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Derivations from the Even Parts into the Odd Parts
for Lie Superalgebras W and S
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Abstract. Let W and S denote the even parts of the generalized Witt super-
algebra W and the special superalgebra S over a field of characteristic p > 3,
respectively. In this note, using the method of reduction on Z-gradations, we
determine the derivation space Der(WW,Wy) from W into Wy and the deriva-
tion space Der(S,W7t) from S into Wz. In particular, the derivation space
Der(S, St) is determined.
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0. Introduction

The underlying field F is assumed of characteristic p > 3 throughout. We shall
study the derivations from the even parts of the generalized Witt superalgebra W
and the special superalgebra S into the odd part of W, where W7 is viewed as
modules for W5 and S; by means of the adjoint representation. The motivation
came from the following observation. Let L = Lz @ Ly be a Lie superalgebra.
Then Lj is a Lie algebra and Ly is an Lg-module. Two questions arise naturally:
Does the derivation algebra of the even part of L coincide with the even part
of the superderivation algebra of L? Does the derivation space from Lg into Ly
coincide with the odd part of the superderivation algebra of L? For the generalized
Witt superalgebra and the special superalgebra the first question was answered
affirmatively in [2, Remarks 3.2.12 and 4.3.8]. In this note, the second question
will also be answered affirmatively for these two Lie superalgebras of Cartan type
(Remarks 2.16 and 3.20). Speaking accurately, we shall determine the derivation
spaces from the even parts of the generalized Witt superalgebra W and the special
superalgebra S into the odd part of W, respectively (Theorems 2.15 and 3.18).
As a direct consequence, the derivation space from the even part into the odd part
for the special superalgebra is determined (Theorem 3.19). The authors would like
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to thank the anonymous referee for the paper [3] for posing such an interesting
question.

1. Basics

In this note we adopt the notation and concepts used in [2], but here, for conve-
nience and completeness, we repeat certain necessary symbols and notions.

Let Zy = {0,1} be the field of two elements. For a vector superspace
V = Vi @ V§, we denote by p(a) = 6 the parity of a homogeneous element
a € Vp,0 € Zs. We assume throughout that the notation p(x) implies that z
is a Zs-homogeneous element.

Let g be a Lie algebra and V' a g-module. A linear mapping D : g — V is
called a derivation from g into V' if D(zy) = x-D(y) —y-D(x) for all z,y € g. A
derivation D : g — V is called inner if there is v € V' such that D(z) = z-v for all
x € g. Following [5, p. 13|, denote by Der(g, V') the derivation space from g into
V. Then Der(g,V) is a g-submodule of Hompg(g, V). Assume in addition that g
and V are finite-dimensional and that g = ®,czg, is Z-graded and V = &,V is
a Z-graded g-module. Then Der(g, V') = @,ezDer,(g,V) is a Z-graded g-module
by setting

Der,(g,V) :={D € Der(g,V) | D(g;) C V4, for all i € Z}.

If g=®_,<i<s8; is a Z-graded Lie algebra, then @&_,<;,<og; is called the top of g
(with respect to the gradation).

We note that the derivations from g into V' are just the 1-cocycles and
that the inner derivations from g into V' are just 1-coboundaries. Thus
Der(g, V)/InnDer(g, V) is isomorphic to H'(g,V), the first cohomology group of
g relative to the module V, where InnDer(g, V') stands for the space of inner
derivations from g into V.

In the below we review the notions of modular Lie superalgebras W and
S of Cartan-type and their gradation structures. In addition to the standard
notation Z, we write N for the set of positive integers, and Ny for the set of
nonnegative integers. Henceforth, we will let m,n denote two fixed integers in
N\ {1, 2} without notice. For a := (o, ..., ) € N, we put |a| := > ", ;. Let
O(m) denote the divided power algebra over F with an F-basis {2(® | a € NI'}.
For &; := (041, ...,0im), we abbreviate 29 to z;, i = 1,...,m. Let A(n) be the
exterior superalgebra over F in n variables x,,11,...,%min. Denote the tensor
product by O(m,n) := O(m) ®r A(n). Obviously, O(m,n) is an associative
superalgebra with a Zs-gradation induced by the trivial Zs-gradation of O(m)
and the natural Z,-gradation of A(n). Moreover, O(m,n) is super-commutative.
For g € O(m), f € A(n), we write gf for g ® f. The following formulas hold in
O(m,n) :

@8 = (a * ﬁ) 2@ for a, 3 € N

Q
rpr; = —xx fork,l=m+1,....,m+n;

gy = ppx'® forae Ni', k=m+1,...,m+n,
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where (O‘Iﬁ) =1, (a’;ﬁl) Put Yy :={1,2,...,m}, Vi :={m+1,..., m+n}
and Y := Yy UY). For convenience, we adopt the notation ' := r +m for r € Y;.
Thus, Y7 :={1,2',...,n'}. Set

B, = {(zl,zg,,zk>\m+1§zl<22<<zk§m+n}

and B := B(n) = |J Bg, where By := @. For u = (i1,49,...,i) € By, set
k=0

lu| :=k,|@| =0, 22 :=1, and 2% := 2;,2;, ... 7;,; we use also u to stand for the

index set {iq,7s,...,1i;}. Clearly, {x(o‘)x“ | a € Nt u € ]B} constitutes an [F-basis

of O (m,n). Let Dy, Dy, ..., Dyyp be the linear transformations of O (m,n) such

that
(a—er) pu
Dy(a(@gny = J 7 T E T
@9zt 0z, T €Y
Then Dy, Ds, ..., D,,, are superderivations of the superalgebra O (m,n). Let

W (m,n) = {ZfTD]fTEO(mn)TEY}

reY

Then W (m,n) is a Lie superalgebra, which is contained in Der(O (m,n)). Obvi-
ously, p(D;) = 7(i), where

. [0, ieY,
T(Z).—{i e,

One may verify that
/D, gE] = FD(g)E — (—)PRBIg () D 4 (~1)PPP0 o[ D )
for f,g € O(m,n), D,E € Der O(m,n). Let
t:=(t,ta,...,tm) €N 7= (m, M2 ..., )
where m; ;= pli —1,i € Yy. Let A:=A(m;t) ={a e NJ" | a; < m;,0 € Yo} . Then
O (m,n;t) := spang {z\z" | o € A, u € B}

is a finite-dimensional subalgebra of O (m,n) with a natural Z-gradation
O (m,n;t) = @:_, O(m, n;t), by putting

Om, n;1), = spang{a®@a* | o] + [u] = v}, €= |x|+n.

