Integrable Representations for Extended Affine Lie Algebras Coordinated by Quantum Tori

Fulin Chen and Shaobin Tan*

Communicated by K.-H. Neeb

Abstract. In this paper we realize all irreducible integrable modules for the core of extended affine Lie algebras of type A coordinated by quantum tori with center elements act non-trivially. We also study the sufficient and necessary conditions for such modules to be unitary.

Mathematics Subject Classification 2010: 17B10, 17B65, 17B67.

Key Words and Phrases: Extended affine Lie algebra, Integrable representation, Unitary module, Quantum tori.

1. Introduction

In the study of representation theory of Kac-Moody algebras, one of the main ingredients is the classification of irreducible integrable representations. The irreducible integrable modules with finite dimensional weight spaces for affine Kac-Moody algebras were classified by Chari [5] and Chari-Pressly [6], [7]. It was proved that the irreducible integrable modules are the highest weight modules ([19]), their dual, or the loop modules ([6]). As higher dimensional generalization of affine Kac-Moody algebras, extended affine Lie algebras (EALAs) were first introduced in [17] and studied in [1] and [2].

Toroidal Lie algebras are basic examples of EALAs. The classification problem of irreducible integrable modules with finite dimensional weight spaces for the toroidal Lie algebras was studied by Rao [8],[10]. Besides the affine Kac-Moody algebras and toroidal Lie algebras, there are many EALAs whose coordinate algebras are non-commutative or non-associative, examples involving quantum tori, Jordan tori and octonion tori. In [11], Rao studied a class of irreducible integrable modules for certain EALAs coordinated by quantum tori. More precisely, let \mathcal{L} be the core of EALA of type $A_{\nu-1}$ coordinated by quantum tori $\mathbb{C}_q[x^\pm 1, y^\pm 1]$ of two variables. Add two derivations d_x, d_y to \mathcal{L}, one has $\tilde{\mathcal{L}} = \mathcal{L} \oplus \mathbb{C}d_x \oplus \mathbb{C}d_y$. Let c_x and c_y denote the two central elements corresponding to the variables x and y, respectively. The irreducible integrable $\tilde{\mathcal{L}}$-modules were studied in [11] for...
which c_x or c_y acts non-trivially. It was shown in [11] that any such \tilde{L}-module is either a highest weight module or a lowest weight module up to an automorphism. But, the concrete realization problem for those irreducible integrable \tilde{L}-modules is open. As pointed out in [11], “it is interesting if one can give a “model” for all known irreducible integrable \tilde{L}-modules”. The main goal of this article is to give explicit construction of those integrable \tilde{L}-modules.

So far, the known models for integrable \tilde{L}-modules were those so-called “basic modules” constructed in [16],[4],[12],[13] and [3] obtained by vertex operators. In addition, a class of “fundamental modules” were given by using Clifford “basic modules” constructed in [16],[4],[12],[13] and [3] obtained by vertex operators. In particular, the \tilde{L}-submodule W_i of V_i generated by $w_i = \otimes_{s=1}^{l_i}v_i$ is irreducible.

Let $i = (\tilde{i}_1, \cdots, \tilde{i}_k)$ with $\tilde{i}_s \in \mathbb{Z}^{n_s}, 1 \leq s \leq k$. Then, we have the irreducible \tilde{L}-modules W_{i_1}, \cdots, W_{i_k}. Thanks to the method developed by Chari and Pressly in [6], we obtain an \tilde{L}-module structure on the tensor space $W_{i\alpha} = W_{i_1} \otimes \cdots \otimes W_{i_k} \otimes \mathbb{C}[t,t^{-1}]$ with k-tuple $\alpha = (a_1, \cdots, a_k) \in (\mathbb{C}^*)^k$. We need the condition $a_i \neq q^na_j$ for all $1 \leq i \neq j \leq k, n \in \mathbb{Z}$, while it was required that $a_i \neq a_j, \forall i \neq j$ in [6] for the affine Kac-Moody algebras. We prove that the \tilde{L}-modules $W_{i\alpha}$ are completely reducible and their irreducible components exhaust all irreducible integrable highest weight \tilde{L}-modules up to the actions of d_x, d_y. In other words, by changing the actions of d_x, d_y and an automorphism twisting on the \tilde{L}-modules $W_{i\alpha}$, we realize all irreducible integrable modules given in [11].

In addition, we obtain necessary and sufficient conditions for those \tilde{L}-modules to be unitary when $\vert q \vert = 1$. Several unitary modules related to the algebra \tilde{L} studied in the paper were studied in [18],[9],[15] and [20].

The paper is organized as follows. In Sect.2, we recall some properties for the algebra \tilde{L} from [2] and also recall the classification results from [11]. In Sect.3, we recall the fermionic constructions for \tilde{L}-modules given in [14] and prove that the tensor product of such \tilde{L}-modules are completely reducible. Then we construct a family of irreducible integrable modules for \tilde{L} in Sect.4, which gives the explicit realization of all irreducible integrable highest weight \tilde{L}-modules. In Sect.5, we study the unitarity of those modules constructed in Sect.4 under the condition $\vert q \vert = 1$.

Throughout this paper, we denote the field of complex numbers, the group of non-zero complex numbers, the set of non-negative integers and the ring of integers by $\mathbb{C}, \mathbb{C}^*, \mathbb{N}$ and \mathbb{Z} respectively.

2. Extended affine Lie algebras coordinated by quantum tori

Let q be a non-zero complex number and $\nu \geq 2$ be a positive integer. We begin by recalling the construction of the core of EALA of type $A_{\nu-1}$ coordinated by quantum tori given in [2]. A quantum tori in two variables associated to q is the unital associative \mathbb{C}-algebra $\mathbb{C}_q[x^{\pm1}, y^{\pm1}]$ (or, simply \mathbb{C}_q) with generators $x^{\pm1}, y^{\pm1}$
and relations
\[xx^{-1} = x^{-1}x = yy^{-1} = y^{-1}y = 1, \quad yx = qxy. \]

Let \(\Lambda(q) = \{ n \in \mathbb{Z} | q^n = 1 \} \), and \(q \) is said to be generic if \(\Lambda(q) = \{0\} \). The center \(Z(C_q) \) of \(C_q \) has a basis consisting of monomials \(x^m y^n \) for \(m, n \in \Lambda(q) \) and the subalgebra \([C_q, C_q]\) has a basis consisting of monomials \(x^m y^n \) for \(m \notin \Lambda(q) \) or \(n \notin \Lambda(q) \). This implies that \(C_q = [C_q, C_q] \oplus Z(C_q) \).

Let \(I \) be the subspace of \(C_q \otimes C_q \) spanned by elements of the form
\[a \otimes b + b \otimes a, \quad ab \otimes c - a \otimes bc - b \otimes ca \quad \text{for all} \quad a, b, c \in C_q. \]
So we have the quotient space \(<C_q, C_q> = C_q \otimes C_q / I \) and we let \(<a, b> \) denote the element \(a \otimes b + I \). Let \(I_\nu \) be the \(\nu \times \nu \) identity matrix. Define a Lie algebra \(\mathcal{L} = (sl_\nu(C) \otimes C_q) \oplus <C_q, C_q> \) with bracket
\[[A \otimes a, B \otimes b] = [A, B] \otimes \frac{a \otimes b}{2} + A \circ B \otimes \frac{[a, b]}{2} + \frac{\text{tr}(AB)}{\nu} \quad <a, b>, \]
\[[<a, b>, <c, d>] = <[a, b], [c, d]>, \]
\[[<a, b>, A \otimes c] = A \otimes [[a, b], c], \]
where \(A, B \in sl_\nu(C), a, b, c, d \in C_q, [A, B] = AB - BA, \)
\[A \circ B = AB + BA - \frac{2}{\nu} \text{tr}(AB)I_\nu, \]
\[[a, b] = ab - ba, a \circ b = ab + ba \quad \text{and} \quad \text{tr} \text{ is the trace form}. \]

There is a natural \(\mathbb{Z}^2 \)-graded structure on \(<C_q, C_q> \) with graded subspaces given as follows:
\[<C_q, C_q>_{(m, n)} = \text{span}_C \{ <x^{m_1}y^{n_1}, x^{m_2}y^{n_2}> : m_1, m_2, n_1, n_2 \in \mathbb{Z}, \]
\[m_1 + m_2 = m, n_1 + n_2 = n \}, (m, n) \in \mathbb{Z}^2. \]

Let \(HC_1(C_q) = \{ \sum \langle a_j, b_j \rangle | \sum_{j \in j}[a_j, b_j] = 0 \} \) where \(j \) is any finite index set. It was shown in [2] that \(HC_1(C_q) \) is the center of \(\mathcal{L} \) and \(\mathcal{L} \) is centrally closed. Moreover, by Corollary 3.22 [2], one has
\[\dim <C_q, C_q>_{(m, n)} = \begin{cases} 1, & \text{if} \quad (m, n) \neq (0, 0); \\ 2, & \text{if} \quad (m, n) = (0, 0), \end{cases} \]
and
\[HC_1(C_q) = \bigoplus_{m, n \in \Lambda(q)} <C_q, C_q>_{(m, n)}. \]

Thus, we have \(<C_q, C_q> = [C_q, C_q] \oplus HC_1(C_q)\) as vector spaces.

By adding the degree derivations \(d_x, d_y \) to \(\mathcal{L} \), we get a Lie algebra \(\tilde{\mathcal{L}} = \mathcal{L} \oplus Cd_x \oplus Cd_y \) with additional multiplications
\[[d_x, A \otimes a] = m_1 A \otimes a, \quad [d_y, A \otimes a] = n_1 A \otimes a, \quad [d_x, d_y] = 0, \]
\[[d_x, <a, b>] = (m_1 + m_2) <a, b>, \quad [d_y, <a, b>] = (n_1 + n_2) <a, b>, \quad (1) \]
where $A \in \mathfrak{sl}_\nu(\mathbb{C})$, $a = x^{m_1}y^{n_1}$, $b = x^{m_2}y^{n_2}$, $m_1, m_2, n_1, n_2 \in \mathbb{Z}$.

Let \mathcal{K} be the vector space spanned by symbols $c_x(m, n), c_y(m, n), m, n \in \Lambda(q)$ with relation $mc_x(m, n) + nc_y(m, n) = 0$. Let $gl_\nu(\mathbb{C}) \otimes \mathbb{C}_q$ be the matrix Lie algebra over the quantum tori \mathbb{C}_q. Define a central extension \mathcal{B} of the Lie algebra $gl_\nu(\mathbb{C}) \otimes \mathbb{C}_q$ by central subalgebra \mathcal{K} as follows:

$$[A \otimes x^{m_1}y^{n_1}, B \otimes x^{m_2}y^{n_2}]$$

$$= q^{m_1n_1}AB \otimes x^{m_1+m_2}y^{n_1+n_2} - q^{m_2n_2}BA \otimes x^{m_1+m_2}y^{n_1+n_2}$$

$$+ \text{tr}(AB)\delta_{m_1+m_2, \Lambda(q)}\delta_{n_1+n_2, \Lambda(q)}q^{n_1m_2}$$

$$\cdot (m_1c_x(m_1 + m_2, n_1 + n_2) + n_1c_y(m_1 + m_2, n_1 + n_2)),$$

where $A, B \in gl_\nu(\mathbb{C}), m_1, m_2, n_1, n_2 \in \mathbb{Z}$, and

$$\delta_{m, \Lambda(q)} = \begin{cases} 1, & \text{if } m \in \Lambda(q); \\ 0, & \text{if } m \notin \Lambda(q). \end{cases}$$

It is straightforward to prove the following result.

