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Abstract. A degree stable Lie algebra is defined in the paper [14]. The Lie
algebra automorphism group Autr;.(ST(2)) of the Lie algebra S*(2) is found in
the paper [14]. The Lie algebra automorphism group of the Lie algebra W (1,0, 2)
is also found in this paper [2]. We find the algebra automorphism groups of the
Lie algebras W (12,1,1) and W(1%,2,0) in this work. We show that the Cartan
subalgebras of W (12,1,1) and W (12,2,0) are one dimensional.
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1. Introduction

The automorphism groups of some self-centralizing Lie algebras are studied in
the papers [9], [10], [12]. Rudakov found the continuous automorphisms of the
topological Cartan type Lie algebras in the paper [16]. The automorphism group
Autr;(ST(2)) of the Lie algebra S*(2) = 5(0,0,2) is found in the paper [14].
In this work, we find the automorphism groups Autr,(W(1%,1,1) and Autr
(W(1%,2,0)) of the Lie algebras W (1%,1,1) and W (12,2,0) which contain S*(2) =
S(0,0,2) (see [13]). We show that there is no automorphism 6 of ¥ (12,1,1) such
that 0(01) = 101 + c20, where ¢; are non-zero scalars for i = 1,2. We also show
that Tor(W(1%,1,1)) and Tor(W(1%,2,0)) are ones. We show that the Cartan
subalgebras of W (12,1,1) and W (1%,2,0) are one dimensional.

2. Preliminaries

Let F be the field of characteristic zero (not necessarily algebraically closed).
Throughout the paper, N and Z denote the non-negative integers and the integers,
respectively. Let F*® be the multiplicative group of non-zero elements of F. Let
L be a Lie algebra over F with a basis S = {s,|Ju € I} where I is an index
set. The Lie algebra L is degreeing if for any s € S we define the Lie degree
degric(s) € Z of s. Thus for any [ of L, we may define degr;.(l) as the highest Lie
degree of non-zero basis terms of [. An element [ of L is degree stable if for any
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li € L degr([l,lh]) < degrie(l1) holds. For a degreeing Lie algebra L, the degree
stabilizer Sty;.(L) of the Lie algebra L is the vector subspace of L spanned by all
the elements which are degree stable. For any 6 € Autp;.(L) we have the following
diagram:

StLi€<L) " StLie(L)

S

Figure 1

where Autr;,.(L) is the automorphism group of the Lie algebra L and ¢ is an
embedding from St (L) to L as vector spaces. It is an interesting to note that
the equality

Strie(L) = 0(StLic(L)) (1)

sometimes holds and sometimes does not hold for any 6 € Autp;.(L). A Lie algebra
L is degree-stabilizing if Str;.(L) is auto-invariant, i.e., the equality (1) holds.
Kaplansky generalizes the Witt algebra as follows:

Let V be a vector space over F and G a total additive group of functionals on
V. Let A be the vector space direct sum of copies of V, one for each element
of A. An element of A is erV,aeG Coa(®, ) where ¢, € F. If we define the
multiplication as [(z, @), (y, )] = a(y)(z,a + B) — 5(z)(y, a + ), then we have a
Lie algebra (see [7]). Kaplansky shows that if dim(V) # 1, then the Lie algebra
is simple in the paper [7]. Kawamoto defines an infinite dimensional generalized
Witt Lie algebra which is simple in his paper [8]. Dokovi¢ and K. Zhao also define
a class of infinite dimensional generalized Witt Lie algebras which are simple in
the papers [4], [5], [17]. The other generalized Witt algebra are defined on a stable

algebra in the formal power series ring F[[z1,- - ,x,]] or on the localization of
the stable algebra (see [3], [6], [12]). One of those kinds of algebras is defined as
follows: for fixed positive integers t1; > -+ > t1p,- -+ ,tp1 > -+ > tp,, we define

the F-algebra F[nP*t m, s] which is spanned by

t11 t1p tn1 tng L i
{eallxl . e ealpml . e ea‘"lzn . e ea‘"qmn xlll . e x:‘/;bnx;znill . e ;’;f_:;
a1y, aaanla" : 7im € Zaierla e 7im+s S N} (2)
such that the algebra F[n?™ *4 m, s] := F[n*, m,s] contains the polynomial ring
Flxy,z9, -+, Tmss| where e is the exponential function for r € {1,--- ,n} etc.

