Infinite Loop Spaces Associated to Affine Kac-Moody Groups

Xianzu Lin

Communicated by K. Strambach

Abstract. The main purpose of this paper is to construct infinite loop spaces from affine Kac-Moody groups. It is well known that to each infinite class of classical groups over a commutative ring \(R \), we can associate an infinite loop space \(G(R) \) by Quillen’s plus construction. In this paper we generalize this fact to the cases of affine Kac-Moody groups. Roughly speaking, for each commutative ring \(R \) there are seven infinite classes of affine Kac-Moody groups over \(R \), and to each infinite class we can associate an analogous infinite loop space.

Mathematics Subject Classification 2010: 55P47, 20G44.

Key Words and Phrases: Infinite loop space, affine Kac-Moody group.

1. Introduction

The loop space \(\Omega X \) of a pointed space \(X \) is the space of pointed maps from the unit circle \(S^1 \) to \(X \) together with the compact-open topology. We say that a pointed space \(X \) is an infinite loop space if there is a sequence of (pointed) spaces \(X_0, X_1, \cdots \) with \(X_0 = X \) and weak homotopy equivalences \(X_n \simeq \Omega X_{n+1} \) for each \(n \geq 0 \).

Example 1.1. Let \(GL(n) \) be the general linear group over \(\mathbb{C} \) and let \(BGL \) be the limit of classifying space \(\lim \rightarrow BGL(n) \). By the Bott periodicity theorem \([1,2]\) we have a weak homotopy equivalence

\[\mathbb{Z} \times BGL \simeq \Omega^2 (\mathbb{Z} \times BGL) ; \]

thus \(BGL \) is an infinite loop space. Similar results hold for \(BO \) and \(BSp \), where \(O \) (resp. \(Sp \)) is the infinite orthogonal (resp. symplectic) group over \(\mathbb{C} \).

Now we introduce a theorem about construction of infinite loop spaces. First, we need some preliminaries.

*This paper is based on the author’s doctoral thesis submitted to the Academy of Mathematics and Systems Science in 2011.

ISSN 0949–5932 / $2.50 © Heldermann Verlag
Let Σ_n be the symmetric group on the set $\{1, 2, \cdots, n\}$. For any $\sigma \in \Sigma_m$ and $\tau \in \Sigma_n$, $c(m, n) \in \Sigma_{m+n}$ is defined by

\[c(m, n)(i) = \begin{cases}
 n + i, & 1 \leq i \leq m, \\
 i - m, & m < i \leq m + n.
\end{cases} \tag{1a} \]

The definition above implies $c(m, n) = c(n, m) - 1$.

Theorem 1.2. Given a sequence of topological groups

\[G(0), G(1), G(2), \cdots, G(n), \cdots \]

together with homomorphisms $\phi_m : \Sigma_m \to G(m)$, $f_m : G(m) \to G(m+1)$, $m > 0$, satisfying,

0) ϕ_0 is an isomorphism;
1) $f_m \phi_m(\alpha) = \phi_{m+1}(\alpha)$ for each $m > 0$;
2) set $f_{m,n} := f_{m+1} \cdots f_{m+1} f_m$, then $\phi_n(c(n, m))(f_{n,m}(G(n))) \phi_m(c(m, n))$ and $f_{m,n}(G(m))$ are commutative in $G(m+n)$;
3) let $G = \lim_{n \to \infty} G(n)$ and let $\pi' = [\pi, \pi]$ be the commutator subgroup of $\pi = \pi_0(G)$, we have $\pi' = [\pi', \pi']$.

Then BG^+ (where $+$ means the Quillen’s plus construction for BG and $\pi' \subseteq \pi_1(BG)$) is an infinite loop space.

Proof. Define a topological category Ξ as follows. The objects of Ξ are nonnegative integers, $\text{hom}_\xi(m, n)$ is empty if $m \neq n$ and $\text{hom}_\xi(m, m) = G(m)$. One checks that $(\xi, \oplus, 0, c)$ has a structure of permutative category, $\prod_{n \geq 0} BG(n)$ is the corresponding classifying space. Then the rest of the proof carries over as in [3] p.62.

Remark 1.3. This theorem must be well known, but we can not find suitable reference.

Corollary 1.4. Let R be a commutative ring and set

\[GL(\infty, R) = \lim_{n \to \infty} GL(n, R), \]

then $BGL(\infty, R)^+$ is an infinite loop space.

Proof. We can easily find natural homomorphisms $\phi_n : \Sigma_n \to GL(n, R)$, $n > 0$ that satisfy conditions of Theorem 1.2.

