

Proof. 1) If f is not closed, then f = F (h) for some polynomials h ∈ k[x, y]
and F (t) ∈ k[t], deg F > 1. Since F is reducible (as a polynomial in one
indeterminate) f is reducible as well.

2) Let f be Jacobian but not closed. Then there exists a polynomial
F (t) ∈ k[t], deg F > 2 such that f = F (h) for some polynomial h ∈ k[x, y] .
As f is Jacobian there exists a polynomial g ∈ k[x, y] with det(J(f, g)) = c ∈ k∗ .
Then

det(J(f, g)) = det(J(F (h), g)) = F
′
(h) det(J(h, g)) = c.

This is impossible because deg F
′
(h) > 1.

Lemma 2.4. 1) If polynomials f, g ∈ k[x, y] \ k are algebraically dependent,
there exists a closed polynomial h ∈ k[x, y] such that f ∈ k[h] and g ∈ k[h];

2) For any polynomial f ∈ k[x, y] \ k , there exists a generative polynomial.
If h1 , h2 are two generative polynomials of f , there exist c1 ∈ k∗ , c2 ∈ k such
that h2 = c1h1 + c2 ;

3) In the set of all generative polynomials of a polynomial f ∈ k[x, y] \ k
there exists at least one irreducible polynomial.

Proof. 1) If f and g are algebraically dependent, by Corollary 3 from [5]
we obtain [f, g] = 0. By Lemma 2.2, we get ker ad f = k[h] for some closed
polynomial h(x, y). Since f ∈ ker ad f and g ∈ ker ad f , one concludes f ∈ k[h]
and g ∈ k[h] .

2) Since from the inclusion k[f ] ( k[g] it follows deg g < deg f , f is
contained in some maximal one-generated subalgebra k[h] . By Lemma 2.2 h is a
generative polynomial of f . Suppose h1 and h2 are generative polynomials of f .
It means in particular that f ∈ k[h1] and f ∈ k[h2] . Therefore, f = F1(h1) and
f = F2(h2) for some polynomials F1(t), F2(t) ∈ k[t] . Then F1(h1) − F2(h2) = 0
and this implies that h1 and h2 are algebraically dependent. By 1) we conclude
h1 ∈ k[h] , h2 ∈ k[h] for some closed polynomial h . Clearly k[h1] = k[h] = k[h2] .
Therefore h2 = c1h1 + c2 for some elements c1 ∈ k∗ , c2 ∈ k .

3) Let h be a generative polynomial of f . Since h is closed it follows from
[1] (see Théorème 8) that there exists c ∈ k such that h − c is an irreducible
polynomial. Because k[h] = k[h − c] , h − c is also a generative polynomial of f .
This proves the Lemma.

Corollary 2.5. If polynomials f(x, y) and g(x, y) are irreducible and alge-
braically dependent then f = c1g + c2 for some c1 ∈ k∗ , c2 ∈ k .

Proof. Since f and g are algebraically dependent, by Lemma 2.4 there exists
a closed polynomial h such that f ∈ k[h] , g ∈ k[h] . The irreducible polynomials
f and g are closed by Lemma 2.3. Therefore k[f ] = k[h] = k[g] and f = c1g + c2 ,
for some c1 ∈ k∗ , c2 ∈ k .
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Corollary 2.6. For any polynomial f ∈ k[x, y] \ k there exist an irreducible
polynomial h(x, y) and a polynomial F (t) ∈ k[t] such that f = F (h).

Proof. By Lemma 2.4 there exists an irreducible polynomial h such that f ∈
k[h] . This implies the required statement.

Lemma 2.7. 1) For any polynomial f ∈ P2(k) \ k its centralizer CP2(k)(f)
coincides with k[h] for any generative polynomial h of f .

2) Let A be a maximal abelian subalgebra of the Lie algebra P2(k). Then
A = k[f ] for some irreducible polynomial f ∈ P2(k) \ k . Conversely, for any
irreducible polynomial f ∈ P2(k) \ k , the subalgebra k[f ] is a maximal abelian
subalgebra of P2(k).

Proof. 1) Follows from Lemma 2.2, since CP2(k)(f) = ker ad f .

2) Let A be a maximal abelian subalgebra of the Lie algebra P2(k) and
let f be any non-constant polynomial from A . Obviously, A ⊆ CP2(k)(f) = k[h]
for some closed polynomial h . Since k[h] is an abelian subalgebra, A = k[h] . By
Lemma 2.4, h can be chosen irreducible.

Now let f be an irreducible polynomial. The polynomial f is closed by
Lemma 2.3. We shall show that k[f ] is a maximal abelian subalgebra. Let g be
a polynomial such that [f, g] = 0. Then as in the proof of Lemma 2.4 f ∈ k[h] ,
g ∈ k[h] for some closed polynomial h . Therefore, using that f is closed, we
conclude g ∈ k[h] = k[f ] . We proved that all polynomials commuting with f
belong to k[f ] . Therefore k[f ] is a maximal abelian subalgebra in P2(k).