(see [1], [6], [10], [11]). For n,m,s € N, the Lie admissible algebra
NW (nPT "t m, s) := NW(n*,m,s)

has the standard basis

t11 tip tn1 tng . i
_ ajlzx aip® an1® Anql 11 7 m+1 Im+s
BW(n,m,s)_{e 1T L. edpTy - L. eWnlTn ", L, pOngn 371 ...x%xm+l...xm+sau|
Q11,5 Anp, 11, 5 im € Z,Zm+1,"' y bm+-s S N,

1 <u<m+s,n<mazx{m,s}} (3)
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with the obvious addition such that the multiplication % is defined as follows:

fau * gav = fau<g)av

for f,g € NW(n*,m,s) where 9, is the partial derivative on F[n*,m,s| with
respect to x,, 1 < u < m + s. The antisymmetrized algebra of NW (n* m,s) is
the Witt type Lie algebra W(n*,m,s). The Lie algebra W (n*,m,s) is ZPT +i-
graded as follows:

W(n*,m, s) @ Wi o (4)

*,0ng

where W, is the vector subspace of W (n*,m,s) spanned by

ail, ,angq
t t t .
{e(le:E;ll e ealpxllp e . eanlrz’nl “ .. eanqznnq le . :’;’Ln—:;a ‘
iy yim € Lylmaty, 5 imes € NJ 1T <u <m+ s,n < max{m,s}}

(see [16]). For each basis element

t11

t t
a1z nl

1p tng . .
alpk anl1T AnqT 11 2 i 1 ?
CoeMPTLT LT glnaTn gl ptm gttt

€ m “m+1 m+sFu

of W(n*,m,s), we define the Lie degree of the basis element as follow:

ti1 tip tnl tng - i i
degLie(eanl“l e ealpm e eanwn - eanqxn le xzmx m+1 o m+58u)

m Ym—+1 " m+s
= lir| + -+ lim| + Gong1 + -+ F s

(see [16]). For any I of W(n*, m,s), we can define the Lie degree degr;.(l) as
the highest degree of non-zero terms of . The Witt algebra W (0,0,1) and the
centerless Virasoro algebra W (0, 1,0) are self-centralizing (see [15]). Furthermore
they are degree-stabilizing (see [7]). Let A be a subset of a Lie algebra L. The
centralizer Clj,(A) is the set {l € L|[l,l;] =0 for any [y € A}. For any [ in the Lie
algebra L, [; is ad-diagonal with respect to [, if [[,[;] = ¢l holds where ¢ € F. For a
Lie algebra L, an element [ in L is ad-diagonal of the set A in L, if for any x € A,
[, z] = ¢, holds where ¢, € F. For a given basis B of a Lie algebra L, the toral
torp(B) = tor(B) of B is n, if there are n ad-diagonal elements {ly,--1,} with
respect to B such that the set {ly,---,l,} is the linearly independent maximal
subset of L. For a Lie algebra L, Tor(L) is defined as follows:

Tor(L) = maz{tor(B)|B is a basis of L}.

A Lie algebra L is n-toral, if Tor(L) = n. The Lie algebras W(0,1,0) and
W(0,0,1) are 1-toral and self-centralizing (see [9]). For an algebra A, two bases
By and By of A are equivalent denoted by B; ~ B,, if for any element b; of By,
there is an element by of By such that b; = ¢by holds for some non-zero scalar c.
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3. Automorphism group of W(1%,1,1)

Note 1. It is well know that the non-associative algebra NW (n*,m, s) and the
Lie (or its antisymmetrized) algebra W (n*,m,s) are simple (see [3], [11], [12]).
Thus every non-zero endomorphism of NW (n*,m,s) or W(n*,m,s) is injective.