Similarly, we can show that $BSL(\infty, R)^+$, $BO(\infty, R)^+$, $BSO(\infty, R)^+$ and $BSp(\infty, R)^+$ are all infinite loop spaces. The main purpose of this paper is to construct infinite loop spaces from affine Kac-Moody groups, which are infinite dimensional generalization of algebraic groups. Roughly speaking, for each commutative ring R there are seven infinite classes of affine Kac-Moody groups over R, and to each infinite class we can associate an analogous infinite loop space.
This paper is structured as follows. Section 2 is a short review of Kac-Moody algebras and Kac-Moody groups. In Section 3 we construct the infinite loop spaces corresponding to affine Kac-Moody groups of type $A^{(2)}_{n-1}$. In the final section we consider several variations and the other cases. Throughout this paper R will be an arbitrary commutative ring (not necessarily with unit).

2. Kac-Moody Algebras and Kac-Moody Groups

In this section, we give a brief review of the theory of Kac-Moody algebras and Kac-Moody groups, details can be found in [4, 8, 9].

Definition 2.1. A generalized Cartan matrix is a matrix $A = (a_{ij})_{ij=1}^n$ satisfying, $a_{i,i} = 2$, $a_{i,j}$ are non-positive integers for $i \neq j$, and $a_{i,j} \neq 0$ implies $a_{j,i} \neq 0$.

Definition 2.2. The Kac-Moody algebra $g(A)$ associated to a generalized Cartan matrix $A = (a_{ij})_{ij=1}^n$ is the Lie algebra (over \mathbb{C}) generated by $3n$ elements $e_i, f_i, h_i, (i = 1, \ldots, n)$ with the following defining relations:

\[[h_i, h_j] = 0; \quad [h_i, e_j] = a_{ij}e_j; \quad [h_i, f_j] = -a_{ij}f_j; \quad [e_i, f_j] = \delta_{i,j}h_i; \]

\[(ad e_i)^{-a_{ij}}e_j = 0, \quad (ad f_i)^{1-a_{ij}}f_j = 0, \quad \text{if } i \neq j. \]

Let $A = (a_{ij})_1^n$ be a generalized Cartan matrix. For a pair of indices i, j such that ij, set $m_{i,j} = 2, 3, 4$ or 6 if $a_{i,j}a_{j,i} = 0, 1, 2$ or 3 respectively and set $m_{i,i} = 1$. We associate to A a discrete group $W(A)$ (the Weyl group) on n generators s_1, \ldots, s_n with relations $\{(s_is_j)^{m_{i,j}} = 1\}_0<i,j<n$.

We also need another group $W'(A)$ which is defined by n generators s'_1, \ldots, s'_n and the following relations:

\[s'_{j} s'_{i} s'_{j}^{-1} = s'_{i} s'_{j} s'_{i}^{-1} = s'_{j} s'_{i} s'_{j} \cdots (m_{i,j} \text{ factors on each side}). \]

By the definitions above the map $s'_i \to s_i$ extends to a group homomorphism $\phi : W'(A) \to W(A)$. As $ad e_i$ and $ad f_i$ are locally nilpotent endomorphisms of $g(A)$ (cf.[4, p.33]), the expressions $exp(e_i) = \sum_{n \geq 0} \frac{(ad e_i)^n}{n!}$ and $exp(f_i) = \sum_{n \geq 0} \frac{(ad f_i)^n}{n!}$ make sense. The map $s'_i \to exp(e_i)exp(-f_i)exp(e_i) \in Aut(g(A))$ can be extended to a homomorphism $\psi : W'(A) \to Aut(g(A))(cf.[5, 188])$; we also denote by s'_i the image of s'_i in $Aut(g(A))$.

Let V be the vector space over \mathbb{Q}, with basis $\{a_i\}_{i=1,\ldots,n}$ and let $W(A)$ act on V by $s_i(a_j) = a_j - a_{j,i}a_i$. Real roots of $A = (a_{ij})_1^n$ are defined to be elements of V of the form $w(a_i)$, with $w \in W(A)$ and $0 < i \leq n$. Each real root a is an integral linear combination of $\{a_i\}$, the coefficients of which of all positive or negative; the real root a is said to be positive or negative accordingly. Denote by Δ, Δ_+, Δ_- the sets of all real roots, positive and negative real roots respectively. We say that a set of real roots θ is pre-nilpotent if there exist $w, w' \in W(A)$ such that all elements of $w(\theta)$ are positive and all elements of $w'(\theta)$ are negative;
if, moreover, \(a, b \in \theta \) and \(a + b \in \triangle \) imply \(a + b \in \theta \), then we said that \(\theta \) is nilpotent.

For \(0 < i \leq n \) and \(w' \in W'(A) \), the pair of opposite elements \(w'\{e_i, -e_i\} \subset g(A) \) depends only on the real root \(a = \phi(w')(a_i) \) (cf. [9, p.547]); set \(E_a = w'\{e_i, -e_i\} \) and denote by \(L_a \) the \(\mathbb{C} \)-subalgebra of \(g(A) \) generated by \(E_a \).

