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A positively convex module is a non-empty set closed under positively convex combinations but not
necessarily a subset of a linear space. Positively convex modules are a natural generalization of positively
convex subsets of linear spaces. Any positively convex module has a canonical semimetric and there
is a universal positively affine mapping into a regularly ordered normed linear space and a universal
completion.
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1. Introduction

In the following all linear spaces will be real. If E is a linear space ordered by a proper
cone C,E = C − C, and normed by a Riesz norm with respect to C, the positive part
of the unit ball O(E), i.e. O(E) ∩ C, is a typical example of a positively convex set or
module. Actually any positively convex set or module i.e. any non-empty set P closed
under positively convex operations, is an affine quotient of such a positive part of a unit
ball. Positively convex modules are natural generalizations of positively convex sets, the
postulate that they are subsets of some linear space is dropped.

Special positively convex sets play an important part in the theory of order-unit Banach
spaces as so-called “universal capsÔ (cp. [21], §9) and also as generators of the topology
of locally solid ordered topological linear spaces and the theory of Riesz seminorms (cp.
[21], §6). In [9] it is proved that there is a functorial connection between the theory of
positively (countably) convex sets or modules and the theory of regularly ordered Banach
spaces, i.e. ordered by a Riesz norm. To investigate this relation and to give a more
explicit description Wickenhäuser in [20] introduced a semimetric for positively convex
modules. In [4] Kemper expressed this semimetric by the seminorm of the positively
convex module. These results improved the description of the universal regularly ordered
normed linear space generated by a positively convex module somewhat but the situation
has been far from satisfactory compared with the results for other types of convex sets
(cf. [1], [10], [11], [12], [16], [14], [15]).

In §2 of this paper the semimetric of a positively convex module is introduced and dis-
cussed. §3 contains the functorial connection between positively convex modules and
ordered linear spaces and the characterization of preseparated positively convex modules.
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The positive part of the unit ball of a regularly ordered normed linear space induces a
canonical functor to the category of positively convex modules. In §4 it is shown that,
vice versa, any positively convex module generates a universal regularly ordered normed
linear space and a universal positively affine morphism into the positive part of the unit
ball of this space. This leads to a discussion of complete positively convex modules and
positively superconvex modules in §5 where also the existence of a universal completion
is proved.

2. The semimetric

In the following all linear spaces considered will be real. A positively convex set X in a
linear space E is a non-empty subset of E closed under positively convex operations i.e.

xi ∈ X, 1 ≤ i ≤ n, and αi ≥ 0,
n
∑

i=1

αi ≤ 1 implies
n
∑

i=1

αixi ∈ X. A positively convex

operation may be described as an element of the set Ωpc := {Ýα | Ýα = (α1, . . . , αn), n ∈

N, αi ≥ 0, 1 ≤ i ≤ n, and
n
∑

i=1

αi ≤ 1}. This leads to the following natural generalization.

Definition 2.1. (cf. [4], [5], [9], [13], [16]): A positively convex module P is a non-empty
set together with a family of mappings ÝαP : P n −→ P, Ýα = (α1, . . . , αn) ∈ Ωpc. In
addition, with the notation

n
∑

i=1

αipi := ÝαP (p1, . . . , pn)

for pi ∈ P, 1 ≤ i ≤ n, the following equations have to be satisfied:

(PC1)
n

∑

i=1

δikpi = pk,

pi ∈ P, 1 ≤ i ≤ n, and δik the Kronecker symbol, 1 ≤ i, k ≤ n.

(PC2)
n

∑

i=1

αi

(

∑

k∈Ki

βikpk

)

=
m
∑

k=1







n
∑

i=1
k∈Ki

αiβik





 pk,

where (α1, . . . , αn), (βik | k ∈ Ki) ∈ Ωpc, 1 ≤ i ≤ n, pk ∈ P , for k ∈
n
⋃

i=1

Ki. Moreover,

n
⋃

i=1

Ki = Nm = {k | 1 ≤ k ≤ m} and in the “sumÔ
∑

k∈Ki

βikpk the summands are supposed

to be written in the natural oder of the k’s.

A number of computational rules follow from these equations (cf. [9], [10]), e.g. the fact

that
n
∑

i=1

αipi is not changed by adding or omitting summands with zero coefficients. Hence,

(PC2) takes the more simple form

n
∑

i=1

αi

(

m
∑

k=1

βikpk

)

=
m
∑

k=1

(

n
∑

i=1

αiβik

)

pk.
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Obviously, any convex set, which will always mean a positively convex subset in some
linear space, is a positively convex module. Any positively convex module is a convex
module (cp. [16]), the converse does not hold, because any positively convex module

contains a zero element 0 :=
n
∑

i=1

0pi. However, every absolutely convex module ([10], [14])

is a positively convex module, as is any cone or convex set in a linear space containing
the orgin. A familiar example of positively convex sets are the universal caps of cones in
functional analysis ([21]).