Set
W (m,n;t) : {ZfrD|fr€O(mnt)r€Y}
rey

Then W (m,n;t) is a finite-dimensional simple Lie superalgebra (see [6]). Obvi-
ously, W(m,n;t) is a free O (m, n;t)-module with O (m,n;t)-basis {D, | r € Y}.
We note that W (m,n;t) possesses a standard F-basis {z'®z"D, | a € Aju €
B,r €Y} Let r,s €Y and D,s: O(m,n;t) — W(m,n;t) be the linear mapping
such that

Dys(f) = (=1 O"OD,(f)Dy — (~1)TOHPDD(f)D, for f € O(m,n;t).
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Then the following equation holds:
[Dy, Dys(f)] = (=1)"™™ 0D, (Dy(f)) for k,r,s €Y; f € O(m,n;t).

Put
S(m,n;t) = spang{D,s(f) [ 1,5 € Y; f € O(m,n;1)}.

Then S(m,n;t) is a finite-dimensional simple Lie superalgebra (see [6]). Let
div : W{(m,n;t) — O(m,n;t) be the divergence such that

div(Y_ fiD,) =Y (=17 PIIDL(f,).

reY reyY

S(m,n;t) :={D € W(m,n;t) | div(D) = 0}.

Then S(m,n;t) is a subalgebra of W(m,n;t) and S(m,n;t) is a subalgebra
of S(m,n;t). The Z-gradation of O(m,n;t) induces naturally a Z-gradation
structure of W(m,n;t) = &', W (m,n;t);, where

W(m,n;t); :=spang{fDs | s €Y, f € O(m,n;t)is1}.

In addition, S(m,n;t) and S(m,n;t) are all Z-graded subalgebras of W(m,n;t).
In the following sections, W(m,n;t), S(m,n;t), S(m,n;t), and O(m,n;t) will
be denoted by W, S, S, and O, respectively. In addition, the the even parts of W,

S and S will be denoted by W, S and S, respectively.

2. Generalized Witt superalgebras

View W5 as a WW-module by means of the adjoint representation. In this section,
the main purpose is to characterize the derivation space Der(WW, Wy ). Note that the
Z-gradation of W induces a Z-gradation of W = @;>_;W,. We know that grada-
tion structures provide a powerful tool for the study of (super)derivation algebras
of Lie (super)algebra; in particular, the top of a Z-graded Lie (super)algebra plays
a predominant role (c.f. [1, 4, 2]). Following [5], we call 7 := spang{l'; | i € Y}
the canonical torus of W. In the following, we first reduce every nonnegative Z-
homogeneous derivation ¢ in Der(WW, W7) to be vanishing on W_;; that is, we
find an inner derivation adz such that (¢ —adz)(W_;) = 0, where z € W7, In ad-
dition, we reduce the derivations in Der(W, W) to be vanishing on the canonical
torus of W. In next step, based on these results, we shall reduce the derivations
in Der(W, W) to be vanishing on the top W_; & W.
Set

G := spang{z"D; | i € Y,u € B(n),p(z"D;) = 1}.
Note that G = Cy(W). Then G is a Z-graded subspace of Wr.

In the sequel we adopt the following notation. Let P be a proposition.
Define dp := 1 if P is true and dp := 0, otherwise. Put I'; := x;D; for i € Y
and T' =3 Ty, T" =3 oy Ty and T := 37 T We call adl" the degree
derivation of W (or W), and adI” and adI” the semi-degree derivations of W
(or W). The following simple facts will be frequently used in this note:

ad(E) =rE forall E€W,, r€Z;
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ad (292" D;) = (Ju| — djey; )2 @a"D;  for all a € A(m;t), u € B(n), j €Y;
ad (22" D;) = (|a| — djev, )22 D,  for all a € A(m;t), u € B(n), j €Y.

In particular, each standard [F-basis element :E(o‘)x“Dj of W is an eigenvector of
the degree derivation and the semi-degree derivation of W.
Similar to [2, Lemma 2.1.1], we have the following

Lemma 2.1.  Suppose that L is a Z-graded subalgebra of W and L1 = W_;.
Let E € L and ¢ € Der(L,Wy) satisfying ¢(W_1) = 0. Then ¢(E) € G if and
only if [E,W_1] C ker ¢.

Analogous to [5, Proposition 8.2, p. 192], we have the following

Lemma 2.2.  Let k <n, fi,...,fr € A(n) be nonzero elements and T'y =
2, Dy, q, € Y1, 1 <1 < k. Suppose that

(a) L, (fy) = qu (fi) for 1<i,j <K
Then there is [ € A(n) such that Ty (f) = f; for 1 <i <k.

Analogous to [2, Lemma 2.1.6], we have

Lemma 2.3.  Suppose that L is a Z-graded subalgebra of W satisfying L1 =
W_1. Let ¢ € Der(L,W7) with zd(¢) =t > 0. Then there is E € (W7); such that

(6 — adE)(L£_,) = 0.

In view of Lemma 2.3, every nonnegative Z-homogeneous derivation from
W into W may be reduced to be vanishing on W_;. Thus, next step is to reduce
such derivations to be vanishing on the top W_; & W,. To that end, we first
consider the canonical torus of W, that is, 7 := spanp{I[’; | i € Y'}.

The following lemma will simplify our consideration, it tells us that in order
to reduce derivations on the canonical torus it suffices to reduce these derivations
on 7' :=spany{l'; | j € V1}.

Lemma 2.4.  Suppose that ¢ € Der,(W, W5) with t > 0 and ¢(W_,UT") = 0.
Then ¢(I';) =0 for all i € Yp.

