Corrigendum to “On the Dimension of the Sheets of a Reductive Lie Algebra”

Anne Moreau

Communicated by F. Knop

Abstract. This note is a corrigendum to [5]. As it has been recently pointed out to me by Alexander Premet, [5, Remark 3.12] is incorrect. We explain in this note the impacts of that error in [5], and amend certain of its statements. In particular, we verify that the statement of [5, Theorem 3.13] remains correct in spite of this error.

Mathematics Subject Classification 2010: 14A10, 14L17, 22E20, 22E46.
Key Words and Phrases: Sheet, induced nilpotent orbit, rigid nilpotent orbit.

1. Introduction

Let \mathfrak{g} be a complex simple Lie algebra and G its adjoint group. We investigate in [5] the dimension of the subsets, for $m \in \mathbb{N}$,

$$\mathfrak{g}^{(m)} := \{ x \in \mathfrak{g} \mid \dim(\text{Ad}(x)) = 2m \},$$

where $\text{Ad}(x)$ denotes the adjoint orbit of $x \in \mathfrak{g}$. The irreducible components of the subsets $\mathfrak{g}^{(m)}$ are called the sheets of \mathfrak{g}, [2][1]. Thus, for any $m \in \mathbb{N}$,

$$\dim \mathfrak{g}^{(m)} = \max \{ \dim S \mid S \subset \mathfrak{g}^{(m)} \},$$

(1)

where S runs through all sheets contained in $\mathfrak{g}^{(m)}$. The sheets are known to be parameterized by the pairs $(\mathfrak{l}, \mathcal{O}_l)$, up to G-conjugacy class, consisting of a Levi subalgebra \mathfrak{l} of \mathfrak{g} and a rigid nilpotent orbit \mathcal{O}_l in \mathfrak{l}, cf. [1]. This parametrization enables to write the dimension of a sheet S associated with a pair $(\mathfrak{l}, \mathcal{O}_l)$ as the sum of the dimension of the center of \mathfrak{l} and the dimension of the unique nilpotent orbit contained in S, see e.g. [5, Proposition 2.11].

In the classical case, formulas for $\mathfrak{g}^{(m)}$ are given in [5] Theorems 3.3 and 3.13 in term of partitions associated with nilpotent elements of \mathfrak{g}. As it has been recently pointed out by Alexander Premet, Remark 3.12 in [5] which claims that "in the classical case, the dimension of a sheet containing a given nilpotent
orbit does not depend on the choice of a sheet containing it” is incorrect. We give here some counter-examples (cf. Examples 3.1 and 3.2; see also [6, Remark 4]). This is true only for the type A where each nilpotent element belongs to only one sheet. The error stems from the proof of [5, Proposition 3.11]; see Section 3 for explanations. As a consequence, the proof of [5, Theorems 3.13], partly based on [5, Proposition 3.11], is incorrect too. However its statement remains true. This can be shown through a recent work of Premet and Topley, [6]. In more details, another formula for $g^{(m)}$ in term of partitions can be traced out from [6, Corollary 9] and the equality [1]. In this note, we verify (cf. Theorems 2.10) that the Premet-Topley formula for $g^{(m)}$ coincides with the one of [5, Theorem 3.13].

The note is organized as follows.

In Section 2, we recall some definitions and results of [6] and show that the statement of [5, Theorem 3.13] is correct in spite of the error in [5, Proposition 3.11], see Theorem 2.10(ii). In Section 3, we precisely pin down the error in the proof [5, Proposition 3.11] and describe the impacts of that error in [5]. As a conclusion, we list in Section 4 all corrections which have to be taken into account in [5].

Since the corrections in [5] only concern the types B, C and D, we assume for the remaining of the note that g is either $so(N)$ or $sp(N)$, with $N \geq 2$, and ε is 1 or -1 depending on whether $g = so(N)$ or $sp(N)$. Following the notations of [5] (or [6]), we denote by $P_\varepsilon(N)$ the set of partitions of N associated with the nilpotent elements of g. For $\lambda = (\lambda_1, \ldots, \lambda_n) \in P_\varepsilon(N)$, we denote by $e(\lambda)$ the corresponding nilpotent element of g whose Jordan block sizes are $\lambda_1, \ldots, \lambda_n$. We will always assume that $\lambda_1 \geq \cdots \geq \lambda_n$.