Note that the standard basis of W(1%,1,1) is
{ew b2 4iyi 9 a,b,i € 7,5 € N, 1 < u < 2}.
Generally, it is not easy to prove that Stp;,. (L) is a Lie subalgebra of L or not,
i.e., it depends on the Lie algebra. For any basis elements e h1# g1y, and
27 eb2? g2 of W (12,1,1), let us define the natural order >, as follows:

t1 2 t1 2
c e’ eb” A0y > Lie C2€"2" b2 iz Y720, (5)

if and only if a; > as, or a; = as and by > by, or a1 = as, by = by, and i > s,
or ---,and a; = as, by = by, i1 =iy j1 = ja, and u < v for any non-zero scalars
c1 and cy. Thus we can define the natural order on W (12,1,1). In (5), note that
a coefficient of a basis element does not affect the order >p;. of W(12,1,1). Thus
we may define degr;.(l) of any element [ € W(1%,1,1) as the highest Lie degree
of non-zero basis terms of [. Note that W (1% 1,1) is simple (see [12]). From now
on, let us assume that t; > ts.

Lemma 3.1.  Str;.(W(1%,1,1)) is a Lie subalgebra of the Lie algebra W (12,1, 1)
spanned by {xds,yds, Os} .

Proof. It is obvious that the Lie subalgebra < {xdy,yds,, 05} > of W(1%,1,1)
spanned by {xdy,y0s, 02} is in Str;(W(1%,1,1)). Tt is trivial to prove that every
element which is not in < {x0s,yds, 01,02} > cannot be degree stable. This
implies that Str,.(W(12,1,1)) =< {xs,yds, 05} > . Therefore we have proven
the lemma. ]

To find the automorphism group Autr,(W(1%,1,1)) of the Lie algebra
W(1%,1,1), we will find the stable Lie subalgebra of W(1%/1,1) and an auto-
invariant set of W (1%, 1,1).

Lemma 3.2. For any 0 € Autr,.(W(12,1,1)), the element 0(ydz) is in the
stabilizer Str;.(W(1%,1,1)) of the Lie algebra W(1%,1,1).

Proof.  For any 6 € Autz;.(W(12,1,1)) and a basis element e®" 22770, of
the algebra W (1%,1,1), we have that
9([1/82 eaxtl bxt2 2 Ja] (] _(527u)9( aztl bxtQ 2 ]5 ) (6)

where 4y, is the Kronecker delta. By (6) and the fact that W (1%,1,1) is simple,
for any [ € W (12,1,1), we have that

degric([0(y0a), 0(1)]) < degric(0(1)).

This implies that 6(ydy) € Stri(W(12,1,1)) and so 6(yd;) can be written as
follows:

«9(y82) = dll’az + d2y82 + d382 (7)
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where dq,dy,ds € F. [ |

Lemma 3.3.  There is no automorphism 6 of W(1%,1,1) such that
G(yag) = d1x82 + d2y82 + d382 (8)
where di,dy € F* and d3 € F.

Proof. Let 6 be the automorphism of W (1% 1,1) such that it holds the
conditions of the lemma for the element in the lemma. §(z"0;) can be written as
follow:

. . t1 p ta 4 j
O(z ) = c(au1, but, tuts Jut, 1)e ™ e’ @ glutyluigy +

y > t bl. t2 b ]
C(aula bu17 Luls Jul, 1)6(1“136 e e xh 1y]“132 + #l (9)

where either e®#'! e ginigin @, or @™ h1#™2 giniyin 9, i the maximal term of
the element 0(2"0;) depending on their coefficients and #; is the sum of the
remaining terms of 0(d;) with appropriate coefficients using the order >;. and
u € N. Furthermore, by Lemma 3 of [2], we can assume that b,; # 0. If j,; # 0,
then x“0; cannot centralize y0,. We have that