Proof. (i) First consider the case ¢t > 0. From ¢(WW_;) = 0 and Lemma 2.1 we
have ¢(I';) € G; for all i € Y. Thus one may assume that

o(Iy) = Z cu k" Dy, where ¢, € F. (2.1)

k€Y, ueBi41

For arbitrary [ € Y and v € B, 1, noticing that t+1 > 1, one may find j € v\{l}.
Clearly,
T, ¢l = > cuxlly, 2"Dyl. (2.2)
k€Yo, u€Bii1
Note that
[Fj, quk] = (5j€u - (Sjk)l‘uDk; (23)
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in particular,

[Fj, [L’le} = $UDl. (24)
On the other hand, since [I';, I';] =0 and ¢(I';) = 0, one may easily see that
[, ¢(I'3)] = 0.

From (2.2)-(2.4) and the equation above, we obtain that ¢,; = 0. It follows from
(2.1) that ¢(I';) =0 for all i € Y.

(ii) Let us consider the case t = 0. In view of Lemma 2.1, we have ¢(I';) €
Go. Obviously, [I';,I;] =0 for all j € Yi,i € Yy. Therefore,

I, 0(I)] =0 forall j €Y.

Note that each standard basis element of W5 is an eigenvectors of adl'; for j € Y;.
It follows from the equation displayed above that

o(T;) = Z ¢kl where ¢; ), € F. (2.5)

keYy

For j,l € Y1, by Lemma 2.1, one gets ¢(x;D;) € Gy. Assume that [I';, ¢(z;D;)] =
ZkeYl MexpD;. From the equation [I';, z;D;] = 0, we obtain that

[6(T), 2;D1) = = Y N D;.
keyy
Then it follows from (2.5) that ¢;; = ¢; for j,1 € Y. Write ¢;; := ¢; for all j € Y.
Then (2.5) shows that
o(T;) = ¢I" fori €Y.

We want to show that ¢; = 0 for all ¢ € Y. Suppose that we are given ¢ € Y,
g, L e Yq. Clearly, [z;2,D;,T;] = xjx;D;. Applying ¢ to this equation, we have

[¢(l'j$zDi),Fi]—¢(in$zDi) = —[$j$1D17¢(Fi)]
= —[ZE]‘ZEZDZ‘,CZ‘FI]

= 2cixjxlD7;.

By Lemma 2.1, it is easily seen that ¢(z;z;D;) € Gi. Thus one may assume that
o(xjaD;) = Zkeyvue]% Cuxt"Dy. Note that [x“Dy,z;D;] = gz D;. It follows
that
Z (0ki — )ey px" Dy = 2¢;3520D;.
keY,ueBsg
A comparison of the coefficients of x;z;D; in the equation above yields that 2¢; = 0
for ¢ € Yy. Since charF # 2, we have ¢; = 0 for all 7 € Y;;. So far, we have proved
that ¢(I';) = 0 for all i € Y.
Now, by (i) and (ii), we obtain the desired result. n

We first consider the odd positive Z-homogeneous derivations.

Lemma 2.5.  Suppose that ¢ € Der,(W,W5) where zd(¢) =t > 1 is odd. If
d(W_1) =0, then there is z € Gy such that (¢ — adz)(7T") = 0.
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Proof. Using Lemma 2.1 and noting that ¢ is odd, we may assume that
$(I) = fruD, wherei €Yy, f.; € A(n). (2.6)
reyY;
Applying ¢ to the equation that [[';,I';] =0 for 4,j € Y3, we have
> (i) = Ti(fo)) D + f5:Dj = fisDs = 0.
reyY;

Consequently,
Li(frs) =T;(fr) whenever r # i, j;
U;(fi) =TLi(fi;) — fi; whenever i # j.
For r,i € Y}, one may assume that f,; = Z|u|=t+1 Curi®", Curi € F. By (2.7), we
have
Curijeu = Curjlicy Whenever r # i, j.

This implies that
curi 70 and j€Eu<=cy; #0and 7 € u.

Let r # i and assume that c,; # 0. Then the implication relation above shows
that 7 € u. Accordingly,

Li(fr) = fri whenever r # . (2.9)
For any fixed r € Y}, Lemma 2.2 ensures that there is f, € A(n) such that
Uy(f,) = f.s forallieY\{r}. (2.10)
Assert that
Li(fi) =0 foralli€ Y. (2.11)

Using (2.8) and noticing the fact that ' = I';, we obtain that
LiTi(fu) = Til(fu) = Ti (fiy) = Tu(fiy) = 0 for j # .
Note that zd(f;) =t+ 1> 2 and T';(z%) = diex™. (2.11) follows.

For r € Y1, put f, := —f.. + [.(f,). Obviously, f. € A(n). It follows from
(2.11) that

Fr(fr) —fr= _Fr(frr) + Fg(ﬁ) + frr — Fr(?r) = frr. (2'12)
For i € Y1\r, by (2.8) and (2.10) we obtain that

Ui(fy) = —Lilfir) + Pirr(?r) = —Ti(for) + F?"Fi(fr)

- _(Fr(fri> - fm) + Fr(fm') = fm’-
Let 2" := =3 oy, frDr. A combination of (2.12) and the equation above yields
that for 7 € Y3,
[Zlv F%] = - Z[fTDT’ PZ] = Z Fz(fr)Dr - szz
reY; reYy
= > LDy + (i) = f)Ds
reYi\i

= Z friDy + fuDi = o(I).

reYi\i
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Let z be the t-component of z’. Since zd(¢) = t, one gets [z,I;] = ¢(I';) for all
i € Y]. Putting ¢ := ¢ —adz, then ¢ € Der,(W,W7) and ¢(I';) =0 for all 7 € ;.
|

Lemma 2.6.  Suppose that ¢ € Der(W,W5) and zd(¢) =t > 0 is even. If
d(W-1) =0 then there is z € Gy such that (¢ —adz)(7') = 0.