Acknowledgments. I would like to thank A. Premet for having pointed out to me the error in my paper, and Lewis Topley for useful discussions and explanations. I also take the opportunity to thank Oscar Chacaltana for his interest in the subject and interesting e-mail exchanges.

2. The main result

For the convenience of the reader, we recall here all the necessary definitions and results of [6]. Given a partition $\lambda = (\lambda_1, \ldots, \lambda_n) \in P_\varepsilon(N)$ we set,

$$\Delta(\lambda) := \{1 \leq i < n ; \varepsilon(-1)^{\lambda_i} = \varepsilon(-1)^{\lambda_{i+1}} = -1, \lambda_{i-1} \neq \lambda_i \geq \lambda_{i+1} \neq \lambda_{i+2}\}.$$

Our convention is that $\lambda_0 = 0$ and $\lambda_i = 0$ for all $i > n$. Recall the following result of Kempken and Spaltenstein (also recalled in [5] and [6]):

Theorem 2.1 ([5, 7]). Let $\lambda = (\lambda_1, \ldots, \lambda_n) \in P_\varepsilon(N)$. Then $e(\lambda)$ is rigid if and only if

- $\lambda_i - \lambda_{i+1} \in \{0, 1\}$ for all $1 \leq i \leq n$;
- the set $\{i \in \Delta(\lambda) ; \lambda_i = \lambda_{i+1}\}$ is empty.
Denote by \(\mathcal{P}_\varepsilon^*(N) \) the set of \(\lambda \in \mathcal{P}_\varepsilon(N) \) such that \(c(\lambda) \) is rigid. We call the elements of \(\mathcal{P}_\varepsilon^*(N) \) the \textit{rigid partitions}. We first introduce the notion of \textit{admissible sequences}, see [6] §3.1. This is an extended version of the algorithm described in [5] which takes \(\lambda \in \mathcal{P}_\varepsilon(N) \) and returns an element of \(\mathcal{P}_\varepsilon^*(N) \) compatible for the induction process of nilpotent orbits.

Let \(\mathbf{i} \) be a finite sequence of integers between 1 and \(n \). The procedure of [5] is as follows: the algorithm commences with input \(\lambda = \lambda^1 \in \mathcal{P}_\varepsilon(N) \) where \(\mathbf{i} = \emptyset \) is the empty sequence. At the \(l^\text{th} \) iteration, the algorithm takes \(\lambda^l = \mathcal{P}_\varepsilon(N - 2 \sum_{j=1}^{l-1} i_j) \) where \(\mathbf{i} = (i_1, \ldots, i_{l-1}) \) and returns \(\lambda^{l'} \in \mathcal{P}_\varepsilon(N - 2 \sum_{j=1}^{l} i_j) \) where \(i' = (i_1, \ldots, i_{l-1}, i_l) \) for some \(i_l \). If the output \(\lambda^{l'} \) is a rigid partition then the algorithm terminates after the \(l^\text{th} \) iteration with output \(\lambda^{l'} \). We shall now explicitly describe the \(l^\text{th} \) iteration of the algorithm. If after the \((l-1)^\text{th}\) iteration the input \(\lambda^l \) is not rigid then the algorithm behaves as follows. Let \(i_l \) denote any index in the range \(1 \leq i \leq n \) such that either of the following case occur:

\begin{align*}
\text{Case 1} & \quad \lambda^l_i \geq \lambda^{l+1}_i + 1; \\
\text{Case 2} & \quad i_l \in \Delta(\lambda^l) \text{ and } \lambda^l_i = \lambda^{l+1}_i.
\end{align*}