For each real root \(a \), we denote by \(\mathcal{U}_a \) the group scheme over \(\mathbb{Z} \) isomorphic to \(\text{Spec} \mathbb{Z} \) and whose Lie algebra is the \(\mathbb{Z} \)-subalgebra of \(g(A) \) generated by \(E_a \).

Let \(\theta \) be a nilpotent set of real roots, then \(L_\theta = \bigoplus_{a \in \theta} L_a \) is a nilpotent Lie algebra. Let \(U_\theta \) be the unipotent complex algebraic group whose Lie algebra is \(L_\theta \). The following proposition was proved in [9].

Proposition 2.3. There exist a uniquely defined group scheme \(\mathcal{U}_\theta \) over \(\mathbb{Z} \) containing all \(\mathcal{U}_a \) for \(a \in \theta \), whose fibre over \(\mathbb{C} \) is the group \(U_\theta \) and such that for any order on \(\theta \), the product morphism \(\prod_{a \in \theta} \mathcal{U}_a \to \mathcal{U}_\theta \) is an isomorphism of the underlying schemes.

Now we present Tits’ definition of Kac-Moody group associated to a generalized Cartan matrix \(A = (a_{i,j})_{i,j=1}^n \) and a commutative ring \(R \).

Let \(\wedge \) be a free abelian group with basis \(h_1, \cdots, h_n \), and \(\wedge' \) its dual, then there are \(n \) elements \(\alpha_1, \cdots, \alpha_n \in \wedge' \) satisfying \(\langle h_i, \alpha_j \rangle = a_{i,j} \). Set \(\Sigma(R) = \text{Hom}(\wedge', R^*) \), where \(R^* \) is the multiplicative group of invertible elements of \(R \). The group \(W(A) \) also acts on \(\wedge' \) by \(s_i(\lambda) = \lambda - \langle \lambda, h_i \rangle \alpha_i \). The automorphism of \(\Sigma(R) \) induced by \(s_i \) will also be denoted by \(s_i \).

For a real root \(a \), and a nilpotent set of real roots \(\theta \), set \(\mathcal{U}_a(R), \mathcal{U}_\theta(R) \) to be the groups of \(R \) points of \(\mathcal{U}_a \times \text{Spec} R \) and \(\mathcal{U}_\theta \times \text{Spec} R \) respectively. For each pair of roots \(\{a, b\} \), set \(\vartheta(a, b) = (Na + Nb) \cap \triangle \).

The Steinberg group \(\mathbb{S}(R) \) over \(R \) is defined to be the inductive limit of the groups \(\mathcal{U}_a(R) \) and \(\mathcal{U}_\theta(a, b)(R) \), where \(a \in \triangle \) and \(\{a, b\} \) runs over all pre-nilpotent pairs of real roots, relative to all the canonical injections \(\mathcal{U}_c(R) \to \mathcal{U}_\vartheta(a, b)(R) \) for \(c \in \vartheta(a, b) \). For each \(0 < i \leq n \), \(s'_i = \exp(e_i)\exp(-f_i)\exp(e_i) \) is an automorphism of \(g(A) \) which permutes the \(L_a \) and the \(E_a \); therefore, it induces an automorphism of \(\mathbb{S}(R) \) which we also denote by \(s'_i \).

Remark 2.4. For any \(a, b \) in a nilpotent set \(\theta \) of real roots and any \(r, r' \in R \), the following commutation relation holds inside \(\mathbb{S}(R) \):

\[
[x_a(r), x_b(r')] = \prod_{c=ma+nb} x_c(k(a, b; c)r^m r'^n),
\]

where \(c = ma + nb \) runs over \(\vartheta(a, b) - \{a, b\}, k(a, b; c) \in \mathbb{Z} \) and \(x_a : R \to \mathbb{S}(R) \), \(x_b : R \to \mathbb{S}(R) \) denote respectively the homomorphisms associated to \(a \) and \(b \).

Definition 2.5. The Kac-Moody group \(G_A(R) \) associated to \(A \) over \(R \) is defined to be the quotient of the free product of \(\mathbb{S}(R) \) and \(\Sigma(R) \) by the following relations.

\[
tx_i(r) t^{-1} = x_i(t(\alpha_i)r); \quad \bar{s}_i t \bar{s}_i^{-1} = s'_i(t);
\]
where t is an element from $\mathfrak{T}(R)$, r is an invertible element of R, u is an element from $\mathfrak{S}(R)$, $x_i : R \to \mathfrak{S}(R)$ and $x_{-i} : R \to \mathfrak{S}(R)$ are the homomorphisms associated to e_i and f_i, respectively, $\tilde{s}_i(r)$ is the canonical image of $x_i(r)x_{-i}(r^{-1})x_i(r)$ in $\mathfrak{S}(R)$, $\tilde{s}_i = \tilde{s}_i(1)$, and $r^{h_i} \in \mathfrak{T}(R)$ is defined by $r^{h_i}(\lambda) = r^{(\lambda, h_i)}$ for $\lambda \in \Lambda'$.