If P1, P2 are positively convex modules a mapping f : P1 −→ P2 is called a morphism or
a positively affine mapping if

f

(

n
∑

i=1

αixi

)

=
n

∑

i=1

αif(xi)

holds for any (α1, . . . , αn) ∈ Ωpc and any xi ∈ P, 1 ≤ i ≤ n. This defines the category
PC of positively convex modules with forgetful functor U : PC → Set. For any X ∈
Set, ∆(R(X)

+ ) := {h | h : X −→ R+, support of h finite and
∑

x

h(x) ≤ 1}, R+ :=

{t | t ∈ R, t ≥ 0}, is the free positively convex module generated by X. ([9], [10]).
U : PC −→ Set is algebraic. It is the Eilenberg-Moore category of the category Vec+1 of
regularly ordered normed linear spaces where ∆ : Vec+1 −→ Set is the forgetful functor
with ∆(E) := {x | x ∈ E, x ≥ 0, ‖x‖ ≤ 1} ([4], [9]).

Definition 2.2. (cf. [4], [20]): For a positively convex module P and x, y ∈ P one defines

dP (x, y) := inf { α
2β

| β > 0, α > 0 and there are a, u, v ∈ P and

δ, ε ∈ R+ with α+β, δ+β, ε+β ≤ 1 and αa+βx = δu+βy, αa+βy = εv+βx}.
dP is called the semimetric of P (cf. 2.3). If it is obvious to which P the semimetric
belongs the index is often omitted. P ∈ PC is called a metric positively convex module
if dP is a metric.

This semimetric was first introduced by Wickenhäuser in [20], 9.2 in the following form

dW (x, y) = inf{α | 0 ≤ α ≤ 2 and there are a, u, v ∈ P and n ∈ N
n ≥ 3 with 1

n
x+ α

n
a = 1

n
y + 1

2
v, 1

n
y + α

n
a = 1

n
x+ 1

2
u}.

This form proved to be not very well suited for computations. A straightforward argument
shows that

dP (x, y) =
1

2
dW (x, y).

In [4], Kemper expressed dW (x, y) by the seminorm of positively convex modules (cf. [9]),
a form which still presented considerable difficulties in describing the so-called comparison
functor ([9]) from PC to Vec+1 . This functor will be investigated in §4.

Proposition 2.3. ([4], [16], [20]):

(i) For any positively convex module P , dP is a semimetric with 0 ≤ dP (x, y) ≤ 1 and
dP (x, 0) ≤ ‖x‖, x, y ∈ P , where ‖£‖ denotes the seminorm of P ([9]).
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(ii) Let xi, yi ∈ P, 1 ≤ i ≤ n, P ∈ PC and (λ1, . . . , λn) ∈ Ωpc then

dP

(

n
∑

i=1

λixi,
n

∑

i=1

λiyi

)

≤
n

∑

i=1

λidP (xi, yi).

(iii) for x, y ∈ P, P ∈ PC and 0 ≤ λ ≤ 1

dP (λx, λy) = λdP (x, y).

(iv) If f : P1 −→ P2 is a morphism in PC then

d2(f(x), f(y)) ≤ d1(x, y),

if di(£,£) is the semimetric of Pi, i = 1, 2.

Proof. (i): 2.2 implies that dP (x, y) is symmetric. In [20] 0 ≤ dP (x, y) ≤ 1 was shown.
One takes α = 2−1, β = 4−1, δ = ε = 2−1, a = 2−1x + 2−1y, u = x and v = y. In order
to show the triangle inequality for x, y, z ∈ P , we may assume dP (x, z) + dP (z, y) < 1.
Hence, dP (x, z) < 1 and dP (z, y) < 1 follows and there are equations

α1a1 + β1x = δ1u1 + β1z

α1a1 + β1z = ε1v1 + β1x

α2a2 + β2z = δ2u2 + β2y

α2a2 + β2y = ε2v2 + β2z

with dP (x, z) ≤ α1(2β1)
−1 < 1, dP (z, y) ≤ α2(2β2)

−1 < 1. A routine computation using
(PC1) and (PC2) yields

1

2
α1β2a1 +

1

2
α2β1a2 +

1

2
β1β2x =

1

2
β1δ2u2 +

1

2
β2δ1u1 +

1

2
β1β2y,

1

2
α1β2a1 +

1

2
α2β1a2 +

1

2
β1β2y =

1

2
β1ε2v2 +

1

2
β2δ1v1 +

1

2
β1β2y.

With α := 2−1(α1β2 + α2β1), β := 2−1β1β2

dP (x, y) =
α

2β
=

α1

2β1
+

α2

2β2

follows (cf. 2.2), which implies the assertion.

In order to show dP (x, 0) ≤ ‖x‖ we may assume ‖x‖ < 1. Consider ζ with ‖x‖ ≤ ζ < 1
and write ζ := α(2β)−1 with α = 1− β, β = (1 + 2ζ)−1. The definition of the seminorm
in P (cf. [9], (4.2.), p. 97) implies the existence of an e ∈ P with

x = ζe =
α

2β
e, βx = α

(

1

2
e

)

.