Note that no integer \(i_l \) will fulfill both criteria. If \(\mathbf{i} = (i_1, \ldots, i_{l-1}) \) then define \(i' = (i_1, \ldots, i_{l-1}, i_l) \). For Case 1 the algorithm has output

\[\lambda^{l'} = (\lambda^l_1 - 2, \lambda^l_2 - 2, \ldots, \lambda^l_{i_l} - 2, \lambda^{l+1}_{i_l+1}, \ldots, \lambda^l_n) \]

whilst for Case 2 the algorithm has output

\[\lambda^{l'} = (\lambda^l_1 - 2, \lambda^l_2 - 2, \ldots, \lambda^l_{i_l-1} - 2, \lambda^l_{i_l} - 1, \lambda^{l+1}_{i_l+1} - 1, \lambda^l_{i_l+2}, \ldots, \lambda^l_n). \]

Due to its definition and the classification of rigid partitions the above algorithm certainly terminates after a finite number of steps.

\textbf{Definition 2.2 (}[6] §3.1]). We say that a sequence \(\mathbf{i} = (i_1, \ldots, i_l) \) is an \textit{admissible sequence} for \(\lambda \) if Case 1 or Case 2 occurs at the point \(i_k \) for the partition \(\lambda^{(i_1,\ldots,i_{k-1})} \) for each \(k = 1, \ldots, l \). An admissible sequence \(\mathbf{i} \) for \(\lambda \) be called a \textit{maximal admissible sequence} for \(\lambda \) if neither Case 1 nor Case 2 occurs for any index \(i \) between 1 and \(n \) for the partition \(\lambda^l \). By convention the empty sequence is admissible for any \(\lambda \in \mathcal{P}_\varepsilon(N) \).

As observed in [6] Lemma 6], if \(\mathbf{i} \) is an admissible sequence for \(\lambda \), then \(\mathbf{i} \) is maximal admissible if and only if \(\lambda^l \) is a rigid partition. We will denote by \(|\mathbf{i}| := l \) the length of an admissible sequence for \(\lambda \).

\textbf{Definition 2.3.} The algorithm as described in [5] corresponds to the special case where in the above algorithm, we define at each step \(i_l \) to be the smallest integer which fulfills one the Case 1 or Case 2 criteria, and \(\lambda^l \) is rigid. In the sequel, we will refer to the so obtained maximal admissible sequence for \(\lambda \) as the \textit{canonical maximal admissible sequence} for \(\lambda \) and we denote it by \(\mathbf{i}^0 \). Then we set

\[z_M(\lambda) := |\mathbf{i}^0|. \]
Remark. The integer $z_M(\lambda)$ corresponds to the integer $z(\lambda)$ of [5].

Definition 2.4 ([6] Definition 1). If $i \in \Delta(\lambda)$ then the pair $(i, i+1)$ is called a 2-step of λ. If $i > 1$ and $(i, i+1)$ is a 2-step of λ then λ_{i-1} and λ_{i+2} are referred to as the boundary of $(i, i+1)$. If $1 \in \Delta(\lambda)$ then λ_3 is referred to as the boundary of $(1, 2)$ (if $n = 2$ then $\lambda_3 = 0$ by convention).

We observe that $\Delta(\lambda)$ is the set of 2-steps of λ, and by $|\Delta(\lambda)|$ its cardinality.

Definition 2.5 ([6, §3.2]). If $i \in \Delta(\lambda)$ then we say that the 2-step $(i, i+1)$ has a good boundary if λ_1 and the boundary of $(i, i+1)$ have the opposite parity. If the boundary of a 2-step $(i, i+1)$ of λ is not good then we say that it is bad and we refer to $(i, i+1)$ as a bad 2-step. Note that $(i, i+1)$ is a bad 2-step of λ if and only if either $i > 1$ and $\lambda_{i-1} - \lambda_i \in 2\mathbb{N}$, or $\lambda_{i+1} - \lambda_{i+2} \in 2\mathbb{N}$.

We denote by $\Delta_{\text{bad}}(\lambda)$ the set of bad 2-steps of λ, and by $|\Delta_{\text{bad}}(\lambda)|$ its cardinality.