It is easy to see $G_A(R)$ is functorial in R, we call G_A the *Tits functor* associated to $A = (a_{ij})_{i,j=1}^n$. Set $r = 1$ in $\tilde{s}_i(r^{-1}) = \tilde{s}_i r^{h_i}$, we have $\tilde{s}_i^2 = (-1)^{h_i}$; this formula will be used in the next section.

Remark 2.6. The above defining relations were given in [8, 196], and are slightly different from that of [9]; in fact the formula $\tilde{s}_i^2 = (-1)^{h_i}$ cannot be derived from the defining relations in [9].

Remark 2.7. From the defining relations we see that $G_A(R)$ (as a group) is generated by the images of $\mathfrak{U}_{e_i}(R)$ ($0 < i \leq n$) in $G_A(R)$.

In Section 3 we need the following lemma.

Lemma 2.8. Let A be a Cartan matrix of type

\[
\begin{array}{cccccc}
A_2 & e_1 & e_2 & B_3 & e_1 & e_2 & e_3 \\
\end{array}
\]

or

\[
\begin{array}{cccccc}
C_3 & e_1 & e_2 & e_3 \\
\end{array}
\]

then the corresponding Kac-Moody group satisfies $G_A(R) = [G_A(R), G_A(R)]$.

Proof. In the case of A_2, we have the commutation relation $[x_{e_1}(1), x_{e_2}(r)] = x_{e_1+e_2}(r)$, hence the image of $\mathfrak{U}_{e_1+e_2}(R)$ is contained in $[G_A(R), G_A(R)]$. But the Weyl group acts transitively on the set of real roots, hence the images of $\mathfrak{U}_{e_1}(R)$ and $\mathfrak{U}_{e_2}(R)$ are contained in $[G_A(R), G_A(R)]$ too. Thus by Remark 2.7, we have $G_A(R) = [G_A(R), G_A(R)]$.

In the case of C_3, the above proof shows that the image of $\mathfrak{U}_{e_1}(R)$ and $\mathfrak{U}_{e_2}(R)$ is contained in $[G_A(R), G_A(R)]$. A direct computation shows that in $\mathfrak{U}_{\varnothing_{e_2,e_3}}(R)$ we have $[x_{e_1}(r), x_{e_2}(1)] = x_{e_2+e_3}(-r)x_{e_2+2e_3}(-r)$. As the Weyl group acts transitively on the set of short roots too, hence the image of $\mathfrak{U}_{e_2+e_3}(R)$ is contained in $[G_A(R), G_A(R)]$ and so is $\mathfrak{U}_{e_2+e_3}(R)$. But the Weyl group acts transitively on the set of short roots too, hence the image of $\mathfrak{U}_{e_3}(R)$ is also contained in $[G_A(R), G_A(R)]$. By Remark 2.7 again, we have $G_A(R) = [G_A(R), G_A(R)]$. The proof for the case of B_3 is similar.

3. Construction of infinite loop spaces associated to $A_{2l-1}^{(2)}$

It is well known that there are seven infinite classes of generalized Cartan matrices of affine type (cf.[4, p.51]), whose Dynkin diagrams are listed below.
To each infinite class and each commutative ring \(R \) we want to associate a sequence of Kac-Moody groups \(G(n) \) that satisfies the conditions of Theorem 1.2. First consider the case of \(A_{2l-1}^{(2)} \), let \(g_l \) (resp. \(G_l(R) \)) be the corresponding Kac-Moody algebra (resp. group). In the following we use the notations of Section 2 freely, sometimes the subscript \(l \) will be added to indicate that the notations are associated to \(A_{2l-1}^{(2)} \). For example, \(V_l \) will be the vector space over \(\mathbb{Q} \), with basis \(\{a_i\}_{i=0,\ldots,l} \). The group \(W_l(A) \) acts on \(V_l \) and \(\triangle_l \) denotes the set of real roots of \(A_{2l-1}^{(2)} \).

In \(g_{l+1} \) set \(e'_i = s_l'(e_{i+1}) \), \(f'_i = s_l'(f_{i+1}) \), \(h'_i = s_l'(h_{i+1}) = h_{i+1} + h_l \) respectively and for \(i < l \) set \(e'_i = e_i \), \(f'_i = f_i \), \(h'_i = h_i \) respectively.