Hence, with a := 2−1e, αa+βx = αe+β0 and αa+β0 = 00+βx follows, i.e. dP (x, 0) ≤ ζ
and dP (x, 0) ≤ ‖x‖.
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(ii): Let αiai + βixi = δiui + βiy, αiai + βiyi = εivi + βixi, 1 ≤ i ≤ n, be equations
from the definition of dP (xi, yi). Put β := min{βi | 1 ≤ i ≤ n} > 0, µi := αiβ

−1
i , νi :=

δiβ
−1
i , σi := εiβ

−1
i , 1 ≤ i ≤ n. (PC1) and (PC2) of 2.1 imply

βµiai + βxi = βνiui + βyi, 1 ≤ i ≤ n,

and

1

2

n
∑

i=1

λiβµiai +
1

2

n
∑

i=1

λiβxi =
n

∑

i=1

1

2
λiβ(1 + µi)

(

µi

1 + µi

ai +
1

1 + µi

xi

)

=
n

∑

i=1

1

2
λi

β

βi

(αi + βi)

(

αi

αi + βi

ai +
βi

αi + βi

xi

)

=
n

∑

i=1

1

2
λi

β

βi

(δi + βi)

(

δi
δi + βi

ui +
βi

δi + βi

yi

)

=
1

2

n
∑

i=1

λiβνiui +
1

2

n
∑

i=1

αiβyi.

With µ :=
n
∑

k=1

λkµk, ν :=
n
∑

k=1

λkνk, σ :=
n
∑

k=1

λkσk and a :=
n
∑

k=1

λkµkµ
−1ak this yields

1

4
βµa+

1

4
β

n
∑

i=1

λixi =
1

4
βν

n
∑

i=1

λiνiν
−1ui +

1

4
β

n
∑

i=1

λiyi.

By a completely analogous computation one gets

1

4
βµa+

1

4
β

n
∑

i=1

λiyi =
1

4
βσ

n
∑

i=1

λiσiσ
−1vi +

1

4
β

n
∑

i=1

λixi.

Hence

dP

(

n
∑

i=1

λixi,
n

∑

i=1

λiyi

)

≤ 1

2
µ =

n
∑

i=1

λi
αi

2βi

and

dP

(

n
∑

i=1

λixi,
n

∑

i=1

λiyi

)

≤
n

∑

i=1

λidP (xi, yi).

(iii): (ii) implies dP (λx, λy) ≤ λdP (x, y) for 0 ≤ λ ≤ 1. To show the converse inequality
we may assume 0 < λ < 1 and dP (λx, λy) < λ. Consider dP (λx, λy) < µ < λ. Then there
are equations

αa+ βλx = δu+ βλy,

αa+ βλy = εv + βλx.
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Multiplying these equations by n−1, with some n > max{ε, δ, 2µβ}+ βλ+ 1, one gets

2βµ

n
(

α

2βµ
a) +

βλ

n
x =

δ

n
u+

βλ

n
y,

2βµ

n
(

α

2βµ
a) +

βλ

n
y =

ε

n
v +

βλ

n
x,

hence dP (x, y) = µλ−1, λdP (x, y) ≤ µ and λdP (x, y) ≤ dP (λx, λy).

(iv) follows immediately from 2.2.

Examples 2.4. (i) If S is a lower semilattice with a smallest element 0, S becomes a
positively convex module if one defines

n
∑

i=1

αixi :=
n
∧

i=1
αi 6=0

xi,

for (αi, . . . , αn) ∈ Ωpc and xi ∈ S, 1 ≤ i ≤ n. The semimetric is trivial as an elementary
calculation shows.

(ii) Let A be an absolutely convex module or a subset of a real linear space (cf. [10], [11],
[14], [20]), then for x, y ∈ A

1

4
x =

1

4
y +

1

2

(

1

2
x− 1

2
y

)

1

4
y =

1

4
x+

1

2

(

1

2
y − 1

2
x

)

follows, hence dP (x, y) = 0 i.e. the semimetric of A as a positively convex module is
trivial.

(iii) If P ⊂ E is a positively convex module or, in particular, a positively convex subset
in the linear space E and P is not linearly bounded (cf. [1]) there is a non-constant affine
mapping ([16])

f : ]0,∞[ → P.

Put x := f(α), z := f(β) and a := f(1) for 1 < α < β, then

x =
α− 1

β − 1
z +

β − α

β − 1
a

holds and hence

dP (x, a) ≤
α− 1

β − 1
dP (z, a) +

β − a

β − 1
dP (a, a) ≤

α− 1

β − 1
.

For β → ∞, dP (x, a) = 0 follows. As special cases abstract or concrete cones are sub-
sumed under this type.

(iv) In [20] Wickenhäuser gave the following example. The subset

P := {(x, y) | −1 ≤ x ≤ 1, x2 ≤ y ≤ 1}
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of R2 is obviously positively convex. Moreover, for any 0 ≤ t ≤ 1 and any n ∈ N,

1

2n2
(0, t) +

1

4n
(−

√
t, t) =

1

2

(

−
√
t

n
,
t

n2

)

+
1

4n
(
√
t, t)

1

2n2
(0, t) +

1

4n
(
√
t, t) =

1

2

(√
t

n
,
t

n2

)

+
1

4n
(−

√
t, t)

hold. Hence, dP ((
√
t, t), (−

√
t, t)) ≤ n−1 and dP ((

√
t, t), (−

√
t, t)) = 0 follows. Put

P0 = {(0, y) | 0 ≤ y ≤ 1},

then P0 is a positively convex subset of P and the canonical projection π2(x, y) := (0, y)
is a positively affine morphism π2 : P → P0. Elementary geometric considerations show
that

dP (a, b) = dP0(π2(a), π2(b))

for any a, b ∈ P holds. Moreover, for x0, y0 ∈ P0, one gets dP0(x0, y0) =
1
2
‖x0 − y0‖1 with

the l1-norm ‖£‖1 on R2.

