Erratum to
“A Converse to the Second Whitehead Lemma”

Pasha Zusmanovich

Communicated by W. A. F. Ruppert

Mathematics Subject Classification 2010: 17B56.
Key Words and Phrases: Spectral sequence, Second Whitehead Lemma.

In [6], a result from [5] is used, claiming that the Hochschild–Serre spectral sequence abutting to the cohomology of the semidirect sum \(L = S + I \) of Lie algebras \(S \) and \(I \) (\(S \) is a subalgebra, \(I \) is an ideal, i.e. \(S \) acts on \(I \)) with coefficients in an arbitrary \(L \)-module \(V \), with respect to the ideal \(I \), stabilizes at the \(E_2 \) page ([5, Lemma 1] and [6, Proposition 1.3]). In the whole generality, this statement is false. In fact, as shown in [1], this spectral sequence can stabilize at arbitrarily large step.

This statement is true, however, in many special cases: for example, if the base field is of characteristic zero, \(S \) is a finite-dimensional semisimple Lie algebra, and \(V \) is finite-dimensional ([4, Theorem 13]). More sufficient conditions guaranteeing stabilization at \(E_2 \) can be found in [1, Theorem 3], [2, Corollaries 1.5, 1.6 and Theorem 1.7], and [3, Theorem 1.2].

The main result (Theorem 0.2) of [6] can be salvaged in the following way. The above-mentioned general erroneous claim was used once, in the proof of Lemma 2.1. Lemma 2.1, in its turn, was used in the proof of Theorem 0.2 twice: first time (in the proof of Lemma 2.4) in the situation where \(S \) is semisimple, what is covered by the Hochschild–Serre result mentioned above, and the second time in the situation where \(L = S + I \) is the direct sum of algebras. In the latter case, one can invoke the Kunneth theorem instead of Proposition 1.3.

I am grateful to Donald Barnes who pointed out this error.
References

Pasha Zusmanovich
Institute of Mathematics and Statistics
University of São Paulo, Brazil
pasha@ime.usp.br

Received April 11, 2014
and in final form April 28, 2014