Lemma 2.1. The linear map $\mathcal{L} \to \mathcal{B}$ given by

$$A \otimes x^my^n \mapsto A \otimes x^my^n, \quad A \in \mathfrak{sl}_\nu(\mathbb{C}), \quad m, n \in \mathbb{Z},$$

$$<x^{m_1}y^{n_1}, x^{m_2}y^{n_2}> \mapsto I_\nu \otimes [x^{m_1}y^{n_1}, x^{m_2}y^{n_2}]$$

$$<x, x^{m}y^{n}x^{-1} > \mapsto \nu c_x(m, n), \quad m, n \in \Lambda(q),$$

$$<y, x^{m_1}y^{n_1} > \mapsto \nu c_y(m, n), \quad m, n \in \Lambda(q),$$

is an injective Lie algebra homomorphism.

The result of Lemma 2.1 allows us to identify \mathcal{L} with the subalgebra $\mathcal{B}' := (\mathfrak{sl}_\nu(\mathbb{C}) \otimes \mathbb{C}_q) \oplus (I_\nu \otimes [\mathbb{C}_q, \mathbb{C}_q]) \oplus \mathcal{K}$ of \mathcal{B}. We can also define a Lie algebra $\tilde{\mathcal{B}} = \mathcal{B} \oplus \mathbb{C}d_x \oplus \mathbb{C}d_y$ with multiplication given similarly as (1). Then, one can identify $\tilde{\mathcal{L}}$ with the subalgebra $\mathcal{B}' \oplus \mathbb{C}d_x \oplus \mathbb{C}d_y$ of $\tilde{\mathcal{B}}$. Hence, under this identification, we can write $\tilde{\mathcal{B}} = \tilde{\mathcal{L}} \oplus \sum_{m,n \in \Lambda(q)} \mathbb{C}I_\nu \otimes x^m y^n$.

Now we turn to consider the root-space decomposition of $\tilde{\mathcal{L}}$. For $1 \leq i, j \leq \nu$, let E_{ij} be the unit $\nu \times \nu$ matrix which has 1 in the (i, j)-entry and 0 elsewhere. Let $h_i = E_{ii} - E_{i+1, i+1}$ for $1 \leq i \leq \nu - 1$ and $H = \text{span}_\mathbb{C}\{h_i \otimes 1 : 1 \leq i \leq \nu - 1\}$. Let $\tilde{\mathcal{H}}$ be a Cartan subalgebra of $\tilde{\mathcal{L}}$ spanned by $\mathcal{H}, c_x := c_x(0, 0), c_y := c_y(0, 0), d_x$ and d_y. Then, one has the following root-space decomposition of $\tilde{\mathcal{L}}$ with respect to the Cartan subalgebra $\tilde{\mathcal{H}}$:

$$\tilde{\mathcal{L}} = \bigoplus_{\gamma \in \tilde{\mathcal{H}}^*} \tilde{\mathcal{L}}_{\gamma}, \quad \text{where } \tilde{\mathcal{L}}_{\gamma} = \{A \in \tilde{\mathcal{L}} | [h, A] = \lambda(h)A, \forall h \in \tilde{\mathcal{H}}\}.$$

Let $\Delta = \{\epsilon_i - \epsilon_j | 1 \leq i \neq j \leq \nu\}$ be the root system of $\mathfrak{sl}_\nu(\mathbb{C})$ as usual. View Δ as a subset of $\tilde{\mathcal{H}}^*$ by setting $(\epsilon_i - \epsilon_j)(z) = 0$, where $z = c_x, d_x, c_y$ or d_y. Introduce elements $\delta_x, \delta_y \in \tilde{\mathcal{H}}^*$ by letting $\delta_x(d_x) = 1, \delta_y(d_y) = 1$ and the actions on other
basis elements are zero. Then, the set \(\Delta = \{\alpha + m\delta_x + n\delta_y : \alpha \in \hat{\Delta} \cup \{0\}, m, n \in \mathbb{Z}\}\) is the root system of \(\tilde{L}\) with respect to \(\hat{\mathcal{H}}\). A root of the form \(\alpha + m\delta_x + n\delta_y \in \Delta\) is called real if \(\alpha \in \hat{\Delta}\).

Definition 2.2. An \(\tilde{\mathcal{L}}\)-module \(V\) is called integrable if

1. \(V = \bigoplus_{\lambda \in \hat{\mathcal{H}}} V_\lambda\) where \(V_\lambda = \{v \in V | h.v = \lambda(h)v, \forall h \in \hat{\mathcal{H}}\}\).
2. For any weight \(\gamma \in \hat{\mathcal{H}}^*\), one has \(\dim V_\lambda < \infty\).
3. For any real root \(\gamma\) and element \(v \in V\), there exists positive integer \(k\) such that \((\tilde{\mathcal{L}})_{\gamma}^k v = 0\).

Let \(\mathcal{A} = sl_n(\mathbb{C}) \otimes \mathbb{C}[x, x^{-1}] \oplus \mathbb{C}c_x \oplus \mathbb{C}d_x\) be the subalgebra of \(\tilde{\mathcal{L}}\), which is isomorphic to the affine Kac-Moody algebra of type \(A_{n-1}^{(1)}\). Consider the natural triangular decomposition \(\mathcal{A} = \mathcal{A}_+ \oplus \mathcal{A}_0 \oplus \mathcal{A}_-\), where

\[\mathcal{A}_+ = sl_n(\mathbb{C}) \otimes \mathbb{C}[x] \oplus \sum_{i<j} \mathbb{C}E_{ij},\]
\[\mathcal{A}_- = sl_n(\mathbb{C}) \otimes \mathbb{C}[x^{-1}] \oplus \sum_{i>j} \mathbb{C}E_{ij},\]
\[\mathcal{A}_0 = \mathcal{H} \oplus \mathbb{C}c_x \oplus \mathbb{C}d_x.\]

So we have the decomposition \(\tilde{\mathcal{L}} = \tilde{\mathcal{L}}_+ \oplus \tilde{\mathcal{L}}_0 \oplus \tilde{\mathcal{L}}_-\), where

\[\tilde{\mathcal{L}}_+ = \mathcal{A}_+ \oplus \mathcal{C}[y, y^{-1}] \oplus <\mathbb{C}_q, \mathbb{C}_q >_+,\]
\[\tilde{\mathcal{L}}_0 = \mathcal{H} \oplus \mathcal{C}[y, y^{-1}] \oplus <\mathbb{C}_q, \mathbb{C}_q >_0 \oplus \mathbb{C}d_x \oplus \mathbb{C}d_y.\]

We identify \(\mathbb{C}[x^{\pm 1}, y^{\pm 1}]\) with \(\mathbb{C}[x, x^{-1}] \otimes \mathbb{C}[y, y^{-1}]\), and

\[<\mathbb{C}_q, \mathbb{C}_q >_\pm = \oplus_{m,n \in \mathbb{Z}, \pm m > 0} <\mathbb{C}_q, \mathbb{C}_q >_{(m,n)},\]
\[<\mathbb{C}_q, \mathbb{C}_q >_0 = \oplus_{n \in \mathbb{Z}} <\mathbb{C}_q, \mathbb{C}_q >_{(0,n)} .\]

We also introduce a \(\mathbb{Z}\)-grading on \(\tilde{\mathcal{L}}\) as follows:

\[\tilde{\mathcal{L}}(n) = \{A \in \tilde{\mathcal{L}} | [d_y, A] = nA\}, \quad n \in \mathbb{Z}.\]

For any subalgebra \(\mathcal{G}\) of \(\tilde{\mathcal{L}}\), we will use the following notation

\[\mathcal{G}(n) := \tilde{\mathcal{L}}(n) \cap \mathcal{G}, \quad n \in \mathbb{Z}.\]

Let \(\psi\) be a linear function on \(\tilde{\mathcal{L}}_0\) such that \(\psi(c_y) = 0\). Let

\[\tilde{\mathcal{L}}_0 = \mathcal{H} \otimes \mathcal{C}[y, y^{-1}] \oplus <\mathbb{C}_q, \mathbb{C}_q >_0 \oplus \mathbb{C}d_x\]

and define a linear map \(\overline{\psi} : \tilde{\mathcal{L}}_0 \to \mathbb{C}[t, t^{-1}]\) as follows:

\[\overline{\psi}(h) = \psi(h)t^n, \quad \forall h \in \tilde{\mathcal{L}}_0(n).\]

Let \(A_{\overline{\psi}} \subset \mathbb{C}[t, t^{-1}]\) be the image of \(\overline{\psi}\). Then, \(\overline{\psi}\) induces an \(\tilde{\mathcal{L}}_0\)-module structure on \(A_{\overline{\psi}}\) with the actions given by

\[h.t^n = (\overline{\psi}(h))t^n, \quad h \in \tilde{\mathcal{L}}_0, \quad d_y.t^n = (\psi(d_y) + m)t^n, \quad m \in \mathbb{Z}.\]
Remark 2.3. In the paper [11], the linear function ψ was defined on \hat{L}_0 and the action of d_y on A_{ψ} was given by $d_y t^m = mt^m$. But, we observe that one can add an extra scalar action of d_y on A_{ψ}, that is, we can define the action of d_y by $d_y t^m = (c + m)t^m$ for any fixed scalar c.

We recall the definition of highest weight \hat{L}-modules, which was introduced by Rao (See [11],[9])

Definition 2.4. An \hat{L}-module V is called a highest weight module if there exists a weight vector v in V such that $\hat{L}_-, v = 0, U(\hat{L}) v = V$ and the \hat{L}_0-module generated by v is isomorphic to an irreducible \hat{L}_0-module A_{ψ} for some linear function ψ.

For a given linear function ψ, suppose that A_{ψ} is irreducible as \hat{L}_0-module. Viewing A_{ψ} as $(\hat{L}_+ \oplus \hat{L}_0)$-module by letting \hat{L}_+ acts trivially. So we have an induced \hat{L}-module $M(\psi) = U(\hat{L}) \otimes_{U(\hat{L}_+ \oplus \hat{L}_0)} A_{\psi}$. It is easy to see that $M(\psi)$ has a unique irreducible quotient, which we denote by $V(\psi)$.