This is very interesting, because P is linearly bounded, even compact and the same holds
for the absolutely convex set P − P . Hence, as a convex set or module, respectively, P is
metric (cf. [16], 2.7) while as a positively convex set it is not.

If we denote the convex semimetric of any positively convex module P by dc(£,£) and
consider a defining equation for dc ([16], 2.2)

αa+ (1− α)x = αb+ (1− α)y,

0 ≤ α < 1, x, y ∈ P , an easy computation using (PC1), (PC2) yields

α

(

1

2
a+

1

b
b

)

+
1− α

2
x = αb+

1− α

2
y

α

(

1

2
a+

1

2
b

)

+
1− α

2
y = αa+

1− α

2
x.

Hence, dP (x, y) ≤ (1 − α)−1α follows for the semimetric of P as a positively convex
module, which implies

dP (x, y) ≤ dc(x, y), (∗)

for any positively convex module. The above example shows that equality does not hold
in general in (∗).

3. Positively convex modules and ordered linear spaces

It will be shown that any positively convex module determines an ordered linear space,
which is unique up to an isomorphism. This will permit a characterization of different
important types of positively convex modules.
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Definition 3.1. A linear space E is called ordered if it is ordered by a generating cone C,
i.e. E = C − C. A morphism f : E1 → E2 of ordered linear spaces is a monotone linear
mapping, i.e. f(C1) ⊂ C2, Ci the cone of Ei, i = 1, 2. The ordering in an ordered linear
space is defined by x ≤ y iff y− x ∈ C. The ordering cone of an ordered linear space will
be denoted be Cone (E). OrdVec is the category of ordered linear spaces and monotone
linear mappings. An ordered linear space E with cone C is called antisymetrically ordered
if, for x, y ∈ E, x ≤ y and y ≤ x implies x = y. This is equivalent to C ∩ (−C) = {0}, i.e.
to the property of C to be proper.

If E is a linear space, E∗ is the dual space and if C is any cone in E C∗ := {λ | λ ∈
E∗, λ(c) ≥ 0 for any c ∈ C} is called the dual cone. Any interval in R containing 0
is a positively convex set with the canonical structure inherited from R and will always
be considered with this structure in the following if not explicitly stated otherwise. The
mapping which maps every E ∈ OrdVec to its cone Cone(E) induces a functor Cone:
OrdVec → PC. As usual PC(P1, P2), P1, P2 ∈ PC, denotes the set of all morphisms
from P1 to P2. With the pointwise defined operations and order, PC(P,R), P ∈ PC, is a
linear space ordered by the proper cone PC(C,R+); it is in general not an ordered linear
space in the sense of 3.1

Definition 3.2. ([16]): For a positively convex module P we define ρ̃P : P → PC(P,R)∗

by point evaluation, ρ̃P (x)(f) := f(x), x ∈ P, f ∈ PC(P,R). ρ̃P is a positively affine
mapping. R(P ) := R+ρ̃P (P )−R+ρ̃P (P ) is a subspace of PC(P,R)∗ and an ordered linear
space with the proper positive cone R+ρ̃P (P ) ⊂ PC(P,R+)

∗. The restriction of ρ̃P to
R(P ) is denoted by ρP .

Proposition 3.3. (cf. [14], [16]): The R(P ), P ∈ PC, induce a functor PC → OrdVec
which is left adjoint to Cone: OrdVec → PC.

Proof. Let f : P → Cone (E), E ∈ OrdVec, be positively affine, then, for all
λ ∈ E∗, λf ∈ PC(P,R) follows. For x, y ∈ P, ρp(x) = ρP (y) implies ρP (x)(λf) =
ρP (y)(λf), λ ∈ E∗, i.e. λf(x) = λf(y) for all λ ∈ E∗. This yields f(x) = f(y) and
there is a unique positively affine mapping ϕ : ρP (P ) → Cone (E) with ϕρP = f . The
definition

ϕ0(αρP (x) + βρP (y)) := (α+ β)f

(

α

α+ β
x+

β

α+ β
y

)

describes the unique extension ϕ0 : Cone (R(P )) → Cone (E) for x, y ∈ P, α, β ≥
0, α+β > 0, of ϕ to a cone morphism, which induces a unique monotone linear extension
ϕ1 : R(C) → E because the functor Cone is full and faithful. Hence, f = Cone (ϕ1)ρp
follows.

A positively convex module P is called preseparated, if P is a preseparated convex module,
i.e. if, for any x, y, z ∈ P and any 0 < α ≤ 1, αx+(1−α)z = αy+(1−α)z implies x = y
(cf. [13], 4.9). This is a well-defined property because any positively convex module is a
convex module. Obviously the following lemma holds:

Lemma 3.4. Let P be a positively convex module, then P is preseparated iff, for any
x, y, z ∈ P and any α, β ≥ 0, α+ β ≤ 1, α > 0, αx+ βz = αy + βz implies x = y.