Lemma 3.1. In \(g_{l+1} \) we have, for \(i, j \leq l \),

\[
[h'_i, h'_j] = 0; \quad [h'_i, e'_j] = a_{ij} e'_j; \quad [h'_i, f'_j] = -a_{ij} f'_j; \quad \delta_{i,j} h'_i = \delta_{i,j} h'_i.
\]

\[(ad e_{l-1})^3 e'_l = 0; \quad (ad f_{l-1})^3 f'_l = 0.\]
Lemma 3.2. Define a linear map τ_w of g_W with adjoint representation. Since $[h_{l-1}, c'_l] = -2e'_l$ and $[f_{l-1}, c'_l] = 0$ (this follows from the fact that every root is either positive or negative), the representation theory of $g_0 \cong sl_2(\mathbb{C})$ implies $(ad \ e_{l-1})^3 e_l' = 0$. The proof for the last relation is exactly the same.

By the defining relations of g_l, the map $e_i \to e_i'$, $f_i \to f_i'$ extends to an injective Lie algebra homomorphism $\varphi_l : g_l \to g_{l+1}$.

Lemma 3.3. Define a linear map $\tau_l : V_l \to V_{l+1}$ by $\tau_l(a_i) = a_i$ for $i < l$ and $\tau_l(a_l) = 2a_l + a_{l+1}$, then $\tau_l(\Delta^+_l) \subset \Delta^+_l$ and $\varphi_l(E_a) = E_{\tau_l(a)}$ for any $a \in \Delta_l$.

Proof. It is easy to see that the map $s_i \to s'_i$ for $i < l$ and $s_l \to s_l s_{l+1} s_l$ extends to a group homomorphism $\psi_l : W_l(A) \to W_{l+1}(A)$ and for any $v \in V_l$ and $W \in W_l(A)$ we have $\tau_l \cdot W(v) = w_l(W) \cdot \tau_l(v)$. Thus the first assertion follows readily. Similarly, the map $s'_i \to s'_i$ for $i < l$ and $s'_l \to s'_l s'_{l+1} (s'_l)^{-1}$ extends to a group homomorphism $\psi'_l : W'_l(A) \to W'_{l+1}(A)$. One checks that w_l and w'_l are compatible with the homomorphisms $\phi : W'_l(A) \to W_l(A)$ and $\phi : W'_{l+1}(A) \to W_{l+1}(A)$. We also have for any $\omega \in W'_l(A)$, $\varphi_l \cdot \psi_l(\omega) = (\psi_l w'_l(\omega)) \cdot \varphi_l$; recall the homomorphisms $\psi_l : W'_l(A) \to Aut(g(A)_l)$ and $\psi_{l+1} : W'_{l+1}(A) \to Aut(g(A)_{l+1})$ define in Section 2. Now we are ready to prove the second assertion. First, it is true for $a = a_i$, $i \leq l$ by the definition of φ_l. Let $a = \phi_l(\omega)(a_i)$ be an element of Δ_l, with $\omega \in W'_l(A)$, then $\varphi_l(E_a) = \varphi_l(\omega)(E_{a_i}) = \varepsilon(E_{a_i}) = (\psi_{l+1} w'_l(\omega))(E_{\tau_l(a_i)}) = E_{\psi_{l+1} w'_l(\omega)(\tau_l(a_i))} = E_{\tau_l(a_i)}$. This finishes the proof.

For any $a \in \Delta_l$, let \mathfrak{U}_a be the corresponding group scheme defined in §2, then we can define a homomorphism $\psi_a : \mathfrak{U}_a \to \mathfrak{U}_{\tau_l(a)}$ that is compatible with the map $E_a \to E_{\tau_l(a)}$.

Lemma 3.3. Let $\theta \subset \Delta_l$ be a nilpotent set of real roots, then $\tau_l(\theta) \subset \Delta_{l+1}$ is pre-nilpotent. Let θ' be the least nilpotent set containing $\tau_l(\theta)$, let \mathfrak{U}_θ and $\mathfrak{U}_{\theta'}$ be the group schemes in Proposition 2.3, then the homomorphisms $\psi_a : \mathfrak{U}_a(R) \to \mathfrak{U}_{\tau_l(a)}(R)$, $a \in \theta$ extend uniquely to a homomorphism $\psi : \mathfrak{U}_{\theta}(R) \to \mathfrak{U}_{\theta'}(R)$.

Proof. By lemma 3.2 the homomorphism $L_\theta \to L_{\theta'}$ induced by φ_l is injective. Thus for $a, b \in \theta$, the commutation relation of $\mathfrak{U}_a(R)$ and $\mathfrak{U}_b(R)$ in $\mathfrak{U}_{\theta}(R)$ is exactly the same as that of $\mathfrak{U}_{\tau_l(a)}(R)$ and $\mathfrak{U}_{\tau_l(b)}(R)$ in $\mathfrak{U}_{\theta'}(R)$. Now the lemma follows readily.