For $1 \leq i \leq \nu$ and $n \in \mathbb{Z}$, define elements $h_{i,n} \in \hat{L}_0$ as follows

$$
\begin{align*}
 h_{i,n} &= h_i \otimes y^n, \ 1 \leq i \leq \nu - 1, \\
 h_{\nu,n} &= -q^n E_{11} \otimes y^n + E_{\nu\nu} \otimes y^n + \delta_{\nu,\lambda(0)} c_y (0, n).
\end{align*}
$$

(2)

Then $c_y, d_x, d_y, h_{i,n}, 1 \leq i \leq \nu, n \in \mathbb{Z}$ form a basis of \hat{L}_0. Let

$$
P_+ = \{ \lambda\in \hat{H}^* : \lambda(h_{i,0}) \in \mathbb{N}, 1 \leq i \leq \nu, \lambda(c_y) = 0 \}
$$

and l be a positive integer. Then, for each pair

$$(\lambda, b) \in (P_+)^l \times (\mathbb{C}^*)^l, \ \lambda = (\lambda_1, \cdots, \lambda_l), \ b = (b_1, \cdots, b_l),$$

such that b_1, \cdots, b_l are distinct, we can define a linear function $\psi_{\lambda,b}$ on \hat{L}_0 by requiring that

$$
\begin{align*}
 \psi_{\lambda,b}(h_{i,n}) &= \sum_{j=1}^l \lambda_j(h_{i,0}) b_j^n, \ 1 \leq i \leq d, n \in \mathbb{Z}, \\
 \psi_{\lambda,b}(z) &= \sum_{j=1}^l \lambda_j(z), \ z = d_x, d_y, \text{ or } c_y.
\end{align*}
$$

(3)

Then the resulting \hat{L}_0-module $A_{\psi_{\lambda,b}}$ is irreducible and we hence obtain an irreducible highest weight \hat{L}-module $V(\psi_{\lambda,b})$. Let $M = \left(\begin{smallmatrix}a & b \\ c & d \end{smallmatrix}\right) \in SL_2(\mathbb{Z})$, then M can be extended to an automorphism of \hat{L}, which is again denoted by M (See [11], Sect.5 for details). The following result was proved in [11]

Theorem 2.5. (1) Let V be an irreducible \hat{L}-module such that c_x acts as positive integer and c_y acts as zero. Then V is integrable if and only if $V \cong V(\psi_{\lambda,b})$ for some pair (λ, b).

In this section we first construct fermionic lowest weight module up to a twist of an automorphism M and then show that the tensor non-trivial. Then V is isomorphic to either a highest weight module $V(\psi_{\lambda,b})$ or a lowest weight module up to a twist of an automorphism M.

3. Tensor modules for \tilde{L}

In this section we first construct fermionic $\tilde{L} := \mathcal{L} \oplus \mathbb{C}d_\mathcal{L}$-modules $V_k, k \in \mathbb{Z}$ and then show that the tensor \tilde{L}-module $\bigotimes_{s=1}^i V_{i_s, i, \cdots, i} \in \mathbb{Z}$ is completely reducible.

Let R_ν be a unital associative algebra with infinitely many generators $\psi_i(m), \psi_i^*(m)$, for $m \in \mathbb{Z}, 1 \leq i \leq \nu$, subject to the following relations

$$\psi_i(m)\psi_j(n) + \psi_j(n)\psi_i(m) = \psi_i^*(m)\psi_j^*(n) + \psi_j^*(n)\psi_i^*(m) = 0,$$

$$\psi_i(m)\psi_j^*(n) + \psi_j^*(n)\psi_i(m) = \delta_{ij}\delta_{m+n,0}.$$

We define normal ordering as follows

$$: \psi_i(m)\psi_j^*(n) := \begin{cases} \psi_i(m)\psi_j^*(n), & \text{if } m \leq n; \\ -\psi_j^*(n)\psi_i(m), & \text{if } m > n, \end{cases}$$

for $m, n \in \mathbb{Z}, 1 \leq i, j \leq \nu$.

Let R_ν^+ be the subalgebra of R_ν generated by $\psi_i(m), \psi_i^*(n)$, for $m > 0, n \geq 0$ and $1 \leq i \leq \nu$, and R_ν^- be the subalgebra generated by $\psi_i(m), \psi_i^*(n)$, for $m \leq 0, n < 0$ and $1 \leq i \leq \nu$. Let $V(\nu)$ be a simple R_ν-module containing an element v_0, called “vacuum vector”, and satisfying $R_\nu^-v_0 = 0$. Therefore,

$$V(\nu) = R_\nu^-v_0 \oplus \mathbb{C}v_0.$$

For $m, n \in \mathbb{Z}, 1 \leq i, j \leq \nu$, we set

$$f_{ij}(m, n) = \sum_{p \in \mathbb{Z}} q^{-np} : \psi_i(m-p)\psi_j^*(p) :,$$

$$D = \sum_{i=1}^\nu \sum_{p \in \mathbb{Z}} p : \psi_i(p)\psi_i^*(-p) :,$$

and

$$F_{ij}(m, n) = \begin{cases} f_{ij}(m, n), & \text{for } n \in \Lambda(q), \\ f_{ij}(m, n) - \delta_{ij}\delta_{m,0}\frac{q^n}{q^m-1}, & \text{for } n \notin \Lambda(q). \end{cases}$$

For any vector $v = \psi_{i_1}(m_1)\cdots \psi_{i_s}(m_s)\psi_{j_1}^*(n_1)\cdots \psi_{j_l}^*(n_l)v_0 \in V(\nu)$, we define an linear operator J on $V(\nu)$ by

$$J(v) = (s - t)v.$$

For any $k \in \mathbb{Z}$, let V_k be the k-eigenspace of $V(\nu)$ with respect to the operator J. Now, as a by-product of Theorem 3.8 [14], we have
Proposition 3.1. \(V(\nu) \) is a module for the Lie algebra \(\hat{B} = B \oplus C_d \) under the actions given by

\[
E_{ij} \otimes x^m y^n \mapsto F_{ij}(m, n), \quad \text{for } 1 \leq i, j \leq \nu, m, n \in \mathbb{Z};
\]

\[
c_x(0, n') \mapsto 1, \quad d_x \mapsto D, \quad \text{for } n' \in \Lambda(q);
\]

\[
c_y(m', n') \mapsto 0, \quad \text{for } m', n' \in \Lambda(q).
\]

Moreover, \(V(\nu) \) is completely reducible and each component \(V_k, k \in \mathbb{Z} \) is irreducible.

For \(k \in \mathbb{Z} \), we define a vector \(v_k \in V_k \) as follows

\[
v_k = \begin{cases}
\psi_r(-s) \cdots \psi_1(-s) \psi_\nu(1-s) \cdots \psi_\nu(0) \cdots \psi_1(0)v_0, & \text{for } k > 0, \\
\psi_{r+1}^*(s) \cdots \psi_\nu^*(s) \psi_\nu^*(s+1) \cdots \psi_1^*(s+1) \cdots \psi_1^*(-1) \cdots \psi_\nu^*(-1)v_0, & \text{for } k < 0,
\end{cases}
\]

where \((s, r)\) is the unique pair such that \(k = s\nu + r, s \in \mathbb{Z}, 1 \leq r \leq \nu \).

By restriction, one can view \(V_k, k \in \mathbb{Z} \) as an \(\hat{\mathcal{L}} \)-module. Let \(\omega_k \) be an element in \(\hat{\mathcal{L}}^*_0 \) defined by

\[
\omega_k(h_{i,n}) = \delta_{r,q}^{-s}, \omega_k(d_x) = D_k \quad 1 \leq i \leq \nu, n \in \mathbb{Z},
\]

where \(k = s\nu + r, s \in \mathbb{Z}, 1 \leq r \leq \nu \) and \(h_{i,n} \) is defined in (2) and \(D_k \) is the scalar determined by \(Dv_k = D_kv_k \). The following result shows that \(v_k \) is a highest weight vector in the \(\hat{\mathcal{L}} \)-module \(V_k \) with highest weight \(\omega_k \). The verification of this assertion is straightforward, and is omitted.

Lemma 3.2. In the \(\hat{\mathcal{L}} \)-module \(V_k, k \in \mathbb{Z} \), we have \(\hat{\mathcal{L}}^+.v_k = 0 \) and \(h.v_k = \omega_k(h).v_k \) for all \(h \in \hat{\mathcal{L}}_0 \). \(\blacksquare \)

Let \(\hat{H} = \mathcal{H} \oplus C_{dx} \oplus C_{dy} \) and we identify \(\hat{H}^* \) with the set \(\{ \alpha \in \hat{H}^* : \alpha(dy) = 0 \} \). Let \(\alpha_i = \epsilon_i - \epsilon_{i+1}, 1 \leq i \leq \nu - 1, \alpha_\nu = \epsilon_\nu - \epsilon_1 + \delta_x \) and \(Q_+ = N_\alpha \oplus \cdots \oplus N_\alpha \). Clearly, \(V_k \) is a weight module for \(\hat{\mathcal{L}} \) with respect to \(\hat{H} \). Moreover, the previous lemma shows that all weights of \(V_k \) have the form \(\Lambda_k - \eta, \eta \in Q_+ \), where \(\Lambda_k \in \hat{H}^* \) is the restriction of \(\omega_k \) on \(\hat{H} \).

Let \(l \) be a positive integer and \(\bar{i} = \{i_1, \cdots, i_l\} \in \mathbb{Z}^l \). We denote the tensor space \(\bigotimes_{i=1}^{l} V_{i_l} \) by \(V_{\bar{i}} \). In the rest of this section we are going to show that the \(\hat{\mathcal{L}} \)-module \(V_{\bar{i}} \) is completely reducible.

We first consider the case with \(|q| = 1 \). In this case, one can define a conjugate-linear anti-involution \(\theta_q \) of \(\hat{B} \) by letting

\[
\theta_q(E_{ij} \otimes x^m y^n) = q^{mn} E_{ij} \otimes x^{-m} y^{-n}, \quad \theta_q(d_x) = d_x,
\]

\[
\theta_q(c_x(m', n')) = c_x(-m', -n'), \quad \theta_q(c_y(m', n')) = c_y(-m', -n'),
\]

where \(1 \leq i, j \leq \nu, m, n \in \mathbb{Z} \) and \(m', n' \in \Lambda(q) \).

If \(\mathcal{G} \) is a Lie algebra and \(\theta \) a conjugate-linear anti-involution on \(\mathcal{G} \). Recall that a \(\mathcal{G} \)-module \(W \) is said to be unitary with respect to \(\theta \) if there exists a positive definite Hermitian form \(\langle , \rangle \) on \(W \) such that

\[
\langle A.v, w \rangle = \langle v, \theta(A).w \rangle, \quad A \in \mathcal{G}, v, w \in W.
\]
We now define a positive definite Hermitian structure $< , >$ on $V(\nu)$ by the characteristic conditions

$$
< v_0, v_0 > = 1, \quad < v, w > = \overline{< w, v >},
$$
$$
< \psi_i(m).v, w > = < v, \psi_i^*(m).w >,
$$
where $1 \leq i \leq \nu$, $m \in \mathbb{Z}$ and $v, w \in V(\nu)$. Then, we have

Lemma 3.3. If $|q| = 1$, then the \hat{B}-module $V(\nu)$ is unitary with respect to θ_q.