Proposition 3.5. (cp. [16], 3.5): Let P be a positively convex module. Then
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(i) If P is metric it is preseparated.

(ii) P is preseparated if and only if ρP is injective.

(iii) Let P be metric, xi ∈ P, αi ≥ 0, i = 1, 2, and 0 < α1+α2 ≤ 1, then α1x1+α2x2 = 0
and αi > 0 implies xi = 0 for i = 1, 2.

Proof. (i) Let, for x, y, z ∈ P and some α with 0 < α < 1,

αx+ (1− α)z = αy + (1− α)z. (∗)

Then (∗) holds for all α ∈ [0, 1[ (cf. [13], 2.2) and this implies dP (x, y) ≤ α−1(1− α) for
α ∈]0, 1[, hence dP (x, y) = 0 and x = y.

(ii) If ρP is injective, P is trivially preseparated. In [9], 4.19 it is shown that there is a cone
K(P ) and a positively affine mapping κP : P → K(P ). Moreover, if P is preseparated κP

is injective and K(P ) satisfies the cancellation rule: x+ z = y+ z, x, y, z ∈ K(P ), implies
x = y. Hence K(P ) can be embedded as a generating cone into an ordered linear space
E(P ). 3.3 yields the existence of a unique ϕ : R(P ) → E(P ) with κP = Cone (ϕ)ρP ,
hence ρP is injective (cp. also [8]).

(iii) Let us first consider the case α1 = α2 = 2−1, i.e.

1

2
x1 +

1

2
x2 = 0.

This implies (cf, [20], 10.5)

1

4
x1 =

1

4
x2 +

1

2

(

1

2
x1 +

1

2
x1

)

1

4
x2 =

1

4
x1 +

1

2

(

1

2
x2 +

1

2
x2

)

,

hence d(x1, x2) = 0 or x1 = x2, respectively, as P is metric. For arbitrary αi > 0, 0 <
α1 + α2 ≤ 1, one has

1

2
(α1x1) +

1

2
(α2x2) = 0

which implies α1x1 = α2x2 = 0 because of the first case. Now, P is preseparated (2.5, (i))
hence αi > 0 yields xi = 0, i = 1, 2.

Remark 3.6. (i) ρP also induces the epireflection PC → PresepPC onto the full sub-
category of preseparated positively convex modules. Put M(P ) := ρP (P ) and define γP
as the restriction of ρP to M(P ), P ∈ PC. M(P ) is obviously preseparated and it follows
directly from 3.3 that γP is the desired epireflection.

(ii) An abstract cone is trivially an object of PC ([8]). An abstract cone which can be
embedded into a linear space is called vectorial by Nachbin in [8]. An abstract cone is
vectorial iff it satisfies the cancellation rule iff it is preseparated as an object of PC. The
vectorial cones generate the full subcategory VecCone of PC. Define the cone C(P ) :=
R+ρP (P ) and the morphism in PC εP : P → C(P ), P ∈ PC, as the restriction of ρP
to C(P ). Then a straightforward argument shows that C(P ) is the reflection PC →
VecCone with reflection morphism εP .
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4. Positively convex modules and regularly ordered normed linear spaces

Definition 4.1. ([6], [9], [21]): A normed linear space E is called regularly ordered if it
is ordered by a cone C and the norm ‖£‖ is a Riesz norm with respect to C, i.e.

‖x‖ = inf {‖c‖ | −c ≤ x ≤ c},

x ∈ E. One may assume that the cone C is closed, because ‖£‖ is also a Riesz norm with

respect to the closure C as a straightforward argument shows. The closed cone of E will

be denoted by Cone (E), the closed unit ball by O(E) and the open unit ball by
◦
O(E).

Moreover, one defines ∆(E) := O(E) ∩ Cone(E).

A mapping between regularly ordered normed linear spaces f : E1 → E2 is called a
morphism if it is a positive, linear contraction. These morphisms and the regularly ordered
normed linear spaces constitute the category Vec+1 and the ∆(E), E ∈ Vec+1 , induce a
functor ∆ : Vec+1 → Set with left adjoint l1 : Set → Vec+1 (cf. [9]). The full subcategory
of regularly ordered Banach spaces is denoted by Ban+

1 .

In [9] it is shown that PC is the category of Eilenberg-Moore algebras for the functor
∆ : Vec+1 → Set. Actually only the Eilenberg-Moore algebras of ∆ : Ban+

1 → Set
were investigated which are the positively superconvex modules (cp. §5 in [9]). But
the results of [9] carry over verbatim to ∆ : Vec+1 → Set. There is a canonical so-called

comparison functor ̂∆ : Vec+1 → PC induced by the canonical positively convex structure

on ∆(E), E ∈ Vec+1 and there is a left adjoint S : PC → Vec+1 of ̂∆ assigning to any
P ∈ PC a universal S(P ) ∈ Vec+1 . The constructions of S in [5], [9] and [20] are not very
satisfying because they do not give much information about the relation between P and
S(P ) ∈ PC. In the following, S(P ) will be constructed in a different way.