. t to s
0(x"01) = (a1, bur, tui, 0, 1)e™ ebu1®? plur g 4

(a1, bur, g1, 0, 1)emer® ! bur®? giurg, 4 4 (10)

Since §(z0;) is an ad-diagonal element with respect to {6(zV0;)|v € N}, every
maximal term of §(z"0;) is in the (ay1,by1)-homogeneous component W, 5., -
Since O(y0s) centralizes 0(x“0y) and dy,dy # 0, if ¢(au1, but, i1, Jui, 1) # 0, then
(@1, but, tut, jui,2) # 0 and vice versa. Since 6(xd;) is an ad-diagonal element
with respect to {f#(z0)[v € N}, 0(2¥0;) and 6(0;) have terms in the same
homogeneous components. This implies that all terms of the elements (z"0;),
u € N, have the same maximal terms with appropriate coefficients. Let us prove
the lemma by induction on the number H(6(xd;)) of homogeneous components of
0(x0;) such that the homogeneous components have a non-zero term of 6(z0,).
Let us assume that H(6(z0;)) is one. Since 6(x0;) is an ad-diagonal element with
respect to {0(z"0;)|v € N}, it has a term in the (0,0)-homogeneous component
Wo,. By assumption, there is no room of #(xd;) to have a term of Wy . This
contradiction shows that we can assume that H(f(x0;)) > 2. This implies that
6(x0;) has a non-zero term of Wyo. There is an element 6(x"0;) which also has
a non-zero term of Wy such that the degree of the maximal term of 6(z"0;) is
greater than zero where u # 1. 6(x0;) and 0(z"0;) have the same maximal terms
of Wy, with appropriate scalars. Thus every non-zero term of #(x0;) which is not
in Wy is a non-zero term of §(z*0;) with appropriate coefficients and vice versa.
Since H(0(x0y)) = H(0(x0,)) > 2, there are ¢ € F and u € N such that

[0(x0y) — cB(x"0),0(x"01)] # (u — 1)0(x"0y). (11)

This contradiction shows that we can assume that z"0; is the maximal term of
0(z0;) for an integer r > 1. This gives a similar contradiction as (11). This
implies that 0(x0;) € Wy. This implies that 6(yd:) cannot centralize 6(x"0,).
This contradiction shows that there is no automorphism 6 of W (12,0,2) which
holds (3.7). Therefore we have proven the lemma. ]
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Lemma 3.4.  There is no automorphism 0 of W(1%,1,1) such that
0(y82) = dlxc?g + dgag = (dll’ + dg)az (12)

holds where d; € F* and dy € IF.

Proof.  Let 0 be the automorphism of W (12,0,2) such that it holds (12). By
Lemma 3.3, we are able to prove that 6(y0ds) cannot centralize an element 6(z"0,),
u > 1. This contradiction shows that there is no automorphism 6 of W (12,0, 2)
which holds (12). Therefore we have proven the lemma. n

Lemma 3.5.  For any automorphism 0 of W (1%,1,1) and any basis element
yk82 Of W(12a 17 1)7

0(y"0,) = d" " (y + d1)"* 0 (13)

holds where d; € F and d € F*.

Proof.  Let 6 be the automorphism of W (12%,1,1). By Lemmas 3.1, 3.2, 3.3, 3.4,
we have that 0(yd;) = (y + d1)d; holds for d; € F. This implies that 6(09s) = dds
holds for d € F*. By induction on k € N of y*0,, we are able to prove that
0(y*0y) = d*~*(y + d1)*dy holds. Therefore we have proven the lemma. n

Lemma 3.6.  For any automorphism 0 of W(1%,1,1) and any basis element
0y of W(1%,1,1),

0(2'0,) = ' ‘2’0, (14)
holds where ¢ € F*.