3. Main results

Theorem 3.1. Let D = P (x, y) ∂
∂x

+ Q(x, y) ∂
∂y

be a non-zero element of the

Lie algebra sa2(k). Let f(x, y) ∈ k[x, y] be a polynomial such that ∂f
∂x

= Q(x, y),
∂f
∂y

= −P (x, y) and let f̄ be a generative polynomial of f . Then

1) if f(x, y) is not a Jacobian polynomial,

Csa2(k)(D) = k[f̄ ]

(
−∂f̄

∂y

∂

∂x
+

∂f̄

∂x

∂

∂y

)
;

2) if f(x, y) is a Jacobian polynomial and g(x, y) is a polynomial such that
det(J(f, g)) ∈ k∗ ,

Csa2(k)(D) = k[f ]

(
−∂f

∂y

∂

∂x
+

∂f

∂x

∂

∂y

)
+ k

(
−∂g

∂y

∂

∂x
+

∂g

∂x

∂

∂y

)
Proof. 1) By Lemma 2.7 CP2(k)(f) = k[f̄ ] . The homomorphism ad : P2(k) →
sa2(k) takes the polynomial f̄ to the derivation ad f̄ = −∂f̄

∂y
∂
∂x

+ ∂f̄
∂x

∂
∂y

. Let

D1 = P1(x, y) ∂
∂x

+ Q1(x, y) ∂
∂y

be an arbitrary non-zero element of Csa2(k)(D).

By Lemma 2.1 there exists a polynomial f1(x, y) such that ad f1 = D1 . Since
ker ad = k , [f, f1] lies in k . But f is not a Jacobian polynomial, so we can
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conclude [f, f1] = 0. Therefore f1 lies in CP2(k)(f) = k[f̄ ] . This means that
ad−1(Csa2(k)(D)) = k[f̄ ] . Using the surjectivity of the homomorphism ad we

obtain Csa2(k)(D) = ad(k[f̄ ]) = k[f̄ ]
(
−∂f̄

∂y
∂
∂x

+ ∂f̄
∂x

∂
∂y

)
.

2) Let f be a Jacobian polynomial, i. e., there exists a polynomial g such
that det(J(f, g)) = c ∈ k∗ . By Lemma 2.3 the polynomial f is closed, i. e., one
can assume f̄ = f . Since [ad f, ad g] = ad c = 0, we have ad g ∈ Csa2(k)(ad f) =
Csa2(k)(D). It is easy to see that

ad−1(Csa2(k)(D)) = {h ∈ P2(k)| [f, h] ∈ k} = k[f̄ ] + kg = k[f ] + kg.

Therefore,

Csa2(k)(D) = ad(k[f ] + kg) = k[f ]

(
−∂f

∂y

∂

∂x
+

∂f

∂x

∂

∂y

)
+ k

(
−∂g

∂y

∂

∂x
+

∂g

∂x

∂

∂y

)
.

Remark 3.2. From Lemma 2.4 it follows that the polynomial f̄ in Theorem 3.1
can be chosen irreducible.

Remark 3.3. From the description of centralizers of elements in Theorem 3.1
it follows that the centralizer of a derivation corresponding to a non Jacobian poly-
nomial is an abelian subalgebra, and the centralizer of a derivation corresponding
to any Jacobian polynomial is solvable of derived length 2.

Lemma 3.4. Let L = k[f ] + kg be a subalgebra of the Lie algebra P2(k) with
det(J(f, g)) = c ∈ k∗ . If A is a nilpotent subalgebra of L and the nilpotency
class of A is at most 2 then either A ⊆ k[f ] or A is contained in the subalgebra
k + kf + k(g + p(f)) for some p(t) ∈ k[t].

Proof. Suppose that A is not contained in k[f ] . As dimL/k[f ] = 1 the
k−subspace A∩ k[f ] is of codimension 1 in A . Therefore A = (A∩ k[f ]) + k(g +
p(f)) for some p(t) ∈ k(t). Since [q(f), g + p(f)] = q

′
(f) · c for any polynomial

q(t) ∈ k[t] the subspace A ∩ k[f ] may not contain polynomials of degree > 1.
So the intersection A ∩ k[f ] is contained in the subalgebra k + kf and therefore
A ⊆ k + kf + k(g + p(f)).

Theorem 3.5. Let A be a maximal abelian subalgebra of the Lie algebra sa2(k).
Then

1) if dim A = ∞, then A = k[f ]
(
−∂f

∂y
∂
∂x

+ ∂f
∂x

∂
∂y

)
, where f(x, y) is an

irreducible polynomial. Conversely, for any irreducible polynomial f , the algebra

k[f ]

(
−∂f

∂y

∂

∂x
+

∂f

∂x

∂

∂y

)
is a maximal abelian subalgebra in sa2(k);

2) if dim A < ∞ then A = kD1 + kD2 , where D1 = −∂f
∂y

∂
∂x

+ ∂f
∂x

∂
∂y

,

D2 = −∂g
∂y

∂
∂x

+ ∂g
∂x

∂
∂y

for some polynomials f, g such that det(J(f, g)) ∈ k∗ .