Definition 2.6 ([6, Definition 2]). A sequence $1 \leq i_1 < \cdots < i_k < n$ with $k \geq 2$ is called a 2-cluster of λ whenever $i_j \in \Delta(\lambda)$ and $i_{j+1} = i_j + 2$ for all j. We say that a 2-cluster i_1, \ldots, i_k has a bad boundary if either of the following conditions holds:

- $\lambda_{i_{j-1}} - \lambda_{i_j} \in 2\mathbb{N}$;
- $\lambda_{i_{j+1}} - \lambda_{i_{j+2}} \in 2\mathbb{N}$.

(if $i_1 = 1$ then the first condition should be omitted). A bad 2-cluster is one which has a bad boundary, whilst a good 2-cluster is one without a bad boundary.

We denote by $\Sigma(\lambda)$ the set of good 2-clusters of λ, and by $|\Sigma(\lambda)|$ its cardinality.

Lemma 2.7 ([6, Lemma 11]). A good 2-cluster is maximal in the sense that it is not a proper subsequence of any 2-cluster.

Definition 2.8 (Premet-Topley). For any $\lambda \in P_\varepsilon(\lambda)$, the integer $z_{\text{PT}}(\lambda)$ is defined by the formula:

$$z_{\text{PT}}(\lambda) := s(\lambda) + |\Delta(\lambda)| - |\Delta_{\text{bad}}(\lambda)| + |\Sigma(\lambda)|$$

where

$$s(\lambda) := \sum_{i=1}^{n} \left[(\lambda_i - \lambda_{i+1})/2 \right].$$

Remark. The integer $z_{\text{PT}}(\lambda)$ corresponds to the integer $z(\lambda)$ of [6]. By [6, Theorem 8], we have that

$$z_{\text{PT}}(\lambda) := \max |i|$$

(2)
where the maximum is taken over all admissible sequences for λ. Hence, by [6, Corollary 9] and the equality (1) of the introduction, we get:

Theorem 2.9 (Premet-Topley). For any $m \in \mathbb{N}$, we have

$$\dim g^{(m)} = 2m + \max \{ z_{PT}(\lambda) \mid \lambda \in \mathcal{P}_\varepsilon(N) \text{ s.t. } \dim Ge(\lambda) = 2m \}.$$

The main result of this note is:

Theorem 2.10. (i) For any $\lambda \in \mathcal{P}_\varepsilon(N)$, we have $z_M(\lambda) = z_{PT}(\lambda)$.

(ii) For any $m \in \mathbb{N}$, we have

$$\dim g^{(m)} = 2m + \max \{ z_M(\lambda) \mid \lambda \in \mathcal{P}_\varepsilon(N) \text{ s.t. } \dim Ge(\lambda) = 2m \}.$$

In other words, the statement of [5, Theorem 3.13] is correct.

Proof. (ii) is a direct consequence of (i) and Theorem 2.9.

(i) We argue by induction on N (the statement is true for small N). Let $N > 2$ and assume the statement true for any $\lambda \in \mathcal{P}_\varepsilon(N')$, with $1 \leq N' \leq N$, and let $\lambda \in \mathcal{P}_\varepsilon(N)$.

If $\lambda \in \mathcal{P}^*_\varepsilon(N)$, then $z_{PT}(\lambda) = z_M(\lambda) = 0$ (see Theorem 2.1, Definition 2.2 and equality (2)). So, we can assume that λ is not a rigid partition. In particular, $z_{PT}(\lambda) > 0$ and $z_M(\lambda) > 0$. To ease notation, we simply denote here by $i := i^0$ the canonical maximal sequence for λ. Then recall that by Definition 2.3, $z_M(\lambda) = |i|$. Set $\lambda' := \lambda{(i)}$. Clearly, $z_M(\lambda') = z_M(\lambda) - 1$. By the induction hypothesis, we have $z_{PT}(\lambda') = z_M(\lambda')$. Hence, we have to show that:

$$z_{PT}(\lambda') = z_{PT}(\lambda) - 1.$$

Our strategy is to compare the formulas for $z_{PT}(\lambda')$ and $z_{PT}(\lambda)$ given by Definition 2.8. Recall that i_1 is the smallest integer which fulfills one of the Case 1 or Case 2 criteria for λ. First of all, we observe that if $i \in \Delta(\lambda)$ (resp. $i \in \Delta(\lambda')$), then $i \geq i_1$. Indeed, if $i \in \Delta(\lambda)$ and $i < i_1$ (if $i_1 = 1$, it is clear), then either $\lambda_i = \lambda_{i+1}$ and then i fulfills the Case 2 which contradicts the minimality of i_1, or $\lambda_i - \lambda_{i+1} \in 2\mathbb{N} \smallsetminus \{0\}$ and then i fulfills the Case 1 which contradicts the minimality of i_1 too.