By Lemma 3.2 and Lemma 3.3 the group homomorphisms $\psi_a : \mathfrak{U}_a(R) \to \mathfrak{U}_{\tau_l(a)}(R)$, $a \in \Delta_l$, extend to a group homomorphism $\psi(R) : \mathfrak{S}_l(R) \to \mathfrak{S}_{l+1}(R)$.

Let Λ_1 be a free abelian groups with basis h_0, \ldots, h_l and Λ' its dual. Define linear map $\omega_l : \Lambda_l \to \Lambda_{l+1}$ by $\omega_l(h_i) = h_i$ for $i < l$ and $\omega_l(h_l) = h_l + 2h_{l+1}$. Denote by ω'_l the dual map of ω_l, then ω'_l induces a group homomorphism $\omega_l(R) : \mathfrak{S}_l(R) \to \mathfrak{S}_{l+1}(R)$.
From the defining relations of Kac-Moody groups and the constructions of \(\psi(R) \) and \(\omega_l(R) \) we see that the homomorphism of free products \(\psi^* \omega_l(R) : \mathcal{G}(R) \ast T_l \longrightarrow \mathcal{G}_{-1}(R) \ast T_{l+1}(R) \) reduces to a homomorphism \(g_{l} : G_l(R) \longrightarrow G_{l+1}(R) \).

For each \(0 < i < l \) in \(G_l(R) \) satisfy the following two relations,

\[
\tilde{s}_i \tilde{s}_j \tilde{s}_i = \tilde{s}_j \tilde{s}_i \tilde{s}_j = (-1)^{h_i - 2a_{i,j}} \tilde{s}_i \tilde{s}_j \tilde{s}_i \tilde{s}_j \tilde{s}_i \cdots (m_{i,j} \text{ factors on each side}),
\]

where \(\tilde{s}_i \) is defined by sending \(\{e_i, e_{i+1}\} \) to \(\{-e_{i+1}, e_i\} \) and leaves the other basis vectors invariant.

Lemma 3.4. Let \(\tilde{s}_i \), \(0 < i < l \) in \(G_l(R) \) satisfy the following two relations,

\[
\tilde{s}_i \tilde{s}_j \tilde{s}_i = \tilde{s}_j \tilde{s}_i \tilde{s}_j = (-1)^{h_i - 2a_{i,j}} \tilde{s}_i \tilde{s}_j \tilde{s}_i \tilde{s}_j \tilde{s}_i \cdots (m_{i,j} \text{ factors on each side}).
\]

Let \(\tilde{W}_l \) be the subgroup of \(G_l(R) \) generated by \(\{\tilde{s}_i\}_{0 < i < l} \), then the maps \(s_i \rightarrow \tilde{s}_i \) extend to a group homomorphism \(h_l : W_l' \rightarrow \tilde{W}_l \).

Proof. We prove the first assertion and the second assertion will follow directly. As \(\tilde{s}_i^2 = (-1)^{h_i} \) the first relation is equivalent to

\[
(-1)^{h_i} \tilde{s}_j \tilde{s}_i \tilde{s}_i = (-1)^{h_i - 2a_{i,j}} \tilde{s}_i \tilde{s}_j \tilde{s}_i \tilde{s}_j \tilde{s}_i \cdots \tilde{s}_i \tilde{s}_j \tilde{s}_i \tilde{s}_j \tilde{s}_i \cdots (m_{i,j} \text{ factors on each side}),
\]

which is one of the defining relations of \(G_l(R) \). The second relation was proved in Remark 3.7 of [9].

For each \(0 < i < n \) set

\[
r_i = s_{2i+1} s_{2i} s_{2i-1} s_{2i+1} s_{2i} s_{2i-1}
\]

in \(G_{2n}(R) \) and set \(w_i = h_{2n}(r_i) \). Let \(\sigma(i) \in \Sigma_n \) be the permutation that swaps the \(i \)-th element with the \((i + 1)\)-th one, then the map \(\sigma(i) \rightarrow r_i \) extends to a group homomorphism \(\zeta_n' : \Sigma_n \rightarrow W_{2n}' \). Set \(\zeta_n = h_{2n} \zeta_n' \).

Remark 3.5. In fact we can identify \(W_{2n}' \) with the signed permutation group, i.e., the group of linear transformations of \(\mathbb{R}^{2n} \) leaving invariant the set \(\{\pm e_i\} \) of standard basis vectors and their negatives. Then \(r_i \) is the linear isomorphism of \(\mathbb{R}^{2n} \) that sends \(\{e_{2i-1}, e_{2i}\} \) to \(\{e_{2i+1}, e_{2i+2}\} \) and leaves the other basis vectors invariant.

Theorem 3.6. Let \(G(R) = \lim_{n \rightarrow \infty} G_n(R) \), then \(\pi = \pi_0(G) \) satisfies \(\pi = [\pi, \pi] \).