Proof. For $1 \leq i, j \leq \nu, m, n \in \mathbb{Z}$ and $v, w \in V(\nu)$, one has

$$
< f_{ij}(m, n)v, w > = < \sum p \in \mathbb{Z} q^{-np} : \psi_i(m - p)\psi_j^*(p) : v, w >
$$
$$
= < v, \sum p \in \mathbb{Z} q^{np} : \psi_j(-p)\psi_i^*(p - m) : w > \quad \text{(since $\bar{q} = q^{-1}$)}
$$
$$
= < v, q^{mn} \sum s \in \mathbb{Z} q^{ns} : \psi_j(-m - s)\psi_i^*(s) : w > \quad \text{(let $s = p - m$)}
$$
$$
= < v, q^{mn} f_{ji}(-m, -n)w >.
$$

Since $\frac{q^n}{q^{n-1}} = \overline{\frac{q^n}{q^{n-1}}}$ for $n \notin \Lambda(q)$, we obtain that

$$
< E_{ij} \otimes x^m y^n .v, w > = < v, \theta_q(E_{ij} \otimes x^m y^n) .w >.
$$

For the other cases, we have

$$
< d_x .v, w > = < v, \sum_{i=1}^{\nu} \sum p : \psi_i(p)\psi_i^*(-p) : w > = < v, d_x .w >,
$$
$$
< c_x(0, n').v, w > = < v, w > = < v, c_x(0, -n') .w >,
$$
$$
< c_y(m', n').v, w > = 0 = < v, c_y(-m', -n') .w >,
$$

where $m', n' \in \Lambda(q)$, as required. \[\square\]

Since $\theta_q(\hat{L}) = \hat{L}$, the \hat{L}-module V_i is also unitary with respect to θ_q. This implies that the \hat{L}-module V_i is completely reducible if $|q| = 1$.

Now we turn to consider the case with $|q| \neq 1$. Let $gl_\infty = \sum_{i,j \in \mathbb{Z}} E_{ij}$ be the usual infinite matrix algebra. It is well-known that each $V_k, k \in \mathbb{Z}$ is a gl_∞-module with the action given by

$$
E_{mv+i,j-nv} \mapsto \psi_i(m)\psi_j^*(n), \quad 1 \leq i, j \leq \nu, m, n \in \mathbb{Z}.
$$

Moreover, V_k is an integrable highest weight gl_∞-module with highest weight vector v_k and the tensor gl_∞-module V_i is completely reducible.

Lemma 3.4. Let q be generic. Then \hat{B}-submodules and gl_∞-submodules in V_i coincide.
Let \(U \) and each weights of \(\nu, m, n \) \(\in \mathbb{Z} \), \(w \in W \), one has \(\psi_i(m)\psi_j^*(n)w \in W \) and hence : \(\psi_i(m)\psi_j^*(m) : w \in W \). This implies \(f_{ij}(m,n)w = \sum_{p \in \mathbb{Z}} q^{-sp} : \psi_i(m-p)\psi_j^*(p) : w \in W \). Similarly, one has \(F_{ij}(m,n)w \in W \) and \(Dw \in W \), which gives \(W \) is an \(\hat{B} \)-submodule.

Conversely, let \(W \) be an \(\hat{B} \)-submodule of \(V_i' \). For any fixed \(1 \leq i, j \leq \nu, m, n \in \mathbb{Z}, w \in W \), we need to show that : \(\psi_i(m)\psi_j^*(n) : w \in W \). Note that there exist \(N_1 \leq n \leq N_2 \in \mathbb{Z} \) such that : \(\psi_i(m+n-p)\psi_j^*(p) : w = 0 \) for all \(p < N_1 \) or \(P > N_2 \). Consider now the equations

\[
f_{ij}(m+n,s)w = \sum_{p \in \mathbb{Z}} q^{-sp} : \psi_i(m+n-p)\psi_j^*(p) : w
= \sum_{p=N_1}^{N_2} q^{-sp} : \psi_i(m+n-p)\psi_j^*(p) : w \in W, N_1 \leq s \leq N_2.
\]

Since \(q \) is generic, by solving the above equations one gets : \(\psi_i(m+n-p)\psi_j^*(p) : w \in W, N_1 \leq p \leq N_2 \). In particular, we have : \(\psi_i(m)\psi_j^*(n) : w \in W \), as required.

Observe that \(\hat{B} = \hat{\mathcal{L}} \oplus I_\nu \) if \(q \) is generic and \(I_\nu \) acts as a scalar on \(V_i' \). This implies that the \(\hat{\mathcal{L}} \)-submodules in \(V_i' \) are coincide with the \(\hat{B} \)-submodules and hence with the \(gl_\infty \)-submodules. Therefore, we obtain that the \(\hat{\mathcal{L}} \)-module \(V_i' \) is completely reducible if \(q \) is generic. In summary, we have

Theorem 3.5. For \(i_1, \ldots, i_l \in \mathbb{Z} \), the \(\hat{\mathcal{L}} \)-module \(V_i = \bigotimes_{s=1}^{l} V_{i_s} \) is completely reducible.

4. Realization of integrable highest weight \(\tilde{\mathcal{L}} \)-modules

Let \(U_1, \ldots, U_k \) be a collection of \(\hat{\mathcal{L}} \)-modules and \(a = (a_1, \ldots, a_k) \in (\mathbb{C}^*)^k \). Due to the work by Chari and Pressly [6], it allows us to define an \(\hat{\mathcal{L}} \)-module structure on the tensor space \(U = \bigotimes_{s=1}^{k} U_s \otimes \mathbb{C}[t, t^{-1}] \) as follows:

\[
A.u_1 \otimes \cdots \otimes u_k \otimes t^l = \sum_{s=1}^{k} a_s^n u_1 \otimes \cdots \otimes u_k \otimes t^{l+n},
\]

\[
d_y.u_1 \otimes \cdots \otimes u_k \otimes t^l = l u_1 \otimes \cdots \otimes u_k \otimes t^l,
\]

where \(u_s \in U_s, 1 \leq s \leq k, A \in \hat{\mathcal{L}}(n) \) and \(n, l \in \mathbb{Z} \).

Let \(W_{\bar{i}} \) be the \(\hat{\mathcal{L}} \)-submodule of \(V_{\bar{i}} = \bigotimes_{s=1}^{l} V_{i_s} \) generated by \(w_{\bar{i}} = \bigotimes_{s=1}^{l} v_{i_s} \).

Combine Theorem 3.5 with Lemma 3.2, we find that the \(\hat{\mathcal{L}} \)-module \(W_{\bar{i}} \) is irreducible, \(\hat{\mathcal{L}}_+ w_{\bar{i}} = 0 \) and \(W_{\bar{i}} = U(\hat{\mathcal{L}_-}) w_{\bar{i}} \). Recall the linear operators \(\omega_k \in \hat{\mathcal{L}}_0^* \) and \(\Lambda_k \in \hat{\mathcal{H}}^* \) defined in Sect. 3. Set \(\omega_{\bar{i}} = \sum_{s=1}^{l} \omega_{i_s} \) and \(\Lambda_{\bar{i}} = \sum_{s=1}^{l} \Lambda_{i_s} \). Then, one has

\[
h.w_{\bar{i}} = \omega_{\bar{i}}(h)w_{\bar{i}}, \ h \in \hat{\mathcal{L}_0},
\]

and each weights of \(W_{\bar{i}} \) has the form \(\Delta_{\bar{i}} - \eta \).
In the following, we shall always take \(U_s = W_{i_s}, 1 \leq s \leq k \) for some \(\vec{i}_s = (i_{1,s}, \cdots, i_{n_s,a}) \in \mathbb{Z}^{n_s} \). Now, for each pair

\[
\mathbf{i} = (\vec{i}_1, \cdots, \vec{i}_k), \quad \mathbf{a} = (a_1, \cdots, a_k),
\]

with the condition that

\[
q^n a_i \neq a_j, \text{ for all } 1 \leq i \neq j \leq k; n \in \mathbb{Z},
\]

we obtain an \(\widehat{L} \)-module structure on the tensor space

\[
W_{\mathbf{i}, \mathbf{a}} = W_{\vec{i}_1} \otimes \cdots \otimes W_{\vec{i}_k} \otimes \mathbb{C}[t, t^{-1}]
\]

with the action given by (5). Notice that, if \(q \) is an \(N \)-th primitive root of unity, then the condition (6) is equivalent to that \(a_i^N \neq a_j^N, \forall i \neq j \). The main purpose of this section is to prove that such \(\widehat{L} \)-modules \(W_{\mathbf{i}, \mathbf{a}} \) are completely reducible and their irreducible components exhaust all of the irreducible integrable highest weight \(\widehat{L} \)-modules classified in Theorem 2.5 by Rao [11].

We define a “character”

\[
\chi_{\mathbf{i}, \mathbf{a}} : U(\widehat{L}_0) \to \mathbb{C}[t, t^{-1}]
\]

of the universal enveloping algebra of \(\widehat{L}_0 \) by extending

\[
\chi_{\mathbf{i}, \mathbf{a}}(h) = \left(\sum_{s=1}^{k} \omega_{\vec{i}_s}(h) a_s^n \right) t^n,
\]

where \(h \in \widehat{L}_0(n) \). Since \(U(\widehat{L}_0) \) inherits a natural \(\mathbb{Z} \)-grading from \(\widehat{L}_0 \), then \(\chi_{\mathbf{i}, \mathbf{a}} \) is a graded algebra homomorphism and the image of \(\chi_{\mathbf{i}, \mathbf{a}} \) is always a Laurent subring \(L_r := \mathbb{C}[t^r, t^{-r}] \) of \(\mathbb{C}[t, t^{-1}] \) for some \(r \geq 1 \). For all \(i \in \mathbb{Z} \), let \(\Omega_i \) denote the element \(\otimes_{s=1}^{k} w_{\vec{i}_s} \otimes t^i \). For \(h \in U(\widehat{L}_0) \) with \(\chi_{\mathbf{i}, \mathbf{a}}(h) = t^m \) for some \(m \in \mathbb{Z} \), one can easily check that \(h.\Omega_i = \Omega_{i+m} \) for \(i \in \mathbb{Z} \).

Proposition 4.1. If the image of \(\chi_{\mathbf{i}, \mathbf{a}} \) is \(L_r \) for some \(r \geq 1 \), then the \(\widehat{L} \)-module \(W_{\mathbf{i}, \mathbf{a}} \) is generated by \(\Omega_0, \cdots, \Omega_{r-1} \).