Definition 4.2. ([21]): Let E be an ordered linear space. A ⊂ E is called absolutely
dominated if, for any x ∈ A, there is an a ∈ A with −a ≤ x ≤ a. A is called absolutely
order convex, if, for any a ∈ A ∩ C, the interval [−a, a] = {x | x ∈ E,−a ≤ x ≤ a}
is contained in A. A is called solid, if it is absolutely dominated and absolutely order
convex. For any A ⊂ E

sol(A) :=
⋃

a∈A∩C

[−a, a]

is called the solid hull of A. It is the smallest solid set in E containing A, if A is absolutely
dominated.

Solid sets play a fundamental role in the theory of regularly ordered linear spaces, in
characterizing and constructing them, analogous to the role absolutely convex sets play
for normed linear spaces (cf. [14]) and convex base sets for base normed linear spaces
(cf. [2], [15], [16]). An ordered normed linear space E is a regularly ordered normed space

iff the open unit ball
◦
O(E) is solid (cf. [21], 6.12).

As mentioned already a regularly ordered normed linear space E supplies a paradigmatic
case of a metric positively convex set, namely ∆(E) with its canonical positively convex
structure. If x, y ∈ ∆(E) and two equations as in 2.2 αa+βx = εu+βy, αa+βy = δv+βx
are given, one gets

− α

2β
a ≤ 1

2
(x− y) ≤ α

2β
a,
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hence 2−1‖x−y‖ ≤ d∆(E)(x, y). To show the converse inequality we use the representation
‖z‖ = inf{α > 0 | −αe ≤ z ≤ αe, e ∈ ∆(E)} for the norm ‖z‖, z ∈ E. This follows at
once from the chain of inclusions

◦
O(E) ⊂ sol(∆(E)) ⊂ O(E).

−αa ≤ 2−1(x− y) ≤ αa, α > 0, x, y, a ∈ ∆(E) now implies

αa+
1

2
x = δu+

1

2
y

αa+
1

2
y = εv +

1

2
x

with suitable u, v ∈ ∆(E), ε, δ > 0. By dividing these equations by a sufficiently large
M > 0, d∆(E)(x, y) ≤ α results or d∆(E)(x, y) ≤ 2−1‖x− y‖.

Lemma 4.3. (cf. [21], 6.3): If E is an ordered linear space and A ⊂ E is absorbing,
convex and solid, then the Minkowski functional ‖£‖ of A is a Riesz seminorm.

Proof. Put |x| := inf{‖c‖ | −c ≤ x ≤ c} for x ∈ E. If −c ≤ x ≤ c and ‖c‖ < α, then

−α−1c ≤ α−1x ≤ α−1c. As α−1c ∈
◦
O(E) ⊂ A, α−1x ∈ A follows, i.e. ‖x‖ ≤ α. This

yields ‖x‖ ≤ ‖c‖ and ‖x‖ ≤ |x|. Conversely, x = αa ∈ αA, a ∈ A, implies −a0 ≤ a ≤ a0
with an a0 ∈ A, hence −αa0 ≤ x ≤ αa0 and |x| ≤ ‖αa0‖ ≤ α follows, which implies
|x| ≤ ‖x‖ and proves the assertion.

Theorem 4.4. (cp. [12], [14], [16], [20]): ̂∆ : Vec+1 → PC has a left adjoint functor
S : PC → Vec+1 .

Proof. Let, for P ∈ PC,

Aff+
b (P ) := {f | f ∈ PC(P,R), f bounded},

C0(P ) := {f | f ∈ Aff+
b (P ) and f(x) ≥ 0, x ∈ P}.

Aff+
b (P ) is a Banach space with the supremum norm ‖£‖∞ and is pointwise ordered.

C0(P ) is the proper cone of positive elements of Aff+
b (P ) and a straight forward argument

shows that C0(P ) is ‖£‖∞-closed. For the subspace Q0(P ) := C0(P )−C0P and f ∈ Q0(P )

‖f‖ := inf{‖g‖∞ | −g ≤ f ≤ g, g ∈ C0(P )}

defines a Riesz seminorm on Q0(P ). As ‖f‖∞ ≤ ‖f‖ holds for f ∈ Q0(P ), ‖£‖ is even
a norm. If g ∈ C0(P ), then obviously also ‖g‖ ≤ ‖g‖∞ is satisfied, i.e. ‖g‖ = ‖g‖∞ and
this shows that ‖£‖ is a Riesz norm. Hence, Q0(P ) is a regularly ordered normed linear

space with cone C0(P ). For a set M ⊂ Q0(P ), let M denote the closure with respect to

‖£‖ and M∞ the closure with respect to ‖£‖∞. As C0(P ) ⊂ C0(P ) ⊂ C0(P )∞ = C0(P )
holds, C0(P ) is also ‖£‖-closed.