We now consider the two situations Case 1 and Case 2 separately.

Case 1: $\lambda_{i_1} \geq \lambda_{i_1 + 1} + 2$.

We have,$$
\lambda' = (\lambda_1 - 2, \ldots, \lambda_{i_1 - 1} - 2, \lambda_{i_1} - 2, \lambda_{i_1 + 1}, \ldots, \lambda_n),$

and

$$s(\lambda') = \sum_{i=1}^{i_1-1} \left[(\lambda_i - \lambda_{i+1})/2 \right] + \left[(\lambda_{i_1} - 2 - \lambda_{i_1+1})/2 \right] + \sum_{i=i_1+1}^{n} \left[(\lambda_i - \lambda_{i+1})/2 \right] = s(\lambda) - 1.$$
Compare now the other terms appearing in Definition 2.8. Note that \(i_1 \in \Delta(\lambda) \) (resp. \(i_1 \in \Delta_{\text{bad}}(\lambda) \)) if and only if \(i_1 \in \Delta(\lambda') \) (resp. \(i_1 \in \Delta_{\text{bad}}(\lambda') \)) since the passing from \(\lambda \) to \(\lambda' \) preserves the parities. For the same reason, \(i_1 \) belongs to a good 2-cluster of \(\lambda \) if and only \(i_1 \) belongs to a good 2-cluster of \(\lambda' \).

Then we discuss two cases depending on whether \(i_1 + 1 \) is in \(\Delta(\lambda) \) or not:

- \(i_1 + 1 \in \Delta(\lambda) \).

Once again, we consider two cases:

- \(\lambda_{i_1} - 2 \neq \lambda_{i_1+1} \).
 Then \(i_1 + 1 \in \Delta(\lambda') \) too. Moreover, \(i_1 + 1 \in \Delta_{\text{bad}}(\lambda') \) if and only if \(i_1 + 1 \in \Delta_{\text{bad}}(\lambda) \). Hence, we conclude that \(|\Delta(\lambda')| = |\Delta(\lambda)| \), \(|\Delta_{\text{bad}}(\lambda')| = |\Delta_{\text{bad}}(\lambda)| \) and \(|\Sigma(\lambda')| = |\Sigma(\lambda)| \).

- \(\lambda_{i_1} - 2 = \lambda_{i_1+1} \).
 Then \(i_1 + 1 \in \Delta_{\text{bad}}(\lambda) \) since \(\lambda_{i_1} - \lambda_{i_1+1} = 2 \in 2\mathbb{N} \). But \(i_1 + 1 \notin \Delta(\lambda') \). Therefore, \(|\Delta(\lambda')| = |\Delta(\lambda)| - 1 \) and \(|\Delta_{\text{bad}}(\lambda')| = |\Delta_{\text{bad}}(\lambda)| - 1 \). Moreover, if \(i_1 + 1 \) belongs to a 2-cluster of \(\lambda \), then it is bad because \(\lambda_{i_1} - \lambda_{i_1+1} \in 2\mathbb{N} \).
 Hence, we have \(|\Sigma(\lambda')| = |\Sigma(\lambda)| \).

- \(i_1 + 1 \notin \Delta(\lambda) \).

In this case, note that \(i_1 + 1 \notin \Delta(\lambda') \). Hence, we conclude that \(|\Delta(\lambda')| = |\Delta(\lambda)| \), \(|\Delta_{\text{bad}}(\lambda')| = |\Delta_{\text{bad}}(\lambda)| \) and \(|\Sigma(\lambda')| = |\Sigma(\lambda)| \).