Proof. We denote by \(M \) the submodule of \(W_{\mathbf{i}, \mathbf{a}} \) generated by \(\Omega_0, \cdots, \Omega_{r-1} \). Since the image of \(\chi_{\mathbf{i}, \mathbf{a}} \) is \(L_r \), one can get that \(\Omega_n \in U(\widehat{L}_0)\Omega_l \) for all \(n \equiv l \mod r \), where \(0 \leq l \leq r - 1 \). This forces that \(\Omega_n \in M \) for all \(n \in \mathbb{Z} \).

Let \(A = \sum_{t=1}^{\nu} \lambda_t E_t(t) \otimes x^t \) be an element in \(A_- \), where \(1 \leq i(t), j(t) \leq \nu, m_t \in \mathbb{Z}, \nu, \lambda_t \in \mathbb{C}^* \). Then, one has

\[
(A \otimes y^n).w_{\vec{i}_s} = \sum_{t=1}^{a} \sum_{p \in \mathbb{Z}} q^{n p} : \psi_{i(t)}(m_t + p) \psi_{j(t)}^* (-p) : w_{\vec{i}_s},
\]

for \(1 \leq s \leq k \) and \(n \in \mathbb{Z} \). Observe that there are only finite many \(p \), say, \(p_{i_s,t}, 1 \leq l \leq t_s \), such that \(: \psi_{i(t)}(m_t + p) \psi_{j(t)}^* (-p) : w_{\vec{i}_s} \neq 0 \) for some \(t \). For
1 \leq l \leq t_s$, we denote $v_{i,s,t} = \sum_{t=1}^{a} \lambda_k : \psi(t(m_t + p_{i,s,t}))(-p_{i,s,t}) : w_i$, then one has
\begin{equation}
(A \otimes y^n). w_{i,s,t} = \sum_{l=1}^{t_s} q^{np_{i,s,t}}v_{i,s,t},
\end{equation}
for all $1 \leq s \leq k$ and $n \in \mathbb{Z}$.

Let $q^{p_{i,s,t}}, \ldots, q^{p_{i,m_s}}$ be distinct numbers among $q^{p_{i,s,t}}, 1 \leq l \leq t_s$. For $1 \leq s \leq k$ and $1 \leq t \leq m_s$, let $I(s,t) = \{l|1 \leq l \leq t_s, q^{p_{i,s,t}} = q^{p_{i,t}}\}$ and
\begin{equation}
v_{s,t} = \sum_{l \in I(s,t)} v_{i,s,t}.
\end{equation}
Let $p \in \mathbb{Z}$, consider the equation
\begin{equation}
(A \otimes y^n). \Omega_{p-n} = \sum_{s=1}^{k} a_s^n(w_{i,s,t} \otimes \cdots \otimes (A \otimes y^n). w_{i,s,t} \otimes \cdots \otimes w_i) \otimes t^p
\end{equation}
for all $n \in \mathbb{Z}$. Since $a_s q^{p_{i,t}}$ are distinct for all $1 \leq s \leq k, 1 \leq t \leq m_s$, we can solve for $w_{i,s,t} \otimes \cdots \otimes w_{s,t} \otimes \cdots \otimes w_i \otimes t^p$ in term of $(A \otimes y^n). \Omega_{p-n}$. Then, one has
\begin{equation}
w_{i,s,t} \otimes \cdots \otimes w_{s,t} \otimes \cdots \otimes w_i \otimes t^p \in M,
\end{equation}
for all $1 \leq s \leq k, 1 \leq t \leq m_s$. In particular, we have
\begin{equation}
w_{i,s,t} \otimes \cdots \otimes (A \otimes y^n). w_{i,s,t} \otimes \cdots \otimes w_i \otimes t^p \in M,
\end{equation}
for all $n, p \in \mathbb{Z}, 1 \leq s \leq k$ and $A \in \mathcal{A}_-$.

For $I_{\nu} \otimes x^m y^n \in \tilde{\mathcal{C}}_-$, we know $m < 0$, and m or $n \notin \Lambda(q)$. Therefore, we need to divide the argument into two cases.

First, if $m \notin \Lambda(q)$, we have that $I_{\nu} \otimes x^m y^n \in \tilde{\mathcal{C}}_-$ for all $n \in \mathbb{Z}$. Then, a repeated proof of (9) shows that
\begin{equation}
w_{i,s,t} \otimes \cdots \otimes (I_{\nu} \otimes x^m y^n). w_{i,s,t} \otimes \cdots \otimes w_i \otimes t^p \in M,
\end{equation}
for all $n, p \in \mathbb{Z}, 1 \leq s \leq k$ and $m < 0, m \notin \Lambda(q)$.

Next, if $m \in \Lambda(q), n \notin \Lambda(q)$, then q must be a root of unity. Suppose that q is an N-th primitive root of unity, then $\Lambda(q) = NZ$. Similar to the proof of (7), we obtain
\begin{equation}(I_{\nu} \otimes x^m y^n). w_{i,s,t} = \sum_{t=1}^{m_s} q^{np_{i,s,t}}v_{s,t},
\end{equation}
for some $v_{s,t} \in W_i, p_{s,t} \in \mathbb{Z}, 1 \leq t \leq m_s$ and $n \notin \Lambda(q)$. This gives
\begin{equation}(I_{\nu} \otimes x^m y^{n+N}). w_{i,s,t} = \sum_{t=1}^{m_s} (q^{p_{i,s,t}})^j v_{s,t},
\end{equation}
for \(0 < j < N\) and \(n \in \mathbb{Z}\). Similar to (8), we have

\[
(I_\nu \otimes x^m y^{nN+j}).\Omega_{p-nN-j} = \sum_{s=1}^{k} \sum_{t=1}^{m_s} (a_s q^{p_a t})^{nN+j} w_{i_1} \otimes \cdots \otimes v_{s,t} \otimes \cdots \otimes w_{i_k} \otimes t^p
\]

\[
= \sum_{s=1}^{k} (a_s)^n \sum_{t=1}^{m_s} (a_s q^{p_a t})^{j} w_{i_1} \otimes \cdots \otimes v_{s,t} \otimes \cdots \otimes w_{i_k} \otimes t^p,
\]

for all \(n, p \in \mathbb{Z}\). Since \(a_1^N, \ldots, a_k^N\) are distinct, this and (11) imply that

\[
a_j^i w_{i_1} \otimes \cdots \otimes (I_\nu \otimes x^m y^{nN+j}).w_{i_s} \otimes \cdots \otimes w_{i_k} \otimes t^p = \sum_{t=1}^{m_s} (a_s q^{p_a t})^{j} w_{i_1} \otimes \cdots \otimes v_{s,t} \otimes \cdots \otimes w_{i_k} \otimes t^p \in M,
\]

(12)

for all \(p, n \in \mathbb{Z}, 0 < j < N, 1 \leq s \leq k\) and \(m \in \mathbb{N}Z, m < 0\).

Note that the elements \(A \otimes y^n, I_\nu \otimes x^m y^n, c_y(m_2, n_2)\) for \(A \in \mathcal{A}_-, n \in \mathbb{Z}, m_1 < 0\) with \(m_1 \notin \Lambda(q)\) or \(n_1 \notin \Lambda(q)\), \(m_2 < 0, n_2 \in \Lambda(q)\) span the subalgebra \(\tilde{\mathcal{L}}_-\). Combining (9), (10), (12) with the fact that \(c_y(m_2, n_2)\) acts on \(W_{i_s}\) as zero, we have

\[
w_{i_1} \otimes \cdots \otimes A.w_{i_s} \otimes \cdots \otimes w_{i_k} \otimes t^p \in M,
\]

for all \(A \in \tilde{\mathcal{L}}_-\) and \(p \in \mathbb{Z}\). This forces

\[
w_{i_1} \otimes \cdots \otimes W_{i_s} \otimes \cdots \otimes w_{i_k} \otimes \mathbb{C}[t, t^{-1}] \subset M,
\]

as \(W_{i_s} = U(\tilde{\mathcal{L}}_-)w_{i_s}\) for \(1 \leq s \leq k\). This completes the proof of the Proposition.

Proposition 4.2. For \(l \in \mathbb{Z}\), the \(\tilde{\mathcal{L}}\)-submodule \(W_{i,a}^l\) of \(W_{i,a}\) generated by \(\Omega_l\) is irreducible.

Proof. Any weight of \(W_{i,a}^l\) has the form \(\Lambda - \eta + m\delta_\nu\) for some \(\eta \in \mathbb{Q}_+, m \in \mathbb{Z}\), where \(\Lambda = \sum_{i=1}^{k} A_i\). It is sufficient to show that for every non-zero weight vector \(v \in W_{i,a}^l(\Lambda - \eta + m\delta_\nu)\) there exists \(A_v \in \tilde{\mathcal{L}}\) such that \(A_v \cdot v = \Omega_l\). For \(\eta = \sum_{i=1}^{k} k_i \alpha_i \in \mathbb{Q}_+\), we set \(ht\eta = \sum_{i=1}^{k} k_i\). We shall prove this assertion by using induction on \(ht\eta\).

First, we consider the case \(ht\eta = 0\). Assume that the image of \(\chi_{i,a}\) is \(L_r\) for some \(r \geq 1\). So we have \(U(\tilde{\mathcal{L}}_0)\Omega_l = \sum_{m \in \mathbb{Z}+l} \mathbb{C}\Omega_m\), and \(\Lambda + m\delta_\nu\) is a weight of \(W_{i,a}^l\) if and only if \(m \equiv l \pmod{r}\). But, for any \(n \in \mathbb{Z}\), there exists \(Q_n\) in \(U(\tilde{\mathcal{L}}_0)\) such that \(\chi_{i,a}(Q_n) = t^{-nr}\). This implies that \(Q_n\Omega_m = \Omega_l\) if \(m = nr + l\), as required.