Proof. Let 0 be the automorphism of W (12,1,1). By Lemma 3.5, we have
that 0(y*0,) = d*~*(y + d1)¥0, holds for d; € F and d € F*. So we are able to
prove that 6(0;) = ¢d; holds for ¢ € F°. Since the Lie subalgebra W (0,1,0) of
W(12,1,1) spanned by {z“0;|u € Z} is a self-centralizing Lie algebra, we have
two cases, Case I: 0(x0;) = —(x+c¢;1)0; and Case II: 0(20;) = (z+¢1)0y for ¢; € F.

Case I. Let us assume that 0(x0;) = —(z+c;)0; holds. By (01, x01]) = 6(01), we
have that —[0(9), (4 ¢1)01] = 0(01), we have that 6(09;) = ag(x +¢;)?0; for ag €
[F*. This implies that 0(z20;) = ad; for ap € F*. By 0([z7101, 2%0;]) = 36(d1), we
have that ¢; = 0 and 0(x719;) = a12®0; «a; € F*. By induction on i of z70;, we
have that 0(z~'0;) = a_;z'+20; for a_; € F*. By 0([x=1+10, e 01]) = 0(e*" ),
we are able to prove that

[y 210y, 0(e7" 0))] = 0(e™" 0y) (15)

holds. Since 0(e*" ;) ¢ Woo and ¢, + 1 is positive, there is no element 6(e*" ;)
of the algebra which holds the equality (15). This contradiction shows that there
is no automorphism which holds 6(x0,) = —(z + ¢1)0; .
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Case II. Let us assume that 6(z0;) = (x+¢1)0; holds. By induction on i € N, we
are able to prove that 6(z'0;) = ¢!~ (z+c;)"0; holds. By 0([x 20, 2%01]) = 50(d,),
we have that [0(z720), ¢ *(z + ¢1)?01] = 5¢d;. This implies that ¢; = 0 and
0(x720,) = *(x720,. By induction on i of z'd;, we can prove that 0(z'0;) =
c72'9; easily. Therefore we have proven the lemma. n

Note 2. For any basis elements e e 279, and e*" "2 2770y of W (12,1,1),
c11, C12, di1,d12 € F®, and ¢35 € F, if we define a linear map ¢ dyp,1 from
W(12,1,1) to itself as follows:

€11,12,€13,d11,

aztl bzt2 i,,J _ J1—i.—jga b ,axil ba:t2 i
9011,012,61376111@1271(6 'y al) =C1 612 d11d12e (y + 613) 817

1 _bgt2 —7 t1 ppt2
0611701270137d11,d12,1(eaz e Zy]a2) _611612 d d12€am e $Z<y+013)382, (16>

then 0., c1s.c15.d11.d12,1 Can be linearly extended to a Lie automorphism of W (12,1, 1)
such that cf} = cf2 = 1.

Note 3. For any basis elements " e?*2ziy79; and e®" e ziyi 9, of W(12,1,1),
Ca1, Co9, doy,doo € F*, and co3 € I, if we define a linear map 90217022,62376121,(12272 from
W(12,1,1) to itself as follows:

t1 prt2 —_azxt1 b 1)
90217022,02376121@2272(e(w T y]al) - 021 CQ2 d21d22€ “ v (y + 023)]817

ty b to b _—axll b 2
962170227023,d21,d22,2(eax v Zyj(%) - 621 022 d21d “ v l(y + 023)j827 (17)

then 9@)1,@2,@ ooy dan,2 CaN be linearly extended to a Lie automorphism of W (12,1, 1)
such that b} = —1 and ¢ = 1.