Case 2: \(i_1 \in \Delta(\lambda) \) and \(\lambda_{i_1} = \lambda_{i_1+1} \).

By the minimality condition of \(i_1 \), we have \(\lambda_{i_1-1} = \lambda_{i_1} + 1 \) (except for \(i_1 = 1 \), in which case \(\lambda_{i_1-1} = 0 \) by convention), and so \(\lambda_{i_1-2} = \lambda_{i_1-1} \) because \(\varepsilon(-1)^{\lambda_{i_1-1}} = 1 \).

We have

\[
\lambda' = (\lambda_1 - 2, \ldots, \lambda_{i_1-2} - 2, \lambda_{i_1} - 1, \lambda_{i_1+1} - 1, \lambda_{i_1+2}, \ldots, \lambda_n),
\]

and

\[
s(\lambda') = \sum_{i=1}^{i_1-2} \left[\frac{(\lambda_i - \lambda_{i+1})}{2} + \frac{(\lambda_{i_1} - \lambda_{i_1+1})}{2} \right] + \begin{cases} s(\lambda) - 1 & \text{if } \lambda_{i_1+1} - \lambda_{i_1+2} \in 2\mathbb{N}; \\ s(\lambda) & \text{if } \lambda_{i_1+1} - \lambda_{i_1+2} \notin 2\mathbb{N}. \end{cases}
\]

(If \(i_1 = 0 \), we start at the second line and we get the same conclusion.) Also, observe that in Case 2, we have

\[
|\Delta(\lambda')| = |\Delta(\lambda)| - 1.
\]

Indeed, \(i_1 \in \Delta(\lambda) \) but \(i_1 \notin \Delta(\lambda') \) and for the indexes \(i \neq i_1 \) we have here the equivalence: \(i \in \Delta(\lambda) \iff i \in \Delta(\lambda') \).
We discuss two cases depending on the parity of $\lambda_{i_1+1} - \lambda_{i_1+2}$.

- $\lambda_{i_1+1} - \lambda_{i_1+2} \in 2\mathbb{N}$.

Then $i_1 \in \Delta_{\text{bad}}(\lambda)$. There are two sub-cases depending on whether $i_1 + 2$ is in $\Delta(\lambda)$ or not:

* $i_1 + 2 \in \Delta(\lambda)$.
 Then, $i_1 + 2 \in \Delta_{\text{bad}}(\lambda)$ (since $\lambda_{i_1+1} - \lambda_{i_1+2} \in 2\mathbb{N}$) and $i_1 + 2 \in \Delta(\lambda')$. Once again, there are two sub-cases:

1) $i_1 + 2 \notin \Delta_{\text{bad}}(\lambda')$.
Then $|\Delta_{\text{bad}}(\lambda')| = |\Delta_{\text{bad}}(\lambda)| - 2$. Moreover, $(i_1, i_1 + 2)$ is a good 2-cluster of λ. Indeed, $i_1 + 2 \notin \Delta_{\text{bad}}(\lambda')$ implies that $\lambda_{i_1+3} - \lambda_{i_1+4} \notin 2\mathbb{N}$.

On the other hand, $\lambda_{i_1-1} - \lambda_i = 1 \notin 2\mathbb{N}$ (if $i_1 = 1$ the first condition in Definition 2.6 should be omitted). But $(i_1, i_1 + 2)$ is not a 2-cluster of λ' since $i_1 \notin \Delta(\lambda')$. Hence, we have $|\Sigma(\lambda')| = |\Sigma(\lambda)| - 1$ by Lemma 2.7.

2) $i_1 + 2 \in \Delta_{\text{bad}}(\lambda')$.
Then $|\Delta_{\text{bad}}(\lambda')| = |\Delta_{\text{bad}}(\lambda)| - 1$. The only 2-clusters of λ which are not 2-clusters of λ' are of the form (i_1, \ldots, i_k) with $k \geq 2$. Assume that there is a good 2-cluster of the form (i_1, \ldots, i_k) for λ, with $k \geq 2$.
The 2-cluster $(i_1, i_1 + 2)$ of λ is bad. Indeed, $\lambda_{i_1+3} - \lambda_{i_1+4} \in 2\mathbb{N}$ since $i_1 + 2 \in \Delta_{\text{bad}}(\lambda')$ and $\lambda_{i_1+1} - \lambda_{i_1+2} \notin 2\mathbb{N}$. Hence, $k > 2$.