Next let \(ht\eta > 0\). Assume for simplicity that \(k = 2\). Write

\[
v = \sum_{\lambda,\mu} c_{\lambda\mu} v_\lambda \otimes w_\mu \otimes t^m \in W_{i,a}^l(\Lambda - \eta + m\delta_\nu),
\]
where \(\{v_\lambda\} \) and \(\{w_\mu\} \) vary over a basis of weight vectors for \(W_{i_1} \) and \(W_{i_2} \) respectively, and \(c_{\lambda\mu} \in \mathbb{C} \). Using induction, it is enough to show that there exists some \(X \in \bar{L}_+ \) such that \(X.v \neq 0 \). So suppose now that

\[
X.v = 0, \ \forall X \in \bar{L}_+.
\]

Similar to (7), for \(A \in A_+ \) or \(A = I_\nu \otimes x^m, m > 0, m \not\in \Lambda(q) \), we have

\[
(A \otimes y^n).v_\lambda = \sum_{r=1}^{n_\lambda} q^{np_{\lambda,r}}v_{\lambda,r}, \quad (A \otimes y^n).w_\mu = \sum_{s=1}^{m_\mu} q^{nd_{\mu,s}}w_{\mu,s},
\]

for some \(v_{\lambda,r} \in W_{i_1}, w_{\mu,s} \in W_{i_2}, p_{\lambda,r}, d_{\mu,s} \in \mathbb{Z}, 1 \leq r \leq n_\lambda, 1 \leq s \leq m_\mu \) and \(n \in \mathbb{Z} \). This gives

\[
\sum_{\lambda,\mu} c_{\lambda\mu} \left(\sum_{r=1}^{n_\lambda} (a_1 q^{p_{\lambda,r}})^n v_{\lambda,r} \right) \otimes w_\mu + \sum_{\lambda,\mu} c_{\lambda\mu} v_\lambda \otimes \left(\sum_{s=1}^{m_\mu} (a_2 q^{d_{\mu,s}})^n w_{\mu,s} \right) = 0, \ \forall n \in \mathbb{Z}.
\]

Let \(q^{p_1}, \ldots, q^{p_{n'}} \) be distinct numbers among \(q^{p_{\lambda,r}}, \ \forall \lambda, 1 \leq r \leq n_\lambda \) and \(q^{d_1}, \ldots, q^{d_{m'}} \) be distinct numbers among \(q^{d_{\mu,s}}, \ \forall \mu, 1 \leq s \leq m_\mu \). Set \(I(r') = \{ (\lambda, r) | q^{p_{\lambda,r}} = q^{p_{r'}} \} \) for \(1 \leq r' \leq n' \) and \(J(s') = \{ (\mu, s) | q^{d_{\mu,s}} = q^{d_{s'}} \} \) for \(1 \leq s' \leq m' \). Introduce elements of the form

\[
v_{r'} = \sum_{\mu} c_{\lambda\mu} \left(\sum_{(\lambda,r) \in I(r')} v_{\lambda,r} \right) \otimes w_\mu, \ \ 1 \leq r' \leq n',
\]

\[
w_{s'} = \sum_{\lambda} c_{\lambda\mu} v_\lambda \otimes \left(\sum_{(\mu,s) \in J(s')} w_{\mu,s} \right), \ \ 1 \leq s' \leq m',
\]

so that we have

\[
\sum_{r'=1}^{n'} (a_1 q^{p_{r'}})^n v_{r'} + \sum_{s'=1}^{m'} (a_2 q^{d_{s'}})^n w_{s'} = 0, \ \forall n \in \mathbb{Z}.
\]

This forces

\[
v_{r'} = w_{s'} = 0, \ \ 1 \leq r' \leq n', 1 \leq s' \leq m',
\]

as \(a_1 q^{p_1}, \ldots, a_1 q^{p_{n'}}, a_2 q^{d_1}, \ldots, a_2 q^{d_{m'}} \) are distinct. Since \(\{v_\lambda\} \) and \(\{w_\mu\} \) are sets with linearly independent elements, we get that

\[
\sum_{(\lambda,r) \in I(r')} c_{\lambda\mu} v_{\lambda,r} = 0, \ \forall \mu, 1 \leq r' \leq n',
\]

\[
\sum_{(\mu,s) \in J(s')} c_{\lambda\mu} w_{\mu,s} = 0, \ \forall \lambda, 1 \leq s' \leq m'.
\]

In particular, one has

\[
(A \otimes y^n).\left(\sum_{\lambda} c_{\lambda\mu} v_\lambda \right) = 0 = (A \otimes y^n).\left(\sum_{\mu} c_{\lambda\mu} w_\mu \right), \ \forall n \in \mathbb{Z}.
\] (13)
For the case that \(q \) is an \(N \)-th primitive root of unity, the elements \(B_n^j := I_\nu \otimes x^m y^{nN+j}, m \in \Lambda(q), m > 0, 0 < j < N, n \in \mathbb{Z} \) are also in \(\tilde{L}_+ \). From (11), we write
\[
B_n^j \cdot v_\lambda = \sum_{r=1}^{n_\lambda} (a_1 q^{p_\lambda r})^j v_{\lambda r}, \quad B_n^j \cdot w_\mu = \sum_{s=1}^{m_\mu} (a_2 q^{d_\mu s})^j w_{\mu s},
\]
for some \(v_{\lambda r} \in W_{i_1} \) and \(w_{\mu s} \in W_{i_2} \). These imply
\[
(a_1^N)^n \left(\sum_{\lambda, \mu} c_{\lambda \mu} \left(\sum_{r=1}^{n_\lambda} (a_1 q^{p_\lambda r})^j v_{\lambda r} \right) \otimes w_\mu \right)
\]
\[
+ (a_2^N)^n \left(\sum_{\lambda, \mu} c_{\lambda \mu} v_\lambda \otimes \left(\sum_{s=1}^{m_\mu} (a_2 q^{d_\mu s})^j w_{\mu s} \right) \right) = 0, \quad \forall n \in \mathbb{Z}.
\]
Since \(a_1^N \neq a_2^N \) and \(\{ v_\lambda \}, \{ w_\mu \} \) are linearly independent basis elements, we obtain
\[
\sum_{\lambda} c_{\lambda \mu} \left(\sum_{r=1}^{n_\lambda} (a_1 q^{p_\lambda r})^j v_{\lambda r} \right) = 0, \quad \forall \mu,
\]
\[
\sum_{\mu} c_{\lambda \mu} \left(\sum_{s=1}^{m_\mu} (a_2 q^{d_\mu s})^j w_{\mu s} \right) = 0, \quad \forall \lambda.
\]
These imply that
\[
B_n^j \left(\sum_{\lambda} c_{\lambda \mu} v_\lambda \right) = 0 = B_n^j \left(\sum_{\mu} c_{\lambda \mu} w_\mu \right), \quad \forall n \in \mathbb{Z}, 0 < j < N. \quad (14)
\]
Finally, since the elements \(A \otimes y^n, I_\nu \otimes x^{m_1} y^{n_1}, c_q(m_2, n_2) \) for \(A \in A_+, n \in \mathbb{Z}, m_1 > 0, m_1 \notin \Lambda(q) \) or \(n_1 \notin \Lambda(q) \), \(m_2 > 0, m_2, n_2 \in \Lambda(q) \) span the subalgebra \(\tilde{L}_+ \). Thus, we have from (13) and (14) that
\[
X \left(\sum_{\lambda} c_{\lambda \mu} v_\lambda \right) = 0 = X \left(\sum_{\mu} c_{\lambda \mu} w_\mu \right)
\]
for all \(X \in \tilde{L}_+ \). Choose \(\lambda_0, \mu_0 \) such that \(c_{\lambda_0 \mu_0} \neq 0 \), and set
\[
\tilde{v}_{\mu_0} = \sum_{\lambda} c_{\lambda_0 \mu_0} v_\lambda, \quad \tilde{w}_{\lambda_0} = \sum_{\mu} c_{\lambda_0 \mu} w_\mu.
\]
As \(W_{i_1}, s = 1, 2 \) are irreducible, we obtain \(\tilde{v}_{\mu_0} \in \mathbb{C} W_{i_1} \) and \(\tilde{w}_{\lambda_0} \in \mathbb{C} W_{i_2} \). This implies that \(v \) has weight \(\Lambda + m \delta_y \), which is a contradiction. \(\blacksquare \)

Now we apply Proposition 4.1 and Proposition 4.2 to prove the following result

Theorem 4.3. The \(\tilde{L} \)-module \(W_{i,a} \) is completely reducible. Moreover, suppose that the image of \(\chi_{i,a} \) is \(L_r \) for some \(r \geq 1 \), then one has the decomposition
\[
W_{i,a} = \bigoplus_{l=0}^{r-1} W_{i,a}^l,
\]
where $W_{l,a}^{i}$ is the submodule of $W_{i,a}$ generated by the vector Ω_{i}, and each \tilde{L}-submodule $W_{l,a}^{i}$ is irreducible.

Proof. From Proposition 4.1, we have

$$ W = \sum_{l=0}^{r-1} W_{l,a}^{i}. $$

To see the summation given in (15) is direct, then one needs to check that $W_{i,a}^{l} \cap \sum_{j \neq l} W_{i,a}^{j} = \{0\}$ for $0 \leq l \leq r-1$. Otherwise, due to Proposition 4.2, one has $W_{i,a}^{l} \subseteq \sum_{j \neq l} W_{i,a}^{j}$. But, we know that $\Omega_{l} \notin \sum_{j \neq l} W_{i,a}^{j}$ as $U(\tilde{L})\Omega_{l} = \sum_{n \in \mathbb{Z}} \mathbb{C}\Omega_{nr+j}$ for $0 \leq j \neq l \leq r-1$. This is a contradiction. \[\Box\]

Now, we are going to show that each irreducible \tilde{L}-module $W_{i,a}^{l}$ is an integrable highest weight module and that, up to the actions of d_{x} and d_{y}, any irreducible integrable highest weight \tilde{L}-module classified in Theorem 2.5 must be isomorphic to $W_{i,a}^{0}$ for a suitable choice of pair (i,a).

Proposition 4.4. The \tilde{L}-module $W_{i,a}$ is integrable.

Proof. It is easy to see that for any $1 \leq i \neq j \leq \nu, m, n \in \mathbb{Z}$ and $v_{s} \in W_{i,a}^{1}, 1 \leq s \leq k$, there exists a positive integer r_{s}, such that $(E_{ij} \otimes x^{m}y^{n})^{r_{s}} v_{s} = 0$. Set $N = \sum_{s=1}^{k} r_{s}$, then

$$(E_{ij} \otimes x^{m}y^{n})^{N} v_{1} \otimes \cdots \otimes v_{k} \otimes t^{p} = 0,$$

for all $p \in \mathbb{Z}$. This completes the proof. \[\Box\]

Recall the linear function $\psi_{\lambda,b} \in \tilde{L}_{0}$ given by (3). Notice that the value of $\psi_{\lambda,b}$ on d_{x}, d_{y} can be chosen to any complex number. This suggests that we should exploit the extra degree of freedom available in defining the actions of d_{x} and d_{y} on $W_{i,a}$. Namely, for any $\mu_{x}, \mu_{y} \in \mathbb{C}$, we define a new \tilde{L}-module structure on the vector space $W_{i,a}$ via changing the actions of d_{x}, d_{y} as follows

$$
\begin{align*}
d_{x}w &= \sum_{s=1}^{k} w_{1} \otimes \cdots \otimes Dw_{s} \otimes \cdots \otimes w_{k} \otimes t^{p} + \mu_{x}w, \\
d_{y}w &= (l + \mu_{y})w,
\end{align*}
$$

where $w = \otimes_{s=1}^{k} w_{s} \otimes t^{l}, w_{s} \in W_{i,a}, 1 \leq s \leq k, l \in \mathbb{Z}$, and D was the operator defined in Sect.3. Denote the resulting \tilde{L}-module by $W_{i,a}(\mu_{x}, \mu_{y})$. Furthermore, one can define the “character” $\chi_{i,a}(\mu_{x}, \mu_{y})$ and the irreducible \tilde{L}-submodules $W_{i,a}^{l}(\mu_{x}, \mu_{y}), l \in \mathbb{Z}$ in an obvious way. Note that the image of $\chi_{i,a}(\mu_{x}, \mu_{y})$ is the same as that of $\chi_{i,a}$.