Note 4. For any basis elements " eb*2ziy79; and e®" e i1 0y of W (12,1, 1),
31, C32, d31,dsp € F®, and c33 € F, if we define a linear map 0.y, cy5 c45.ds1,ds0,3 frOm
W(1%,1,1) to itself as follows:

1 _baxt2 1— t1 —b to
90317032703376131,113273(eam e 134]81) = C3; C3 d et v Z(y + C33)j817

1 bt b t e b to
003116327033761314132,3(eax v Zyja2) - c31 032 d§1d32 et v Z(y + C33>]827 (18)

then 0.y, csy ca.ds1 dsp.3 CaN be linearly extended to a Lie automorphism of W (12,1, 1)
such that ¢} =1 and ¢ = —1. O

Note 5. For any basis elements " e?*2 27979y and e®" eb*2 21970, of W (12,1, 1),
C41,Ca2, da1,dgo € F®, and cy3 € I, if we define a linear map 0.,, cys.ci5.da1,dan,a from
W(12,1,1) to itself as follows:

“ bat2 —Jj —az" ,—bx'2
904170427043,(141,d42,4(6aw v Zyjal) - C41 C4 d d42€ R z(y<|>C43)J617

t1 pgt2 o —azxtl —bxt2
9641,6427043,d41,d42,4<€ax e’ xlyjaQ) _041642 d41d426 e x’(y+c43)]82,(19)

then 0., c10.cs5.dir.das.a Can be linearly extended to a Lie automorphism of W (12,1, 1)
such that ¢} =2 = —1.

Lemma 3.7.  For any automorphism 6 of W(12,1,1), 6 is one of the automor-

phisms 60117612,6137d11,d12717 9021,6227023@2176!22,27 9631,632,633,d31,d32,37 and 90411042’043@41»034274
as shown in Notes 2-5 with appropriate constant conditions.
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Proof.  Let 6 be the automorphism of W (12,1,1) in the theorem. By Lemma
3.5 and Lemma 3.6, we can assume that (13) and (14) hold with the same constants.
Thus by induction on 4,5 of zy/0,, 1 < u < 2, we are able to prove that
(W (0,0,2)) = W(0,0,2) holds, i.e., W(0,0,2) is #-invariant or auto-invariant.
Since y“d, centralizes e*'d; and yd, € Strie(W(1%2,1,1)), we have that

e(extl (91) = Ca7b7i70’1€axt1 ebxtQ xial —+ #1 (20)

holds where e e?* 179, is the maximal term of (e*" ;) and #; does not have
a term with d,. We have three cases, Case I: a,b # 0, Case II: a =0 and b # 0,
and Case III: @ # 0 and b= 0.

Case I. Let us assume that a,b # 0. We have that §(e=*"9;) has a similar form
as (20). By

0([e”" 01, ™ 0]) € W(0,0,2), (21)

we have that the maximal term of @(e=*" ;) is in Wy, 4, or in W_,, 5, . Let us
assume that the maximal term of A(e*"9;) is in W,, 4, . Thus by (22), 6(¢*" ;)
and 0(e=*"9;) have terms in the same homogeneous components. Furthermore we
can assume that H(0(e*"0y) = 0(e=*"dy) > 2. This implies that there is non-zero
constant ¢ such that

[0(e™ 1), 0(e”" 8y — ce ™" )] # —2ct10(x171y). (22)

Thus we can assume that the maximal term of #(e=*"9)) is in W_o, 4, . If

H(6(e*"d) # 1, then we can derive a contradiction because of the minimal
term of ([e"dy, e *")). If H(A(e*"d,) = 1, then we have that 0([e"1 0y, e *"]) #
—2t10(z"719y). This gives a contradiction. Thus a,b # 0 does not hold.