Proof.  Since zd(¢) =t is even, by Lemma 2.1, one may assume that

=Y fuD, wherei€Y;, f.€ A(n). (2.13)

reYp

Analogous to the proof of Lemma 2.5, one may easily show that

Fi(f’/‘j) = F](frz) for all Z,j € Yl (214)
Suppose that
fri = Z Curi®"  where ¢, ,; € F. (2.15)
u€By 41

Then we obtain from (2.14) and (2.15) that
CuriOjeu = Curjlicy foralli,j €Yy, r €Y.
Consequently, for 7,5 € Y1, r € Yy and u € By,
Curi #70and j € u <= ¢y, ; #0and i € u. (2.16)

Let us complete the proof of this lemma. Assume that zd(¢) =t > 2. If
Curi # 0 for ¢ € Y7, one may pick j € u\i. By (2.16), we have i € u. Assume
that zd(¢) = 0. Then (2.16) implies that there is at most one nonzero summand
Cii),ri®; in the right-hand side of (2.15). Summarizing, every nonzero summand in
the right-hand side of (2.15) possesses the factor z;. Therefore,

Fl(le) = fri for all 7 € Yl; re Yb (217)

For any fixed r € Yy, by (2.14) and (2.17), {frm+1, frm+2s- - frmin} fulfills the
conditions of Lemma 2.2. Hence, there is f, € A(n) such that

Fl<f7n) = fm' for i € }/1

Let 2/ := =3 .y, frD,. Then (2.13) and the equation above show that [2/,T';] =

o(T;) for i € 7. Let z be t-component of z’. Then z € G, and (¢ —adz)(I';) =0

for all 7 € Y. ]
Now we come to the following main result.

Proposition 2.7.  Let ¢ be a homogeneous derivation from W into Wy with

nonneqative Z-degree t. Then ¢ can be reduced to be vanishing on YW_1 and the
canonical torus of W; that is, there is E € (W7); such that (¢ —adFE) 0.

|W_1+T
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Proof. By Lemma 2.3, there is £’ € (W7), such that (¢ —adE")(W_1) = 0.
Then by Lemmas 2.4—2.6, there is E” € G; such that (¢ —adFE’' —adE")(7) = 0.
Putting F := E' + E”, then (¢ —adE)W_1+7) =0. [

In the following, using Proposition 2.7, we first reduce every nonnegative
Z--homogeneous derivation from W into W7 to be vanishing on the top W_; & W,
of W; then we determine the Z-homogeneous components Der,;(WW, W) for t > 0.

Proposition 2.8.  Let ¢ € Der,(W, W5) with t > 0. Then there is E € (Wy),
such that (¢ — adE) = 0.

|w_1@w0

Proof. By Proposition 2.7, without loss of generality we may assume that
oW-_1+T) =0.

(i) We first consider ¢(zD;) where i,k € Yy with i # k. By Lemma
2.1, ¢(xD;) € Gy Assume that ¢(zpD;) = Zrexuegm Cur2" D, where ¢,, € F.
If ¢ is even, then @(xxD;) = >,y ue,., Curt"Dr. Note that [I';, ¢(24D;)] = 0
for arbitrary j € Y;. It follows that ¢(zxD;) = 0. If ¢ is odd, then ¢(xyD;) =
ZTEY1,u€]Bt+1 Curx*D,. Then

o(x1.Di) = ¢([Uk, v Di]) = [Tk, p(21.D;)] = 0.

(ii) We next consider ¢(xpD;) where k,l € Yy with k # [.
(a) Suppose that t is even. Just as in (i) one may assume that

o(zrDy) = Z Curx'D, where ¢, € F.

re€Yo,u€Bi1

Then, from the equation that [I';, ¢(zxD;)] = 0 for all i € Y, one gets ¢,, = 0
for all » € Yy, u € By;1. Hence, ¢(zxD;) = 0.

(b) Suppose that t is odd. We proceed in two cases t > 3 and 1 <t < 2
to show that ¢(xzD;) = 0 for k,I € Y;. Suppose that ¢ > 3. By Lemma 2.1, one
may assume that

o(zp D)) = Z Curx'D, where ¢,, € F. (2.18)

reYn, |u|>4

Given v € B with | v |>4 and s € Y;, choose ¢ € v\ {k,l,s}. Then [I'y, 2" D] =
z"Ds. On the other hand, since [I'y, zxD;] = 0, we have [I'y, ¢(zxD;)] = 0. Note
that each standard basis element of W is an eigenvector of I'; and [['y, 2" D] =
2" Ds. It follows from (2.18) that ¢, = 0. Therefore, ¢(x;D;) = 0.

Finally we consider the case ¢t = 1. Clearly, [I",x;D;] = 0. Consequently,
I, ¢(zxD;)] = 0. On the other hand, by Lemma 2.1, ¢(zD,;) € G. Thus

0= [F,, ¢($le)] = ¢($le)

The proof is complete. [ |

In order to determine the homogeneous derivation subspace Der,(W, Wy)
for ¢ > 0, we need the generator set of W (see [2, Proposition 2.2.1]).
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Lemma 2.9. W is generated by P UN UM, where
P ={xpxD; | k,l €Yy, 1 € Yy},
N ={zyxD; | k €Yy, i€ Y1},
M= {25)D; |0 <k <m, 0,5 € Yo}

Now we can determine the nonnegative Z-homogeneous derivations:
Proposition 2.10.  Let t € Ny. Then Der,(W, W7) = ad(W7),.

Proof. If suffices to show the inclusion “C”. Let ¢ € Der,(W,W). By
Proposition 2.8, one may assume that ¢(W_; @ W,) = 0. In the following we
consider the application of ¢ to P, N and M, respectively.

(i) First consider P. Let 7,5 € Y1, k € Yy. In view of Lemma 2.1, we have
¢(xix;Dy) € Geyq. Clearly, [I', z;2;Dy] = —x;2;Dy. Applying ¢, we obtain that

[FH, ¢<xzx3Dk)] = —(b(xiijk).
It follows that QS([L},QT]D],C) is of the form:

¢(zx;Dy) = Z Cur"D, where ¢,, € F. (2.19)
r€Yp, u€Bii2

Since n > 2, picking [ € Y7\ {7, }, one gets [z,x;Dy,x;D;] = 0. It follows that
[¢(z;x;Dy), ;D)) = 0. Furthermore,

[ Z cu,,nx“Dr,xlDl} =0 foralll+#i,j. (2.20)

r€Y0, uEBy2

Now it follows from (2.19) and (2.20) that ¢,, = 0 unless u = {i,7}. Thus (2.19)
gives

d(xxjDy) = Z Cur " D (2.21)
’I‘GY?,.'U..G}]B
u={1,j

If ¢ > 0 then (2.21) implies that ¢(z;z;Dy) = 0; if ¢t = 0, we also obtain from
(2.21) that ¢(z;x;Dy) = 0, since ¢ € Der(WV, Wy).