Since $\lambda_{i_1-1} - \lambda_{i_1} \notin 2\mathbb{N}$ and $\lambda_{i_1+1} - \lambda_{i_1+2} \notin 2\mathbb{N}$, the 2-cluster (i_1, \ldots, i_k) is good for λ if and only if the 2-cluster $(i_1 + 2, \ldots, i_k)$ is good for λ'. On the other direction, the only possible good 2-clusters of λ' which are not good for λ are of the form $(i_2 = i_1 + 2, \ldots, i_k)$ with $k \geq 3$. By the above argument, if there is such a good 2-cluster for λ', then (i_1, \ldots, i_k) is a good 2-cluster for λ. As a consequence, $|\Sigma(\lambda')| = |\Sigma(\lambda)|$.

* $i_1 + 2 \notin \Delta(\lambda)$.
Then $|\Delta_{\text{bad}}(\lambda')| = |\Delta_{\text{bad}}(\lambda)| - 1$. Moreover, since $i_1 + 2 \notin \Delta(\lambda)$, then neither i_1 nor $i_1 + 2$ belongs to a 2-cluster for λ. Hence $|\Sigma(\lambda)| = |\Sigma(\lambda')|$.

- $\lambda_{i_1+1} - \lambda_{i_1+2} \notin 2\mathbb{N}$.

In this case, $i_1 \notin \Delta_{\text{bad}}(\lambda)$, $i_1 + 2 \notin \Delta(\lambda)$ and $i_1 + 2 \notin \Delta(\lambda')$. Hence $|\Delta_{\text{bad}}(\lambda')| = |\Delta_{\text{bad}}(\lambda)|$. Moreover, neither i_1 nor $i_1 + 2$ belongs to any 2-cluster. Hence $|\Sigma(\lambda)| = |\Sigma(\lambda')|$.

In all the cases, we can check with the formula of Definition 2.8 that $z_{\text{PT}}(\lambda') = z_{\text{PT}}(\lambda) - 1$ as desired. This concludes the proof of Theorem 2.10.\blacksquare

3. Counter-examples for [5, Proposition 3.11]

From now on, we shall denote by $z(\lambda)$ the integer $z_M(\lambda) = z_{\text{PT}}(\lambda)$ for $\lambda \in \mathcal{P}_c(N)$.

If I is a Levi subalgebra of \mathfrak{g} and O' is a rigid nilpotent orbit of I, we denote by $\text{Ind}_I^\mathfrak{g}(O')$ the induced nilpotent orbit of \mathfrak{g} from O' in I.

Proposition 3.11 of [5] asserts that if a nilpotent element e associated with the partition $\lambda \in \mathcal{P}_c(N)$ is induced form a nilpotent orbit in a Levi subalgebra
I, then \(z(\lambda) \) is equal to the dimension of the center of \(I \). This result is actually incorrect. If it were true, it would imply that all the sheets containing \(e \) share the same dimension (see [5, Remark 3.12]). But this is wrong. Below are some counter-examples (see also [6, Remark 4]):

Example 3.1. Assume that \(\mathfrak{g} = \mathfrak{so}(8) \) and consider the nilpotent element \(e \) of \(\mathfrak{g} \) with partition \(\lambda = (3, 3, 1, 1) \in \mathcal{P}_1(8) \setminus \mathcal{P}_1^*(8) \). The algorithm yields \(z(\lambda) = 2 \).