Case II. Let us assume that a = 0 and b # 0. This implies that 6(e*" ;) =
™0, + #, holds. By 0([0y,e”" 8;]) = t,0(e*" 21171,), we have that

[cO, et O1 + #o] = e btoe™ 19, 4 #s3
holds. This implies that
#3

. / .
0(e”" 21710)) = edb2e" 2t + 2
t1 t1

This implies that
0([ZE81, ext1 [Etl_lal]) — t10(e$t1 thl—lal) + (tl . 2)9(€zt1 xtl—lgl)
73

t .
= [(x + ¢1)0, cdb2e g, -]
t1 t1

holds. This implies that 6(e*" z2119;) = cc’bQZ—gebxtlﬂ”tl’lal + #,. Note that
1

0([z110y, ™" 8y]) = t10(e™ 2*1710)) — t1 4 O(e™ 211 y).
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This implies that

. t2 A
[Cl—tl (JZ + Cl)tlal7 Clebxizxzal] — CC/b2§€bxtl xz+2t2—181 + #5 (23)
holds. Since i+ t; +ty — 1 # @ + 2ty — 1, the equality (23) does not hold. So we
have a contradiction. Thus there is no automorphism of W (1% 1,1) which holds

a=0 and b # 0.

Case IIL Let us assume that a # 0 and b = 0. This implies that #(e*" ;) =
e 0y +#¢. Let us assume that #g # 0. Let us assume that H(extlﬁl) > 1. This
implies that H(e* "0;) = H(e*" ;) holds. This implies that there is a non-zero
scalar ¢ such that

O([e™ "0y, e” "0 — ce® A1) #£ 26,0(e” 1 Dy). (24)

This contradiction shows that H(e® "'9;) = 1. Similarly we can prove that
0(e” ) = de®™ 9, and 0(e ="9,) = dye 9"§;. This implies that 0(z'0;,) =

c'~i2'9,. By induction on i, k of 2'y*0,, 1 < u < 2, we are able to prove that
0(z'y*0,) = P =ido> ki (y + ¢)k0, (25)
where 91, and 95, are Kronecker deltas. Since
{aPy? 0, extlal,e_”tlal\a,i € Z,u,i € NJ1 <u <2}

is a generator of the Lie subalgebra W (1',1,1) of W(12,1,1), we have that a is
either 1 or —1. So we have two subcases, Subcase I: ¢« = 1 and Subcase II: ¢ = —1.

Subcase I. Let us assume that 8(e*"9;) = dye*" d; holds for d; € F*.

By 0([e*" 0y, e* 01]) = 2t:0(z1 10y,
we have that [0(e *"0y), d1e*" 0y] = 2> 1ty (x4 1)1,
holds. Therefore ¢; = 0 and #(e=*"0;) = ‘32;1 e~ 9, hold. By 0([z0y,e*"dy]) =
t10(e* 210y) —0(e* 0y), we have that 0(e*" z19;) = de* 29y holds. By Lemma
3.6 and O([z~" 410y, e* 1 0y]) = t:10(e*7 0y) — (—t; + 1)0(e* 21 d;), we have that
[chix=h+1g, dleftlal] = t1d1e® O+ (t1— 1)0(ext1x_t181), This implies that ¢ = 1.
Similarly we can prove that A: e(emal) = dye®?9, and B: 6(e*20y) = doe™"2 0,
where dy € F°.

A. Let us assume that 8(e*20;) = dye”?; holds. Since 2719, is an ad-diagonal
element with respect to 28y, we can prove that ¢2 = 1 holds. By induction on
b of e*"28;, we can prove that 0(e*?8;) = dbe*"?d;. So we have that

at bt . s at bt ;
O(e™ e 220y = i dedbe™ e P a0y (26)

holds. So by (25) and (26), we can prove that ¢ can be linearly extended to the
automorphism 6,, ¢15.c15.d11.d12,1 @ shown Note 2 with appropriate constants.
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B. Let us assume that (e*?9;) = dye "9, . Similarly we can prove that ¢*> = —1.
Similarly to A, we are able to prove that 6 can be linearly extended to the auto-
morphism 0.y, s cas.ds1.dso.3 &S shown Note 4 with appropriate constants.