(ii) Let us show that ¢(N) = 0. Let ¢ € Yy, j,k € Yi. By Lemma 2.1,
¢(xix;Dy) € Geyq. Since I, x;x; D] = x;2;Dy, as in (i) one may assume that

d(xiz;Dy) = Z Curx"D, where ¢,, € F.
r€Yo,ucB o
Then
—¢(zix; D) = [I, ¢(2i2;Dx)] = ¢(x2;Dy).
Since charF # 2, it follows that
¢(rixjDy) =0 forallieYy, j ke Y

that is, ¢(N) = 0.
(iii) Just as in the proof of [2, Lemma 3.1.4], one may show that ¢(M) = 0.
Now, Lemma 2.9 shows that ¢ = 0. [ |

In view of Proposition 2.10, in order to determine the derivation space
Der(W, W7) it suffices to determine the negative Z-homogeneous derivations. We
first consider the derivations of Z-degree —1.
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Lemma 2.11.  Suppose that ¢ € Der_1(W, Wy) and ¢(Wy) = 0. Then ¢ = 0.

Proof.  We first assert that ¢(N) = ¢(P) = 0. Given i,j € Yi,k € Y,
by Lemma 2.1, ¢(z,x;D;) € Gp. Thus one may assume that o(x;z;Df) =
- sy, CrstrDs, s € F. Then, since I, z;2;Dy| = 22,2, Dy, we have

o(zix;Dy) = [T, @(zi2; Dy )] = 20(2;2;Dy).

It follows that ¢(x;z;Dy) = 0; that is, ¢(P) = 0. Similarly, applying ¢ to the
equation [I', 2, D;| = xpx;D; gives

—p(zpz;D;) = [T, p(zrr; D;)] = p(zpe;D;).

It follows that p(xxz;D;) = 0. Hence, ¢(N) = 0.
It remains to show that ¢(M) = 0. Given k € Yj, just as in the proof of
[2, Lemma 3.2.6], one may prove by induction on r that

o(z" D) =0 for all r € N.

From this one may easily prove that ¢(M) = 0. Summarizing, by Lemma 2.9,
¢ =0. u

Now we can determine the derivations from W into Wy of Z-degree —1.
Proposition 2.12.  Der_;(W, W7) = ad(W7)_;.

Proof.  The inclusion “D7” is clear. Let ¢ € Der_(W,W). For i € Yy, k € Y7,
applying ¢ to the equation that [I';,I'y] = 0, we have [¢(I';), '] + [I';, (k)] = 0.
As ¢(T;), o(Tx) € W_1NW5, we have [I';, ¢(I'x)] = 0 and therefore, [¢(I';),T'x] =0
for all k£ € Yj. This implies that ¢(I';) = 0 for i € Yp. It follows that ¢(z;D;) =0
for all 7,5 € Y.

For k € Y7, just as in the proof of [2, Proposition 3.2.7], one may prove that
there are ¢ € F such that ¢(I'y) = ¢ Dy and ¢(zxD;) = ¢ D; for all k,l € Y;.
By Lemma 2.11, ¢ = > . ¢, D, € ad(Wy)_;. [

Analogous to [2, Lemma 3.2.8], we also have the following

Lemma 2.13.  Let ¢ € Der_,(W,W5) with ¢ > 1. If ¢(z\%)D;) = 0 for all
1 €Yy, then ¢ = 0.

Proposition 2.14.  Suppose that ¢ > 1. Then Der_,(W, Wy) = 0.

Proof. Let ¢ € Der_,(W, W7). In view of Lemma 2.13, it is sufficient to show
that

P(x¢)D;) =0 for alli € Y.
Note that [, 2(%)D;] = 0 and ¢(2\@)D;) € (Wi)_,. Tt follows that

’

0=[T 7(b(gc(qfi)Di” — _¢(x(q5i)Di)'

The proof is complete. u
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Theorem 2.15.  Der(W, Wy) = ad(W7).

Proof. By Propositions 2.10, 2.12 and 2.14, “C” holds. The converse inclusion
is clear. =

Remark 2.16. By [7, Theorem 2], [2, Theorem 3.2.11] and Theorem 2.15, the
even part and the odd part of the superderivation algebra of the finite-dimensional
generalized Witt superalgebra W coincide with the derivation algebra of the even

part of W and the derivation space of the even part into the odd part of W,
respectively; that is, (Der W) = Der(W5), (Der W); = Der(Wg, Wr).

Remark 2.17.  As noted in Section 1, by Theorem 2.15, we have
H'W,W7) = 0.

3. Special superalgebras

Recall the canonical torus Zs of S (c.f. [2]). Clearly,
{2, D, — xsDg|T(r) = 7(s);r,s € Y} U{x, D, + x:Ds|7(r) # 7(s);7m,s € Y}

is an [F-basis of 7s consisting of toral elements.
The following fact is simple.

Lemma 3.1. &y = spang{7s U {x, Ds|7(r) =71(s),r # s;r,s € Y} }.
Put
Q1= {Dy;(a") |i,j € Yo, € No};

R = {Dy(x®x;) |i € Yo, k,1 € Y1} U{Dy;(w2")|4,j € Yo,v € By}

Lemma 3.2.  [2, Proposition 2.2.3] S is generated by QU R U S,.
In the following we consider the top of S.

Lemma 3.3.  Suppose that ¢ € Der(S,Wi) with zd(¢) > 0 and that
&(S-1+ So) =0. Then

(i) o
(1) o
(iii) (D

a(x®) ) = 0 for alli € Yy, k,1 € Y.