Applying Quillen’s plus construction to \(BG(R) \) and \(\pi_1(BG) \cong \pi \), we get an infinite loop space \(BG^+(R) \).
Proof. Condition 1) of Theorem 1.2 follows directly from Lemma 2.8. Thus we only need to verify condition 2) of Theorem 1.2. Set \(f_{m,n} = f_{m+n-1} \cdots f_{m+1} f_m \); we want to show that \(f_{m,n}(G(m)) \) and \(c(n,m)(f_{m,n}(G(n)))c(m,n) \) are commutative in \(G(m+n) \). Set \(s_{nm} := \phi_{2m+2n} t_{n,m}(c(n,m)) \) in the following, recall that \(\phi_{2m+2n} \) is the natural homomorphism \(W(\Lambda_{4m+4n-1}^{(2)}) \to W(\Lambda_{4m+4n-1}^{(2)}) \).

By remark 2.7, \(f_{m,n}(G(m)) \) is generated by the subgroups \(\{ \Upsilon_0(R) \}_{a \in \Theta} \) and \(c(n,m)(f_{m,n}(G(n)))c(m,n) \) is generated by the subgroups \(\{ \Upsilon_a(R) \}_{a \in \Theta'} \), where

\[
\Theta = \{ \pm a_0, \ldots, \pm a_{2m-1}, (s_{2m-1} \cdot s_{2m} \cdots s_{2m+2n-1})(\pm a_{2m+2n}) \}
\]

\[
= \{ \pm a_0, \ldots, \pm a_{2m-1}, \pm(2a_{2m-1} + \cdots + 2a_{2m+2n-1} + a_{2m+2n}) \}
\]

and

\[
\Theta' = s_{nm} \{ \pm a_0, \ldots, \pm a_{2m-1}, (s_{2m-1} \cdot s_{2m} \cdots s_{2m+2n-1})(\pm a_{2m+2n}) \}.
\]

Thus in order to verify condition 2) it suffices to show that for any \(\alpha \in \Theta \) and \(\beta \in \Theta' \), \(\Upsilon_0(R) \) and \(\Upsilon_\alpha'(R) \) are commutative, but this can be deduced from the fact that the subalgebras \(L_{\pm\alpha} \) and \(L_{\pm\beta} \) of \(g_{2m+2n} \) are commutative. Indeed, when \(L_{\pm\alpha} \) and \(L_{\pm\beta} \) are commutative, one checks that \(\{ \alpha, \beta \} \) is a prenilpotent pair and \(\vartheta(a,b) = \{ \alpha, \beta \} \), hence by Remark 2.4 the group \(\Upsilon_\vartheta(R) \) is commutative. Thus in order to finish the proof it suffices to show that for any \(\alpha \in \Theta \) and \(\beta \in \Theta' \), \(L_{\pm\alpha} \) and \(L_{\pm\beta} \) are commutative.

Direct computation shows that

\[
(s_{2m-1} \cdot s_{2m} \cdots s_{2m+2n-1})(\pm a_{2m+2n}) = s_{nm}(\pm a_{2m+2n});
\]

\[
(s_{2m} \cdot s_{2m} \cdots s_{2m+2n-1})(\pm a_{2m+2n}) = s_{mn}(\pm a_{2m+2n});
\]

\[
s_{mn}(a_0) = \pm(a_0 + a_1 + 2(a_2 + \cdots + a_{2m}) + a_{2m+1});
\]

\[
s_{mn}(\pm a_1, \ldots, \pm a_{2m-1}) = \pm(\pm a_{2m+1}, \ldots, \pm a_{2m+2n-1});
\]

\[
s_{mn}(\pm a_{2m+1}, \ldots, \pm a_{2m+2n-1}) = \pm a_1, \ldots, \pm a_{2m-1}.
\]

Thus we only need to show that \(L_{\pm(a_0+a_1+2(a_2+\cdots+a_{2n})+a_{2m+1})} \) is commutative with \(L_{\pm a_0} \), and \(L_{\pm a_{2m+2n}} \) is commutative with \(L_{\pm(2a_{2m-1}+\cdots+2a_{2m+2n-1}+a_{2m+2n})} \). We prove the first assertion, the proof for the second one is similar.