Fix a quadruple (i,a,μ_{x}, μ_{y}), where $i = (i_{1}, \cdots, i_{k}), a = (a_{1}, \cdots, a_{k})$ with $a_{i} \neq ajq^{n}, \forall i \neq j, n \in \mathbb{Z}$ and $\mu_{x}, \mu_{y} \in \mathbb{C}$. We have from Theorem 4.3 and Proposition 4.4 that the \tilde{L}-module $W_{i,a}^{0}(\mu_{x}, \mu_{y})$ is irreducible and integrable. This
together with Theorem 2.5 implies that $W_{l,a}^0(\mu_x, \mu_y)$ is an irreducible, integrable highest weight \widetilde{L}-module. Conversely, we will show in the following that any irreducible, integrable highest weight \widetilde{L}-module is isomorphic to $W_{l,a}^0(\mu_x, \mu_y)$ for a suitable choice of (i, a, μ_x, μ_y).

Fix a linear function $\psi_{\lambda, b}$, where $\lambda = (\lambda_1, \ldots, \lambda_l) \in (P_+)^l$, $b = (b_1, \ldots, b_l) \in (\mathbb{C}^*)^l$ and b_1, \ldots, b_l are distinct. Set $m_{s,j} = \lambda_i(h_i, a)$, $1 \leq j \leq \nu, 1 \leq t \leq l$. Let $\{a_1, \ldots, a_k\}$ be a maximal subset of $\{b_1, \ldots, b_l\}$ with the property that $q^{a_i}a_j \neq a_j, \forall i \neq j, n \in \mathbb{Z}$. Let $I(a_s) = \{t|1 \leq t \leq l, b_t = q^{-m_{s,j}}a_s, \text{ for some } t, s \in \mathbb{Z}\}, 1 \leq s \leq k$. Now, for each triple (s, t, j) with $1 \leq s \leq k, t \in I(a_s)$, and $1 \leq j \leq \nu$, we define

$$i_{s,t,j} = (i_{s,t}, j, \ldots, i_{s,t}, j) \in \mathbb{Z}^{m_{s,j}}.$$

Suppose that $I(a_s) = \{t_1, \ldots, t_{s,p_s}\}$ and let $n_{s,j} = m_{t_1,j} + \cdots + m_{t_{s,p_s},j}$. For $1 \leq s \leq k$ and $1 \leq j \leq \nu$, we further define

$$i_{s,j} = (i_{s,t_1}, j, \ldots, i_{s,t_{p_s}}, j) \in \mathbb{Z}^{m_{s,j}}.$$

For any $1 \leq s \leq k$ with $n_s = \sum_{j=1}^\nu n_{s,j}$, we introduce

$$\tilde{i}_s = (i_{s,1}, \ldots, i_{s,\nu}) \in \mathbb{Z}^n.$$

Therefore, we have obtained a pair (i, a), where

$$i = (\tilde{i}_1, \ldots, \tilde{i}_k), \ a = (a_1, \ldots, a_k)$$

with the condition that $a_i q^{\lambda_i} \neq a_j, \forall i \neq j, n \in \mathbb{Z}$. This allows us to construct an \widetilde{L}-module $W_{l,a} := W_{i_1} \otimes \cdots \otimes W_{i_k} \otimes \mathbb{C}[t, t^{-1}]$ with the action given by (5). Let $\mu_x = \psi_{\lambda, b}(d_x) - D_0$ and $\mu_y = \psi_{\lambda, b}(d_y)$, where D_0 is the scalar determined by $D\Omega_0 = D_0\Omega_0$. Then, we have constructed an irreducible integrable \widetilde{L}-module $W_{l,a}^0(\mu_x, \mu_y)$ arising from the linear function $\psi_{\lambda, b}$.

Now, in the \widetilde{L}-module $W_{l,a}^0(\mu_x, \mu_y)$, we have $\widetilde{L}_+\Omega_0 = 0$. And, for $1 \leq i \leq \nu, n \in \mathbb{Z}$, one has

$$h_{i,n,\Omega_0} = \left(\sum_{s=1}^k \sum_{t \in I(a_s)} \sum_{j=1}^\nu m_{t,j} \omega_{i_s,1} j (h_i a) a_s^\nu \right) \Omega_n$$

$$= \left(\sum_{s=1}^k \sum_{t \in I(a_s)} \sum_{j=1}^\nu m_{t,j} \delta_{i,j} (a_s q^{-m_{s,j}})^\nu \right) \Omega_n = \left(\sum_{s=1}^k \sum_{t \in I(a_s)} \lambda_t (h_i, a) b_t^\nu \right) \Omega_n$$

$$= \left(\sum_{t=1}^l \lambda_t (h_i, a) b_t^\nu \right) \Omega_n = \psi_{\lambda, b}(h_i, \Omega_0)$$

where the second identity follows from (4). Furthermore, we have $d_x \Omega_0 = \psi_{\lambda, b}(d_x) \Omega_0$ and $d_y \Omega_0 = \psi_{\lambda, b}(d_y) \Omega_0$. We see that the \widetilde{L}_0-submodule $W_{l,a}^0(\mu_x, \mu_y)$ generated by Ω_0 is isomorphic to $A_{\psi_{\lambda, b}}$. This gives that $W_{l,a}^0(\mu_x, \mu_y)$ is a highest weight \widetilde{L}-module and is isomorphic to $V(\tilde{\psi}_{\lambda, b})$. We observe that $W_{l,a}^0(\mu_x, \mu_y - l)$ is isomorphic to $V(\tilde{\psi}_{\lambda, b})$ as well, so we have

$$W_{l,a}^0(\mu_x, \mu_y) \cong W_{l,a}^0(\mu_x, \mu_y + l), \quad (16)$$
as $\tilde{\mathcal{L}}$-module for all $l \in \mathbb{Z}$.

We summarize the above discussion in the following theorem.

Theorem 4.5. Any irreducible integrable highest weight $\tilde{\mathcal{L}}$-module is isomorphic to $W_{i,a}(\mu_x, \mu_y)$ for some suitable (i, a, μ_x, μ_y).

5. Unitarity of integrable $\tilde{\mathcal{L}}$-modules

In this section we shall consider the unitarity of the $\tilde{\mathcal{L}}$-modules $W_{i,a}$ when $|q| = 1$. This in turn determines the unitarity of the irreducible integrable $\tilde{\mathcal{L}}$-modules classified by Rao. The result here is similar to that of affine case which was shown in [6].

Recall the conjugate-linear anti-involution θ_q of $\hat{\mathcal{L}}$ defined in Sect.3 when $|q| = 1$. Extend θ_q to a conjugate-linear anti-involution of $\tilde{\mathcal{L}}$, again denoted by θ_q, by letting

$$\theta_q(d_y) = d_y.$$

We have shown that the $\hat{\mathcal{L}}$-module $V(\nu)$ is unitary with respect to the Hermitian form $< , >$. Thus, $< , >$ can be extended to $W_{i,s}, 1 \leq s \leq k$ in an obvious way, so that

$$< A.v_s, w_s > = < v_s, \theta_q(A).w_s >,$$

where $A \in \hat{\mathcal{L}}, v_s, w_s \in W_{i,s}$.

Theorem 5.1. Assume that $|q| = 1$, then the $\tilde{\mathcal{L}}$-module $W_{i,a}$ is unitary with respect to θ_q if and only if $|a_1| = \cdots = |a_k|$.

Proof. Suppose that $|a_s| = c$ for all $1 \leq s \leq k$. We define a positive definite Hermitian form $(,)$ on $W_{i,a}$ by letting

$$(v_1 \otimes \cdots \otimes v_k \otimes t^m, w_1 \otimes \cdots \otimes w_k \otimes t^n) = c^{-2m} \delta_{m, n} < v_1, w_1 > \cdots < v_k, w_k >,$$

where $v_s, w_s \in W_{i,s}, 1 \leq s \leq k, m, n \in \mathbb{Z}$. Then, we have

$$(A.v_1 \otimes \cdots \otimes v_k \otimes t^m, w_1 \otimes \cdots \otimes w_k \otimes t^n)$$

$$= \sum_{s=1}^{k} \left(v_1 \otimes \cdots \otimes a_s^l A.v_s \otimes \cdots \otimes v_k \otimes t^{m+l}, w_1 \otimes \cdots \otimes w_k \otimes t^n \right)$$

$$= \sum_{s=1}^{k} \delta_{m+l,n} c^{-2m-2l} < v_1, w_1 > \cdots < a_s^l A.v_s, w_s > \cdots < v_k, w_k >$$

$$= \sum_{s=1}^{k} c^{-2m} \delta_{m,n-i} < v_1, w_1 > \cdots < v, a_s^{-l} \theta_q(A).w_s > \cdots < v_k, w_k >$$

$$= (v_1 \otimes \cdots \otimes v_k \otimes t^m, \theta_q(A).w_1 \otimes \cdots \otimes w_k \otimes t^n),$$

where $A \in \hat{\mathcal{L}}(l)$. The case for d_y is clearly and hence the $\tilde{\mathcal{L}}$-module $W_{i,a}$ is unitary.
Conversely, suppose that $W_{t,a}$ is unitary with respect to a positive definite Hermitian form $< , >$. Assuming that the image of $\chi_{i,a}$ is $L_r, r \geq 1$, then there exists $Q \in U(\mathcal{L}_0)$ such that $Q \Omega_l = \Omega_{l,r}, l \in \mathbb{Z}$. Note that θ_q can be (uniquely) extended to a conjugate-linear anti-involution of $U(\mathcal{L})$. One checks easily that

$$c^{2n} || \Omega_l ||^2 = || \Omega_{l+nr} ||^2$$

for some (non-zero) $c \in \mathbb{C}$ and $n \in \mathbb{Z}$, where $|| v ||^2 = < v, v >$ for $v \in W_{t,a}$.

Let

$$i_s = (i_{1,s}, \ldots, i_{n,s})$$

with $i_{j,s} = t_{j,s} \nu + r_{j,s}, t_{j,s} \in \mathbb{Z}, 1 \leq r_{j,s} \leq \nu$,

$$v_s = w_{i_1} \otimes \cdots \otimes A_{i_s} w_{i_\nu} \otimes \cdots \otimes w_{i_k}, 1 \leq s \leq k,$

where $A_{i_s} = E_{r_{1,s}+1,i_s} \otimes 1$ for $1 \leq r_{i_s} \leq \nu - 1$ and $A_{1,s} = E_{1,i_s} \otimes x^{-1}$ for $r_{1,s} = \nu$.