D
D;j(z;x")) =0 for all i,j € Yy and v € Bs.
Dyj(z@))) =0 for alli,j € Yy and all a € N.
Proof. (i) The proof is similar to the one of [2, Lemma 4.1.1]. Our discussion
here for zd(¢) odd is completely analogous to one in [2, Lemma 4.1.1] for zd(¢)
even; and, the discussion here for zd(¢) even is completely analogous to one in
[2, Lemma 4.1.1] for zd(¢) odd.

Similar to [2, Lemmas 4.1.2, 4.1.3], one may prove (ii) and (iii) in the same
way. u

As a direct consequence of Lemmas 3.2 and 3.3, we have the following.



WENDE LIU AND BAOLING GUAN 461

Corollary 3.4.  Suppose that ¢ € Der(S,Wi) with zd(¢) > 0 and that
¢(S_1 + So) = 0. Then ¢ =0.

In order to describe the derivations of nonnegative degree we first give two
technical lemmas which will simplify our discussion.

Lemma 3.5.  Suppose that ¢ € Dery(S,W7) and ¢(S_1) = 0.
(i) If t =n —1 is even, then ¢(I'y —T}) =0 forall k€Y, \ 1.
(ii) If t =n—1 is odd, then there is X\ € F such that

(¢ — Aad(z* D)) (Dy —T) =0 for allk € Y1\ 1",
(iii) If t > n—1, then ¢ = 0.
Proof. (i) The proof is completely analogous to the one of [2, Lemmas 4.2.1(i)].

(ii) The proof is completely analogous to the one of [2, Lemmas 4.2.1(ii)].
(iii) Using Lemma 2.1 and induction on r one may easily prove that

#(S,) =0 for all r € N. [

Analogous to [2, Lemmas 4.2.2], we have

Lemma 3.6.  Suppose that ¢ € Der(S,W1) and zd(¢) > 0 is even.
(i) If zd(¢) <n—1 and

(T —Ty) =Ty —Ty)=--- =Ty —Ty) =0,

then
(L —Ty) =o'y =T3)=--- =9I = I},) =0; o'y +T'y)=0.

(ii) If zd(¢) =n —1, then there are Ay, ..., A\, € F such that

<¢ - ad(Z)\iwaDi>>(F1 —T;)=0 foralljeYy\1;

1€Yp

(¢ - ad< 3 Aiwai)) (0, +Ty) = 0.

€Yo

Recall the canonical torus of S
Ts = spanF{Fl —Dy,..., I =Ty 1y —|—F1/,F1/ —F2/,...,F1/ —Fn/}.

As a direct consequence of Lemma 3.5 (iii) and Lemma 3.6, we have the
following fact:

Corollary 3.7.  Suppose that ¢ € Der(S,Wi) is a nonnegative even Z-homo-
geneous derivation such that ¢(S—1) =0 and ¢(I'y —T'y/) =0 for all k € Y1\ 1.
Then there is E € G such that ¢ — adE wvanishes on the canonical torus 7.

Now we prove the following two key lemmas. First, consider the even
Z-homogeneous derivations.
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Lemma 3.8.  Suppose that ¢ € Der(S,Wyi), where t > 0 is even. If
&(S_1) =0, then there is D € G, such that

(¢ —adD)(Ty, —Ty) =0 forall k€ Y1\ 1.

Proof. By Lemma 3.5 (i) and (iii) it suffices to consider the setting ¢t < n — 1.
By Lemma 2.1, one may assume that

¢(Tx —=Tv) = Y fuDy where k € Y1\ 1'; fu € A(n). (3.1)
reYp
Write
for = Z Curix"  where ¢, .\ € F. (3.2)
Ju|=t+1

Discussing just as in the proof of [2, Lemma 4.2.4], we may obtain that

Z (5k6u - 51’€u)cu,r,lxu = Z (5l6u - 51’€u)cu,r,k1’u'

lul=t+1 |u|=t+1
Since {z" | u € B} is an F-basis of A(n), it follows that
(5k6u - 51’€u)cu,r,l - (5l€u - 51’6u)cu,r,kz for r S YO: kal S 3/1 \ 1/‘ (33)

Suppose that ¢, is any a nonzero coefficient in (3.2), where |u| =t+1 < n, r €
Yy and k € Y7\ 1'. Note that |u| > 1. We proceed in two steps to show that
5k€u + 51/€u - ].

Case (i): |u| > 2. If 1" € u, one may find I € u\ k. Then (3.3) shows that e, = 1;
that is, k¥ € u. If 1" € u, noting that |u| < n — 1, one may find I € ¥; \ u. Then
(3.3) shows that dxe,, = 0; that is, k € u. Summarizing, for any nonzero coefficient
Curk 10 (3.2), we have Opey + 0 = 1.

1 eu

Case (ii): |u| = 1. Since |u| = 1, the case of & € u and 1" € u does not occur.
If k ¢ uand 1" ¢ u, then there is | € u, since |u| = 1. Then by (3.3), we get
Cuyk = 0, this is a contradiction. Hence, we have e, + 01/, = 1.

Then, just like in the proof of [2, Lemma 4.2.4], we can rewrite (3.2) as

follows
2 u E u
frk = Cur, kL + Curkd .

1cu,kZu 1 &u,k€u

Now, following the corresponding part of the proof for [2, Lemma 4.2.4], one may
find D € G; such that (¢ —adD)(I'y — ') = 0 for all k£ € Y7 \ 1. The proof is
complete. [ ]

Let us consider the case of odd Z-degree.

Lemma 3.9.  Let ¢ € Dery(S,W1) where t > 0 is odd. If ¢(S-1) = 0, then
there is D € G, such that

(¢ —adD)(I'y +Tx) =0 for all k € Y. (3.4)

Proof.  Deleting the part (ii) in the proof of [2, Lemma 4.2.5] gives the proof
of this lemma. [ |

For our purpose, we need still the following three reduction lemmas.
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Lemma 3.10.  Suppose that ¢ € Dery(S,W7) and ¢(S_1) = 0, where t > 0 is
odd. If ¢(I'y + ) =0 for all k € Y1, then ¢(Sp) = 0.