First, we have \([L_{-a_0}, L_{a_0+a_1+2(a_2+\cdots+a_{2m})+a_{2m+1}}] \in L_{a_1+2(a_2+\cdots+a_{2m})+a_{2m+1}} \); but it is well known that the highest root in \(\mathbb{Z}a_1 + \mathbb{Z}a_2 + \cdots + \mathbb{Z}a_{2m+1} \cap \Delta_{2m+2n} \) is \(a_1 + \cdots + a_{2m+1} \). Hence \([L_{-a_0}, L_{a_0+a_1+2(a_2+\cdots+a_{2m})+a_{2m+1}}] = 0 \). We also have \([h_0, L_{a_0+a_1+2(a_2+\cdots+a_{2m})+a_{2m+1}}] = 0 \). Set \(g_0 = L_{a_0} \oplus L_{-a_0} \oplus \mathbb{C} h_0 \) and consider \(g_{2m+2n} \) as a \(g_0 \)-module by restricting of the adjoint representation. By the representation theory of \(g_0 \cong sl_2(\mathbb{C}) \), it follows that

\[
[L_{a_0}, e_{a_0+a_1+2(a_2+\cdots+a_{2m})+a_{2m+1}}] = 0.
\]

Similarly, we have

\[
[L_{a_0}, f_{a_0+a_1+2(a_2+\cdots+a_{2m})+a_{2m+1}}] = 0
\]

and

\[
[L_{-a_0}, f_{a_0+a_1+2(a_2+\cdots+a_{2m})+a_{2m+1}}] = 0.
\]
This finishes the proof of the theorem. The following Dynkin diagram would illustrate our proof, where \(a_0' \) (resp. \(a_{2m}' \)) denotes \(2a_{2m-1} + \cdots + 2a_{2m+2n-1} + a_{2m+2n} \) (resp. \(s_{n,m}(a_0) \)).

\[
\begin{array}{cccccccc}
\bullet & \bullet & \bullet & \cdots & \bullet & \bullet & \bullet & \bullet \\
a_1 & a_2 & a_3 & \cdots & a_{2m-1} & a_{2m} & a_{2m+1} & a_{2m+2} \\
\end{array}
\]

Remark 3.7. It is easy to see, from the construction above, that \(BG^+(R) \) as an infinite loop space is functorial in \(R \) (see [6, 7] for a delicate exposition of infinite loop spaces and its relation with \(E_\infty \) spaces). Thus we can, as in the classical cases, define a \(K \)-theory of rings by setting

\[
K_1^G(R) := \pi_1(BG^+(R)).
\]

4. The constructions in the other cases

The constructions in the other cases are similar. For example, in the case of \(A_l^{(1)} \), let \(g_l \) be the Kac-Moody algebra associated to \(A_l^{(1)} \), and in \(g_{l+1} \) set \(e'_l = s_l'(e_{l+1}) \), \(f'_l = s_l'(f_{l+1}) \), \(h'_l = s_l'(h_{l+1}) = h_{l+1} + h_l \) respectively and for \(i < l \) set \(e'_i = e_i \), \(f'_i = f_i \), \(h'_i = h_i \) respectively. In the case of \(D_l^{(1)} \), set \(e'_l = s_l \cdot s_{l-1}'(e_{l+1}) \), \(f'_l = s_l \cdot s_{l-1}'(f_{l+1}) \), \(h'_l = s_l \cdot s_{l-1}'(h_{l+1}) = h_{l+1} + h_l + h_{l-1} \) respectively. For the rest constructions we just repeat the arguments of the previous section.

Remark 4.1. In Section 3 we require that \(\wedge_l \) is freely generated by \(\{h_0, \ldots, h_i\} \), in fact this assumption is not necessary. For example, in the case of \(A_l^{(1)} \) we can set \(\wedge_l \) to be freely generated by \(\{h_1, \ldots, h_i\} \) and add an \(h_0 := -h_1 - \cdots - h_l \). When \(R \) is a field \(K \), the corresponding Kac-Moody group \(G_l(K) \) is isomorphic to \(SL_{l+1}(K[t, t^{-1}]) \), then \(G(\infty, K)^+ \) is of course an infinite loop space. However, we don’t know any explicit realization of \(G_l(R) \) in the general cases.

We can also treat the (topological) affine Kac-Moody groups over \(\mathbb{C} \) (see [5] for the definition), and applying the method of Section 3 we have the following result.

Theorem 4.2. Let \(\{A_l\}_{l>2} \) be one of the seven (infinite) classes of affine generalized Cartan matrices and let \(\{G_l\}_{l>2} \) be the associated simply-connected Kac-Moody groups over \(\mathbb{C} \), then we can define for each \(l > 2 \) a natural homomorphism \(f_l : G_l \to G_{l+1} \) such that \(BG = \lim_{l \to \infty} BG_l \) is an infinite loop space.

Remark 4.3. In fact there exists a (infinite) classes of classical Lie groups \(\{G(l)\}_{l>2} \) such that \(G_l \) is isomorphic to a central extension of the group of polynomial loops or twisted polynomial loops on \(G(l) \) (cf. [5] §2.8).
Acknowledgments. The author wishes to thank his supervisor, Prof. Duan Haibao, for ongoing support during his research work. Thanks are also due to the anonymous referee for many suggestions for revisions.

References

Xianzu Lin
College of Mathematics
and Computer Science
Fujian Normal University
Fuzhou, 350108, China
linxianzu126.com

Received July 12, 2011
and in final form November 14, 2012