Subcase II. Let us assume that 0(65””81) = dye "9, holds for d; € F°.
Similarly to Subcase I, we have that C: 6(e*20;) = dye*?d; and D: 0(e*?0,) =
doe™"2 9, where d, € F°.

C. If we assume that 9(6$t2 0) = dre”? 3, then similarly to A, 6 can be linearly
extended to the automorphism 0, c,, css,da1,dz0,2 a8 shown Note 3 with appropriate
constants.

D. If we assume that 6(e*?0;) = dye "0, , then similarly to A, # can be linearly
extended to the automorphism 6 4 as shown Note 5 with appropriate
constants.

€41,C42,€43,d41,d42,

This implies that 6 can be linearly extended to one of the the automor-

phlSHlS 9011701270137d11,d12717 6021702270237(1217012272’ 60317032»0337‘1317513273’ and 0041:042’04375141’5[4274
as shown in Notes 2-5. Therefore we have proven the lemma. |

Theorem 3.8.  The automorphism group of the algebra W (12,1,1) is generated

by the automorphisms 9011701270137d117d12,17 962170227023,d217d22,27 963170327033,d31,d32737 and
Ocsi can.casdat,dina @S Shown in Notes 2-5 with appropriate constant conditions.

Proof. Let @ be an automorphism of W(1%2,1,1). By Lemma 3.7, 6 is one
of the automorphisms 66117012,013,d11,d12717 002116227023751217112272’ 063176327033,d31,d32,37 and
a1 cas,cas.dat,dan,a @S shown in Notes 2-5 with appropriate constant conditions. Thus
the automorphism group Aut(W(1%,1,1)) of the algebra W(1%,1,1) is gener-
ated by the automorphisms 90117012,013,d11,d12,17 9621,0227623,d21,d22,2> 90317032,633,d31,d32,37
and 0.y, cis.cas.di1.din.a @ shown in Notes 2-5 with appropriate constant conditions.
Therefore we have proven the theorem. [ |

Remark 3.9. Thanks to Theorem 3.8, we have that the automorphism group
of W(12,2,0) is generated by the automorphisms 6, c15.0.dy1.dis.1 s Ot con.0.d01.d22.2
Ocsy c32.0.d51.d52.3 AN ey c1.0.dir dasa Which are defined on the algebra W (12,2,0)
as similar Notes 2-5 of W (12,2,0).

4. Cartan Subalgebra

A Cartan subalgebra € of the algebra W (1%,1,1) (resp. W(1%,2,0)) is spanned
by yds + cOy (resp. y0dy) where ¢ € F. Note that € is one dimensional and
Tor(W(12,1,1)) (resp. Tor(W(1%,2,0))) is one. The root space decomposition of
W(12,1,1) (resp. W(1%,2,0)) with respect to € is the following:

WLy = @ W,  (resp. W(1%,2,0) = PW)) (27)

jeNU{-1} JEZ
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where W; is a vector subspace of W(1%,1,1) (resp. W(1,2,0)) spanned by
{em®™ a2y (1 4 )19, eM® 9252 g2 (y 4 )1 Dy ay, a9, iy € Z,ia € N} and [ydy+
Oy, W;] C Wj (vesp. {em®ew2®?giyig, e ¢o28” yizea22? yi+10, |a) ag iy, iy €
Z} and [y0y, W;] C W;). We have the following proposition.

Proposition 4.1.  For any automorphism 0 of the algebra W (1%,1,1) (resp.
W(1,2,0) ), 0(ydy) = yOs + cOy (resp. yOs ) where c € F.

Proof.  Since any Cartan subalgebra € of W(12,1,1) (resp. W(12,2,0)) is
one dimensional, the Cartan subalgebra € is auto-invariant. Thus the proof of the
proposition is obvious. |

Remark 4.2. Thanks to Proposition 4.1, we are also able to find the automor-
phism groups of the algebras W (12,1,1) and W (12,2,0).
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