Proof. Following parts (i) and (ii) in the proof of [2, lemma 4.2.6], one may
show that ¢(I'y —I';) =0 and ¢(x;D;) =0 for all ¢,j € Yy with i # j.

To show that ¢(xypD;) = 0 for k,l € Y] with k # [, just as in the part
(iii) of the proof of [2, Lemma 4.2.6], it suffices to consider separately two cases
zd(¢) = 1 and zd(¢) > 3. Now Lemma 3.1 ensures that ¢(Sy) = 0. n

Analogous to [2, Lemma 4.2.7], one may prove the following

Lemma 3.11.  Suppose that ¢ € Der(S,W7) is a nonnegative even Z-homo-
geneous derivation and ¢(S—1 + Ts) = 0. Then ¢(Sy) = 0.

Now we are able to characterize the homogeneous derivation space of non-
negative Z-degree. Using Lemmas 3.8-3.11, Corollaries 3.4 and 3.7, and Proposi-
tion 2.3, one may prove the following result (cf. [2, Proposition 4.2.9]).

Proposition 3.12.  Der(S, Wi) = ad(Wi), fort > 0.

As an application of Proposition 3.12, we have:
Proposition 3.13.  Der,(S, S7) = ad(St); fort > 0.

Proof.  Since S is an ideal of S (see [7, p. 139]), ad(S7); C Der,(S, S7). Let
¢ € Der(S,S1). View ¢ as a derivation of Dert(S Wi). Then by Proposition
3.12, there is D € (W), such that ¢ = adD € Der,(S, W), and therefore,
¢ = adD € Der,(S, S1). Let Nory. (S,S1) = {z € Wy | [2,S] C Si}. Clearly,
D € Nory, (S, S1):. Therefore, it suffices to show that Nory. (S, Si); C (Si):.
Let E be an arbitrary element of Nory,(S,S1):. If ¢ = 0 then £ € Wy N W,
which implies that div(E) = 0 and therefore, £ € S;. Now suppose that t > 0.
Note that div([F,S_1]) = 0. It follows that D;(div(F)) = 0 for all i € Yy. This
implies that div(E) € A(n);. Similarly, [E,S] C St implies that [div(E),S] =

In particular, [div(E),7s] = 0. Since div(E) € A(n):, one gets [div(E),T] =

Keeping in mind that div(E) € A(n)g, one may easily deduce that div(E) = 0
(cf. [2, Proposition 4.2.10]). [

In the following we first determine the negative Z-homogeneous derivations
from S into W3. This combining with Proposition 3.12 will give the structure of
the derivation space Der(S, Wi). The following lemma tells us that a Z-degree —1
derivation from S into W3 is completely determined by its action on Sp.

Lemma 3.14.  Suppose that ¢ € Der_1(S,W7) and that ¢(Sy) = 0. Then
¢»=0.

Proof.  We first show that ¢(R) = 0. By the definition of Dy,
Dil(m(zai)xk) = zix1, Dy + 0z ®) D, for alli € Yy, k,l € ;. (3.5)
We shall use the following simple fact (by Lemma 2.1):
#(S1) C Go.
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We may assume that

gZﬁ(DZl({L‘(%’)I‘k)) = Z Ck:,rkar- (36)

keY1,r€Yp
Given i € Yy, k,l € Y1, take j € Yy \ i. Then
[Fz — Fj, Dll(x(%):ck)] = Dll(a:(%l):ck)

Applying ¢ to the equation above and then combining that with (3.6), one may
obtain by a comparison of coefficients that

cr=0 forkeY,, reYy\j

Hence, by (3.6), we may obtain

S(Da(x®ay)) = ep i D;. (3.7)

keYq
Case (i): k # I. Then by (3.5), we have Dy(2*9x}) = z;2,D; and
[Fz + Fk, Dil(x(%")xk)] = 2D,l<$(2€l)l‘k) (38)

Applying ¢ to (3.8) and using (3.7), one may obtain by comparing coefficients
that
cs; =0 forsel.

Consequently, ¢(Dj(z2z},)) = 0.
Case (ii): k =1. Then by (3.5), we have
Dik (LE(QEi).Tk) = LL'(QEi)Di + iEliL'ka

and

Applying ¢ to the equation above and using (3.7), one may obtain by comparing
coefficients that
cs; =0 forseYy\k.

Hence, By (3.7), we may obtain
O( D (0 21)) = cp jarD;. (3.9)
For i € Yy, k,1 €Yy, choose ¢ € Y; \ k. Then mI', +T" € Sy and
[mI', + T’ Dik(x(%")xk)] = Dik(a:(%i)xk).
Applying ¢ and using (3.9), one gets
O(Dip (2% x1)) = [mLy + T, ¢(Dig (%) 24))] = —p(Dsre(2F ).

Consequently, ¢(Dj,(z?*)z;)) = 0 for all i € Yy, k € V).
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We want to show that ¢(D;;(x;x,2)) =0 for 4,5 € Yo, k,l € Y. By a same
argument, we can also obtain that

A(Dyj(zixpay)) = epjapD; fork € Yi,j € Yo\ i (3.10)
Note that nl'; + I €S8, for ¢ €Yy and that
[nl', + r, D;j(zizpay)] = (2 — ndg ;) Dyj(xizpx;) fori,j € Yo, k,l €Yy, (3.11)
Applying ¢ to (3.11) and using (3.10), one gets
cpj =0 forkeYy,jeYy\i.

Consequently, ¢(D;;(x;xrz;)) = 0.
It remains to show that ¢(Q) = 0. But this can be verified completely
analogous to the proof of [2, Lemma 4.3.1]. [ |

Using Lemma 3.14 we can determine the derivations of Z-degree —1.

Proposition 3.15.  Der_(S,Wi) = ad(Wi)_1. In particular, Der_,(S,S7) =
ad(S1)-1

Proof. Let ¢ € Der_1(S,Wj). Let k € Y;. Assume that

oI+ 1) = Z ¢ D,  where ¢, € F. (3.12)

reY;

Let [ € Yi\k Then [Fk+F1,¢(Fl+F1)] = [Fl—l—Fl, ¢(Fk+F1)] By (312), Crl — 0
whenever k,l € Y; with k # [. Tt follows that ¢(T'y +T1) = ¢ Dr  where ¢, € F.
Obviously, [y + 'y, z1.D;| = xx D, for k,l € Y1 with k # [. Then

e Dy + [Ur 4 Ty, ¢(2 Dy)] = (a0 Dy).