Because of [21], (6.12) the topological dual Q′
0(P ) of Q0(P ) is a regularly ordered Banach

space with the dual cone C′
0(P ) and the Riesz norm ‖£‖′ determined by C′

0(P ). The
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mapping ÝσP : P → Q′
0(P ) defined by point evaluation, ÝσP (x)(f) := f(x), x ∈ P, f ∈

Q0(P ), is positively affine. For f ∈ C0(P ), x ∈ P, ÝσP (x)(f) ≥ 0, hence ÝσP (P ) ⊂ C′
0(P ) and

C(P ) := R+ÝσP (P ) is a proper cone. If ‖£‖∞ denotes the supremum norm in Q′
0(C) ‖λ‖′ =

‖λ‖∞ holds for λ ∈ C′
0(P ), hence, for x ∈ P ,

‖ÝσP (x)‖′ = ‖ÝσP (x)‖∞ = sup{|ÝσP (x)(f)| | ‖f‖ ≤ 1} ≤ 1

follows. The restriction of ÝσP to the subspace S(P ) := C(P ) − C(P ), ordered by C(P ),
is denoted by σP : P → S(P ). For λ ∈ sol(σP (P )), there is an x ∈ P with −σP (x) ≤
λ ≤ σP (x). This implies ‖λ‖′ ≤ ‖σP (x)‖′ ≤ 1, i.e. sol(σP (P )) is ‖£‖′-bounded and
hence linearly bounded (cf. [1]). If xi ∈ sol(σP (P )), i = 1, 2, then there are pi ∈ P with
−σP (pi) ≤ xi ≤ σP (pi), i = 1, 2. For α, β ≥ 0, α+ β ≤ 1, this implies

−σP (αp1 + βp2) ≤ αx1 + βx2 ≤ σP (αp1 + βp2),

i.e. αx1 + βx2 ∈ sol(σP (P )). Also, x ∈ sol(σP (P )) obviously implies −x ∈ sol(σP (P )),
hence sol(σP (P )) is absolutely convex. Any x ∈ S(P ) can be written as x = ασP (P )), i.e.
sol(σP (P )) is absorbing. An application of 4.3 now yields that the Minkowski functional
a ‖£‖ of sol(σP (P )) is a Riesz norm and S(P ) ∈ Vec+1 .

To simplify notation, let us denote the restriction of σP to Ý∆(S(P )) again by σP . If

σP (x) = σP (y), x, y ∈ P , and g : P → Ý∆(E), E ∈ Vec+1 , is a positively affine mapping,
λg ∈ Q0(C) holds for any λ ∈ E ′. This implies σP (x)(λg) = σP (y)(λg) or λ(g(x)) =
λ(g(y)) for all λ ∈ E ′ and we get g(x) = g(y). Hence, there is a unique positively affine

ϕ : σP (P ) → Ý∆(E) with g = ϕσP . In order to extend ϕ to S(P ) take a z ∈ S(P ), z 6= 0,
and two representations

z = α1σP (x1)− β1σP (y1) = α2σP (x2)− β2σP (y2),

αi, βi ≥ 0, αi + βi > 0, xi, yi ∈ P, i = 1, 2. This yields

(α1 + β2)σP

(

α1

α1 + β2
x1 +

β2

α1 + β2
y2

)

= (α2 + β1)σP

(

α2

α2 + β1
x2 +

β1

α2 + β1
y1

)

.

We may assume α1 + β2 > α2 + β1 and by dividing by α1 + β2 one gets

σP

(

α1

α1 + β2
x1 +

β2

α1 + β2
y2

)

= σP

(

α2

α1 + β2
x2 +

β1

α1 + β2
y1

)

and

g

(

α1

α1 + β2
x1 +

β2

α1 + β2
y2

)

= g

(

α2

α1 + β2
x2 +

β1

α1 + β2
y1

)

.

Hence, ϕ(z) := α1g(x1) − β1g(y1) yields a well-defined mapping and a routine argument

shows that ϕ : S(P ) → E is a morphism in Vec+1 with g = ̂∆(ϕ)σP uniquely determined
by g. This proves the assertion.

We are now in the position to give a characterization of metric positively convex modules
analogous to the result 2.7 in [16] for convex modules. First, separated objects of PC are
introduced.
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Definition 4.5. (cf. [4], [13], [16], [20]): A positively convex module P is called separated
if PC(P, [0, 1]) separates the points of P . This notion is analogous to the correspond-
ing notion for convex, superconvex ([1], [12], [13]), absolutely and totally convex ([11])
modules.

Proposition 4.6. (cp. [4], [9], [16], [20]): The following statements are equivalent for a
positively convex module P :

(i) P is metric.

(ii) P is preseparated and sol(ρP(P)) is linearly bounded.

(iii) P is separated.

(iv) σP is injective.

Proof. (i)⇒ (ii): To simplify the notation we will omit the index P in ρP in the following.
ρ is injective because of (i) and 3.5, (i) and (ii). To show the linear boundedness of
sol(ρ(P )) we take an a ∈ sol(ρ(P )) and assume ta ∈ sol(ρ(P )), for all t ∈ R. Hence, for
any t > 0, we have an inequality

−ρ(pt) ≤ ta ≤ ρ(pt) (∗)

in R(P ) with pt ∈ P . This yields −t−1ρ(pt) ≤ a ≤ tρ(pt). a can be written as a =
αρ(p) − βρ(q), α, β ≥ 0, p, q ∈ P . As a and M−1a, M > 0, span the same line, we may
assume 0 ≤ α, β ≤ 1 and get a = ρ(p0) − ρ(q0), with p0 = αp, q0 := βq, both in P . (∗)
implies the existence of µt, νt ≥ 0 and ut, vt ∈ P , such that

ρ(p0)− ρ(q0) = −t−1ρ(pt) + µtρ(ut) = t−1ρ(pt)− νtρ(vt).