Conversely, for any two polynomials f, g with condition det(J(f, g)) ∈ k∗ the
subalgebra kD1 + kD2 , where D1 and D2 are defined as above, is a maximal
abelian subalgebra of sa2(k).
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Proof. Let D be an arbitrary non-zero element of A . Then A ⊆ Csa2(k)(D)
and clearly A is a maximal abelian subalgebra of Csa2(k)(D). By Theorem 3.1
either

Csa2(k)(D) = k[f ]

(
−∂f

∂y

∂

∂x
+

∂f

∂x

∂

∂y

)
or

Csa2(k)(D) = k[f ]

(
−∂f

∂y

∂

∂x
+

∂f

∂x

∂

∂y

)
+ k

(
−∂g

∂y

∂

∂x
+

∂g

∂x

∂

∂y

)
.

In the first case f is a closed irreducible polynomial, in the second one
the polynomials f and g satisfy the condition det(J(f, g)) ∈ k∗ . In the first case

Csa2(k)(D) is an abelian subalgebra. Thus A = Csa2(k)(D) = k[f ]
(
−∂f

∂y
∂
∂x

+ ∂f
∂x

∂
∂y

)
.

Consider the second case. Denote L = ad−1(Csa2(k)(D)) where ad :
P2(k) → sa2(k) is the homomorphism from the Lemma 2.1. Then ad−1(A) is a
subalgebra in L . It is easy to see that L = k[f ]+kg . Since ker ad = Z(P2(k)) = k ,
we conclude that ad−1(A) is a nilpotent subalgebra of the nilpotency class 6 2.
By Lemma 3.4 it holds either ad−1(A) ⊆ k[f ] or ad−1(A) ⊆ k + kf + k(g + p(f))
for some p(t) ∈ k[t] . Since A is a maximal abelian subalgebra of sa2(k) it
follows from inclusion ad−1(A) ⊆ k[f ] that ad−1(A) = k[f ] . Then we have

A = k[f ]
(
−∂f

∂y
∂
∂x

+ ∂f
∂x

∂
∂y

)
.

Let now ad−1(A) ⊆ k + kf + k(g + p(f)). Applying the map ad we get the
inclusion A ⊆ ad(k + kf + k(g + p(f))) = kD1 + kD2, where D1 = ad f, D2 =
ad(g + p(f)).The subalgebra kD1 + kD2 is abelian and therefore A = kD1 + kD2 .
Denoting g + p(f) by g we have D1 = ad f, D2 = ad g . So we have proved the
necessary conditions for both statements of the Theorem.

Let f be an irreducible polynomial. We will show that k[f ]
(
−∂f

∂y
∂
∂x

+ ∂f
∂x

∂
∂y

)
is a maximal abelian subalgebra in sa2(k). Clearly, since f is an irreducible poly-
nomial, by Lemma 2.7 k[f ] is a maximal abelian subalgebra in P2(k). It is obvious
that

ad(k[f ]) = k[f ]

(
−∂f

∂y

∂

∂x
+

∂f

∂x

∂

∂y

)
is an abelian subalgebra in sa2(k). Suppose that ad(k[f ]) is not maximal abelian.
Then it is properly contained in some maximal abelian subalgebra B of the algebra
sa2(k). Since dim B = ∞ , as it was proved above there exists a closed polynomial

g such that B = k[g]
(
−∂g

∂y
∂
∂x

+ ∂g
∂x

∂
∂y

)
. From this one easily concludes that k[f ]

is properly contained in ad−1(B) = k[g] . This is impossible by Lemma 2.2, since
k[f ] is a maximal in the set of subalgebras of the form k[h] in P2(k). This proves

that k[f ]
(
−∂f

∂y
∂
∂x

+ ∂f
∂x

∂
∂y

)
is a maximal abelian subalgebra in sa2(k).

Let now f and g be two polynomials from k[x, y] such that det(J(f, g)) ∈
k∗ . Then the elements D1 = ad f and D2 = ad g commute. Therefore A =
kD1 + kD2 is an abelian two-dimensional subalgebra in sa2(k). Suppose, A is
not a maximal abelian subalgebra of the algebra sa2(k). Then A is contained
in some maximal abelian subalgebra B of sa2(k). If dim B = ∞ , by the above

proved statement, B = k[h]
(
−∂h

∂y
∂
∂x

+ ∂h
∂x

∂
∂y

)
for some closed polynomial h . Then

ad−1(B) = k[h] is an abelian subalgebra in P2(k) which contains the non-abelian
subalgebra k+kf+kg . This is impossible and therefore dim B < ∞ . As above one
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can obtain dim B = 2. This implies A = B which contradicts to our assumption.
This contradiction proves that A is a maximal abelian subalgebra in sa2(k). The
sufficient conditions for the both statements of the Theorem are proved.
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