It is easy to see that $v_s \neq 0$ and that

$$[\theta_q(A_{1,s} \otimes y^{-m}), A_{1,s} \otimes y^{-n}] = h_{r_{1,s},m-n} + \delta_{m-n,\Lambda_q} c_q(0, m - n)$$

for all $1 \leq s \leq k, m, n \in \mathbb{Z}$.

For a fixed $\gamma = 1, \cdots, k$, we may write

$$(A_{1,\gamma} \otimes y^{t_i}).w_{t_i} = q^{p_{s,t_i}w_{s,1} + \cdots + q^{p_{s,m_t}}w_{s,m_s}, n \in \mathbb{Z}, 1 \leq s \leq k},$$

for some $p_{s,t_i} \in \mathbb{Z}, w_{s,1} \in W_{t,s}, 1 \leq t \leq m_s$ and $q^{p_{s,1}}, \cdots, q^{p_{s,m_s}}$ are distinct. For any fixed $n \in \mathbb{Z}$, we consider the equation

$$(A_{1,\gamma} \otimes y^{-i}).\Omega_{i+nr} = \sum_{s=1}^{k} a_s^{-i}w_{i_1} \otimes \cdots \otimes A_{1,\gamma} \otimes y^{-i}.w_{i_s} \otimes \cdots \otimes w_{i_k} \otimes t^{nr}$$

$$= \sum_{s=1}^{k} \sum_{t=1}^{m_s} (a_s q^{p_{s,t}})^{-i}w_{i_1} \otimes \cdots \otimes w_{s,t} \otimes \cdots \otimes w_{i_k} \otimes t^{nr},$$

for all $i \in \mathbb{Z}$. Since $a_s q^{p_{s,t}}$ are distinct for all $1 \leq s \leq k, 1 \leq t \leq m_s$. Solving the system of equations to give,

$$u_{\gamma,j} \otimes t^{nr} = \sum_{i=1}^{m} b_{ji}(A_{1,\gamma} \otimes y^{-i}).\Omega_{i+nr},$$

where $u_{\gamma,j} = w_{i_1} \otimes \cdots \otimes w_{\gamma,j} \otimes \cdots \otimes w_{i_k}, 1 \leq j \leq m_\gamma, \bar{m} = m_1 + \cdots + m_k$, and b_{ji} are some scalars which are independent of the choice of n. Then, we have for $1 \leq j, j' \leq m_\gamma$

$$< u_{\gamma,j} \otimes t^{nr}, u_{\gamma,j'} \otimes t^{nr} >$$

$$= \sum_{i,i'=1}^{\bar{m}} b_{ji}b_{ji'} < (A_{1,\gamma} \otimes y^{-i}).\Omega_{i+nr}, (A_{1,\gamma} \otimes y^{-i'}).\Omega_{i'+nr} >$$

$$= \sum_{i,i'=1}^{\bar{m}} b_{ji}b_{ji'} < h_{r_{1,\gamma},i'-1}, \Omega_{i+nr}, \Omega_{i'+nr} >$$

$$= \sum_{i,i'=1}^{\bar{m}} b_{ji}b_{ji'} (\sum_{s=1}^{k} \omega_{i,s}(h_{r_{1,\gamma'},i'-1})a_{s}^{r_{i'-1}})c^{2n} || \Omega_{i'} ||^2,$$
where we have used (18) in the second identity, and (17) in the third identity.

Taking $n = 0$ in the previous equations, we have

$$< u_{\gamma,j}, u_{\gamma,j'} > = \sum_{i,j'=1}^{\hat{m}} b_{ij} b_{ij'} (\sum_{s=1}^{k} \omega_{i,s} (h_{r_{1,\gamma,j'-1}})) a_{s}^{j'-i} \| \Omega_{j'} \|^2,$$

which implies that

$$< u_{\gamma,j} \otimes t^{nr}, u_{\gamma,j'} \otimes t^{nr} > = c^{2n} < u_{\gamma,j}, u_{\gamma,j'} >, \quad (19)$$

for all $1 \leq j, j' \leq m_{\gamma}, n \in \mathbb{Z}$.

It is clear that $\theta_q (h_{i,n}) = h_{i,-n}$. Thus, for $n \in \mathbb{Z}$, we have

$$< h_{r_{1,\gamma,nr}, \Omega_0, \Omega_{nr} >} = \langle \Omega_0, h_{r_{1,\gamma,nr}, \Omega_{nr} >}, \quad (20)$$

$$< h_{r_{1,\gamma,nr}, v_{\gamma}, v_{\gamma} \otimes t^{nr} >} = \langle v_{\gamma}, h_{r_{1,\gamma,nr}, v_{\gamma} \otimes t^{nr} >}. \quad (21)$$

For simplicity of notation, we set

$$B_{\gamma,nr} := \sum_{s=1}^{k} \sum_{l=1}^{n_s} \omega_{s,l} (h_{r_{1,\gamma,nr}}) a_{s}^{nr},$$

$$P_{\gamma,nr} := w_{1} \otimes \cdots \otimes A_{1,\gamma} \otimes y_{\gamma} \otimes \cdots \otimes w_{k} = q^{k_{y_{1},nr}} u_{\gamma,1} + \cdots + q^{k_{y_{m_{\gamma}},nr}} u_{\gamma,m_{\gamma}}, \forall n \in \mathbb{Z}.$$

Then, we have

$$h_{r_{1,\gamma,nr}, \Omega_m} = B_{\gamma,nr} \Omega_{m+nr}, \quad m, n \in \mathbb{Z}.$$

Now, from this and (17), (20), we find

$$B_{\gamma,nr} c^{2n} = \overline{B_{\gamma,-nr}}, \quad n \in \mathbb{Z}. \quad (22)$$

By a direct computation, one has

$$[h_{r_{1,s},nr, A_{1,s}}, A_{1,s}] = -2A_{1,s} \otimes y_{nr}, \quad s = 1, \cdots, k, n \in \mathbb{Z}.$$

This gives

$$h_{r_{1,\gamma,nr}, v_{\gamma}} = \sum_{s \neq \gamma} a_{s}^{nr} w_{1} \otimes \cdots \otimes h_{r_{1,\gamma,nr}, w_{s} \otimes \cdots \otimes w_{k} \otimes t^{nr}$$

$$+ a_{\gamma}^{nr} w_{1} \otimes \cdots \otimes h_{r_{1,\gamma,nr}, A_{1,\gamma} w_{1} \otimes \cdots \otimes w_{k} \otimes t^{nr}}$$

$$= B_{\gamma,nr} v_{\gamma} - 2a_{\gamma}^{nr} w_{1} \otimes \cdots \otimes A_{1,\gamma} \otimes y_{\gamma} \otimes \cdots \otimes w_{k} \otimes t^{nr}$$

$$= B_{\gamma,nr} v_{\gamma} - 2a_{\gamma}^{nr} P_{\gamma,nr} \otimes t^{nr}.$$

Therefore, (21) can be rewritten as

$$B_{\gamma,nr} c^{2n} - < 2P_{\gamma,nr} \otimes a_{\gamma}^{nr} t^{nr}, P_{\gamma,0} \otimes t^{nr} >$$

$$= \overline{B_{\gamma,-nr}} - < P_{\gamma,0}, 2P_{\gamma,-nr} a_{\gamma}^{nr} >. \quad (23)$$
Comparing (22) with (23), one has
\[a_{\gamma}^{nr} < P_{\gamma, nr} \otimes t^{nr}, P_{\gamma, 0} \otimes t^{nr} > = \overline{a_{\gamma}^{-nr}} < P_{\gamma, 0}, P_{\gamma, -nr} > . \]

(24)

We claim that \(< P_{\gamma, nr}, P_{\gamma, 0} > \neq 0 \) for some \(n \neq 0 \). Otherwise, suppose that \(< P_{\gamma, nr}, P_{\gamma, 0} > = 0 \), for all \(n \neq 0 \).

Let \(q^{p_1, \cdots, q^{p_{m'}}} \) are distinct numbers among \(q^{p_1, t}, 1 \leq t \leq m_{\gamma} \). Set \(I(p_i) = \{ t \mid 1 \leq t \leq m_{\gamma}, q^{p_1} = q^{p_i} \} \), \(1 \leq i \leq m' \) and \(u_i = \sum_{t \in I(p_i)} u_{\gamma, t} \). So we have the following equation
\[\sum_{i=1}^{m'} (q^{p_i})^n < u_i, P_{\gamma, 0} > = 0, \text{ for all } n \neq 0, \]

which implies
\[< u_i, P_{\gamma, 0} > = 0, \forall i. \]

In particular, we obtain
\[< P_{\gamma, 0}, P_{\gamma, 0} > = 0. \]

This gives a contradiction as \(P_{\gamma, 0} = \nu_{\gamma} \neq 0 \).

Note that, by applying (19) and the fact that \(|q| = 1 \), one has
\[< P_{\gamma, nr} \otimes t^{nr}, P_{\gamma, 0} \otimes t^{nr} > = c^{2n} < P_{\nu, 0}, P_{\gamma, -nr} > . \]

Choose some \(n \neq 0 \) so that \(< P_{\nu, 0}, P_{\gamma, -nr} > \neq 0 \). Therefore we obtain from this and (24) that
\[|a_{\gamma}|^{2nr} = |c|^{2n} \text{ and } |a_{\gamma}| = |c_\gamma|, \]

for \(1 \leq s \leq k \), as required.

Proposition 5.2. The irreducible \(\widetilde{L} \)-module \(W_{t,a}^0(\mu_x, \mu_y) \) is unitary with respect to \(\theta_q \) if and only if \(|a_1| = \cdots = |a_k| \) and \(\mu_x, \mu_y \) are real numbers.

Proof. If the image of \(\chi_{t,a} \) is \(L_r \), by (16), we see that all \(W_{t,a}^l, 0 \leq l \leq r-1 \) are isomorphic as \(\widehat{L} \)-modules. Thus, one can complete the proof of this proposition by a similar argument as that given in [6] (Theorem (4.8)).

It was shown in Proposition 2.9 [9] that the automorphism \(M \) (see [11] Sect.5) commutes with \(\theta_q \). Therefore, we have the following result

Theorem 5.3. (1) When \(|q| = 1 \), the irreducible integrable highest weight \(\widetilde{L} \)-module \(V(\psi_{\lambda,b}) \) is unitary with respect to \(\theta_q \) if and only if \(|b_1| = \cdots = |b_l| \) and \(\psi_{\lambda,b}(d_x), \psi_{\lambda,b}(d_y) \) are real.

(2) Let \(V \) be an irreducible integrable \(\widetilde{L} \)-module with \(c_x \) or \(c_y \) acts non-trivially, then \(V \) is unitary with respect to \(\theta_q \) if and only if \(V \) is a highest weight module, and isomorphic to some \(\widetilde{L} \)-module \(V(\psi_{\lambda,b}) \) obtained in (1) or a lowest weight module up to an automorphism \(M \).
Acknowledgment. The authors would like to thank the anonymous referee for providing Lemma 3.4 which significantly simplifies the proof of Theorem 3.5.

References