On the other hand, \(e \) is induced from two different ways: from the zero orbit in a Levi subalgebra \(L_1 \) of type \((3, 1; 0)\), that is \(L_1 \cong \mathfrak{gl}_3 \times \mathfrak{gl}_1 \times 0 \) (see the definition after [5, Lemma 3.2] for the meaning of type), and from the zero orbit in a Levi subalgebra \(L_2 \) of type \((2; 4)\), that is \(L_2 \cong \mathfrak{gl}_2 \times \mathfrak{so}_4 \). The first one, \(L_1 \), has a center of dimension 2, while the second one, \(L_2 \), has a center of dimension 1. The nilpotent orbit of \(e \) has dimension 18 and \(e \) lies in two different sheets: one of dimension \(\dim z(L_1) + \dim \text{Ind}_{L_1}^g(0) = 20 \) and one of dimension \(\dim z(L_2) + \dim \text{Ind}_{L_2}^g(0) = 19 \) (here \(z(L_i) \) denotes the center of \(L_i \) for \(i = 1, 2 \)). This contradicts Proposition 3.11 of [5], and also Remark 3.12 of the same paper.

Example 3.2. We give now a counter-example in \(\mathfrak{sp}(14) \). Consider the partition \(\lambda = (4, 4, 2, 1, 1) \) of \(\mathcal{P}_{-1}(14) \). Here, the algorithm yields \(z(\lambda) = 2 \).

The corresponding nilpotent element is induced from the zero orbit in \(L_1 \cong \mathfrak{gl}_4 \times \mathfrak{gl}_3 \times \mathfrak{sp}(6) \), and from the rigid nilpotent orbit \(0 \times O' \) in \(L_1 \cong \mathfrak{gl}_2 \times \mathfrak{sp}(10) \) where \(O' \) corresponds to the partition \((2, 2, 2, 1, 1) \in \mathcal{P}_{-1}^*(10) \). Again the dimensions of the centers of \(L_1 \) and \(L_2 \) lead to different dimensions, 2 and 1 respectively.

The origin of the error can be pinned down in the proof of [5, Proposition 3.11]. Let us briefly explain this. Until the end of the section, we are in the notations of [5].

At the end of this proof, the assertion “Consequently the smallest integer such that one of the situations (a) or (b) of Step 1 happens in \(d(p) \) is equal to \(i_p \)” is incorrect (here \(d \) is an element of \(\mathcal{P}_1(N) \)). And so, the main induction argument of the proof fails. We can see that is incorrect in general on an explicit example. Consider the partition \(d = (4, 4, 3, 3, 1, 1) \) of \(\mathcal{P}_1(16) \). Then the corresponding nilpotent orbit is induced from the zero orbit in \(L \cong \mathfrak{gl}_4 \times \mathfrak{gl}_3 \times 0 \) and from the rigid nilpotent orbit with partition \((2, 2, 1, 1, 1, 1) \in \mathcal{P}_1(4) \times \mathfrak{so}(8) \). Consider the second induction. In the notations of the proof, we have: \(S = 1, i_1 = 4, d^{(0)} = f = (2, 2, 1, 1, 1, 1), d = d^{(1)} = \tilde{d}^{(0)} \) (see [5, Proposition 3.7] for the tilda notation). Then the smallest integer such that one of the situations (a) or (b) of Step 1 happens for \(d = d^{(1)} \) is \(3 \neq i_1 \).

4. Conclusion

To summarize, we list below all corrections which have to be taken into account in [5] (the numbering of [5] is used):

- Proposition 3.11 (its proof and its statement) is incorrect.
• As a consequence Remark 3.12, the sentence "The results of this section specify that, in the classical case, the dimension of a sheet containing a given nilpotent orbit does not depend on the choice of a sheet containing it" in §1.2, and the sentence "Surprisingly, in the classical case, we will notice that if \(\text{Ind}_{l_1}(C_{l_1}) = \text{Ind}_{l_2}(C_{l_2}) \), then \(\text{dim}_{\mathfrak{g}}(l_1) = \text{dim}_{\mathfrak{g}}(l_2) \)" in Remark 2.15, are also incorrect.

• The proof of Theorem 3.13 is incorrect, since it uses Proposition 3.11. Nevertheless, its statement remains valid. In particular, Tables 3, 4 and 5 are still correct.

Remark. There are some misprints in Table 5: line 2m = 48, the partitions are \([7, 1^5], [5, 3, 2^2], [4^2, 3, 1]\) and not \([4^3], [4^2, 3, 1]\).

References