Since ¢(zD;) € (Wi)_1, it follows that ¢(zxD;) = cppD;. Put ¢ == ¢ —
> rey, CrradD,. Then

We next show that
Y(x;Dj) =0 fori,jeYy, i#j. (3.14)

Take r € Yy \ {¢,7}. Then [(T, +Ty),x:D;] + [ + Ty, ¢(z;D;)] = 0. Since
P(I,+T,) € (Wi)_1, we have [¢(I',+TL,), z;D;] = 0. Consequently, [I'y, ¢¥(z;D;)] =
0 for all ¢ € 7. Hence ¢(z;D;) = 0, since ¢(z;D;) € (W7)_1

In the same way we can verify that
Yy —T;) =0 foralyjeYp\L (3.15)

By (3.13)(3.15), we have 1(Sy) = 0. It follows from Lemma 3.14 that ¢) = 0 and
hence ¢ € ad(Wi)_1. This completes the proof. [

To compute the derivations of Z-degree less than —1 from S into W3, we
establish the following lemma.
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Lemma 3.16.  Suppose that ¢ € Der_(S, W7) with t > 1 and that
(D (x(HV2)))y =0 for all i,j € Y.
Then ¢ = 0.

Proof.  First claim that ¢(Q) = 0. To that aim, we proceed by induction on ¢
to show that
G(Dij (') =0 for alli,j € Yy with i # j. (3.16)

Without loss of generality suppose that ¢ > ¢+ 1 in the following. By inductive
hypothesis and Lemma 2.1, ¢(D;;(2%")) € G, ; 5. Thus one may write

$(Dy(z' )= Y ¢y a"D, wherec,, €F. (3.17)
reY,|ul=¢g—t—1
If ¢ —t > 3, proceeding just as Case (i) in the proof of [2, Lemma 4.3.3], one may

show that ¢(D;;(2(%))) = 0. Suppose that ¢ —t < 3. Note that ¢ > ¢+ 1. Then
rewrite (3.17) as

$(Dyj(z' ) = > ,uD, wherec, €F. (3.18)
lEY1,reY0
For any fixed coefficient ¢, ,, in (3.18). Choose k € Y1 \ lp, s € Yy \ {ro, i}, since
n,m > 3.
If s = j, then [[s+ Ty, D;j(2(%))] = —D;;(2(%)). Applying ¢ to the equa-
tion above and then combining that with (3.18), one may obtain by a comparison
of coefficients of x;,D,, that

Clo,ro = 0 forlye€ Yy, rg €Y.

Consequently, ¢(Dy;(x(@))) = 0.
If s # j, then [n[', + I, D;;(2%))] = 0. Applying ¢ and then combining
that with (3.18), one may obtain by a comparison of coefficients of x;,D,, that

Cloro =0 forly € Y1,r9 € Y.

Consequently, ¢(D;;(z\%))) = 0. Thus (3.16) holds for all q and therefore,
¢(Q) = 0.

We next prove that ¢(R) = 0. Since R C &y, zd(¢) < —2, it suffices to
consider the case that zd(¢) = —2. Note that ¢(S;) C S_1. For k.l € Y1,i € Y,
take ¢ € Yo\ {4,5}. Then nI'y +TI" € Sy and [nl', + T, Dy(23)x;,)] = 0. Since
d(Diy (v xy)) € (Wr)_1, it follows that

O(Dy(x ) = —[nTy + T, ¢(Dy(x'*)2,))] =0 for alli € Yy, k,1 € Yj.

Obviously,
[nFq + r ,Dij (a:zxkxl)] = 2Dl]($l$kl'l)

Applying ¢, one gets
20(Dyj(wizxar)) = [nTq + T, ¢(Dyj(wiwimr))] = —o(Dij(Xiwpar)),

since ¢(D;;(x;xpz;)) € (Wr)—1. The assumption p # 3 ensures that ¢(D;;(z;x,x:))
= 0. By Lemma 3.2, ¢ = 0, completing the proof. [ |

Finally, we are to determine the homogeneous derivations of Z-degree less
than —1 from S into Wj.
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Proposition 3.17. Der_(S,W7) =0 fort > 1. In particular, Der_4(S, S7) =
0 fort > 1.

Proof. Let ¢ € Der_(S, Wy). Assert that
G(Dy(x V) =0 for all i,j € Yp.

Recall I = > ey, Lr- Choose g € Yo\ {4, j}, since m > 3. Clearly, nl, +T' € Sp.
Then
[nly + T, Dij(a D)) = 0.

Applying ¢, one gets
0= [nly + I, ¢(Dy (xTV=0))] = —¢( Dy (2 +D=)),

since ¢(D;;(x((FV2))) € (W7)_;. Consequently, ¢(D;;(z(+1))) = 0. By Lemma
3.16, ¢ = 0. The proof is complete. [ |

Now we can describe the derivation spaces Der(S, W7) and Der(S, St).
Theorem 3.18.  Der(S, Wi) = adWHi.

Proof.  This is a direct consequence of Propositions 3.12, 3.15 and 3.17. [ ]

Theorem 3.19.  Der(S, S7) = adSi.

Proof.  This is a direct consequence of Propositions 3.13, 3.15 and 3.17. [ ]

Remark 3.20. By [7, Theorem 3] and Theorem 3.19 above, the odd part of the
superderivation algebra of the finite-dimensional special superalgebra S coincides

with the derivation space from the even part into the odd part of S; that is,
(Der S)T = DGI‘(Sﬁ, ST)

Remark 3.21. By Theorem 3.18, we have H'(S,W;) = 0. By Theorem 3.19
and [3, Proposition 2.8], we have H'(S,S;) = 0 if n is even; and dim H*(S,S;) =
m if n is odd.
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