By an elementary computation and by dividing the equations by an n > max{t−1, νt, µt}+
1 one gets

ρ

(

1

nt
pt +

1

n
p0

)

= ρ

(

µt

n
ut +

1

n
q0

)

,

ρ

(

1

nt
pt +

1

n
q0

)

= ρ

(

νt
n
vt +

1

n
p0

)

.

As ρ is injective, these equations also hold in P and this yields

dP (p0, q0) ≤ (2t)−1

for any t > 0, i.e. dP (p0, q0) = 0 and p0 = q0 because of (i). Hence a = 0 follows and
sol(ρ(P )) is linearly bounded.

(ii) ⇒ (iii): The same reasoning as in the proof of 4.4 shows that sol(ρ(P )) is absolutely
convex and absorbing. As it is also linearly bounded, 3.3 implies that its Minkowski
functional ‖£‖ is a Riesz norm on R(P ) and R(P ) is a regularly ordered normed space.
ρ is injective, hence the λρ, λ ∈ R′(P ), separate the points of P i.e. (iii) is proved.

(iii) ⇒ (iv): Let σP (x) = σP (y), for x, y ∈ P . For any λ ∈ PC(P, [0, 1]) there is a unique

λ0 : S(P ) → R in Vec+1 with λ = ̂∆(λ0)σP , i.e. λ(x) = λ(y) follows for λ ∈ PC(P, [0, 1]).
(iv) follows now from 4.5.
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(iv) ⇒ (i): If E ∈ Vec+1 the semimetric in the positively convex subset ̂∆(E) is 2−1‖x−
y‖, x, y ∈ ̂∆(E). Hence, if d0(£,£) now denotes the semimetric of the positively convex

module σ(P ) ⊂ ̂∆(S(C)) and ‖£‖ the norm of ̂∆(S(C)),

1

2
‖σ(x)− σ(y)‖ ≤ d0(σ(x), σ(y)) ≤ dP (x, y)

follows, for x, y ∈ P . If dP (x, y) = 0 then σP (x) = σP (y) or x = y holds, i.e. dP (£,£)
and also d0(£,£) are metrics.

Corollary 4.7. If P ∈ PC is metric σP : P → ̂∆(S(P )) is an isometry.

Proof. We know already that 2−1‖σ(x) − σ(y)‖ ≤ dP (x, y), x, y ∈ P , hence, we may
assume 2−1‖σ(x)−σ(y)‖ < 1. Now, it is an easy computation to show that, for z ∈ S(P ),

‖z‖ = inf{α > 0 | −ασ(p) ≤ z < ασ(p), p ∈ P}

holds. Let 2−1‖x− y‖ < α < 1 and

−ασ(a) ≤ 1

2
(σ(x)− σ(y)) ≤ ασ(a),

with a ∈ P . By the same argument as in the passage above using the fact that σ is
injective this yields dP (x, y) ≤ α and, hence, dP (x, y) ≤ 2−1‖x− y‖.
For metric P , σP and ρP are essentially the same up to an isomorphism. If P is metric

ρP is injective and R(P ) is a regularly ordered normed space (cf. 4.6). If iR : ̂∆(R(P )) ⊂
Cone(R(P )), iS : ̂∆(S(P )) ⊂ Cone(S(P )) are the inclusions and ρP = iRρ

0
P , one gets

uniquely determined positive linear contractions ϕ : S(P ) → R(P ) and ψ : R(P ) → S(P )

with ρ0P = ̂∆(ϕ)σP , iSσP = Cone(ψ)ρP . This implies that ϕ and ψ are isomorphisms.

5. Complete positively convex modules

A positively convex module P is called complete if it is metric and complete with respect to
dP (£,£). There is a close connection between complete positively convex and positively
superconvex modules.

Definition 5.1. ([1], [9], [16]): Ωpsc := {Ýα | Ýα = (αi | i ∈ N}, αi ≥ 0, i ∈ N, and
∞
∑

i=1

αi ≤

1} is the set of formal positively superconvex combinations. A positively superconvex
module P is a non-empty set together with a family of mappings ÝαP : PN → P, Ýα ∈ Ωpsc.
Moreover, with the notation

∞
∑

i=1

αixi := ÝαP (x1, x2, . . .),

xi ∈ P, i ∈ N, the following equations are satisfied:

∞
∑

i=1

δikxi = xk, (PSC1)
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xi ∈ P, i ∈ N, δik the Kronecker symbol, and
∞
∑

i=1

αi

(

∞
∑

k=1

βikxk

)

=
∞
∑

k=1

(

∞
∑

i=1

αiβik

)

xk, (PSC2)

for xk ∈ P, k ∈ N, (αi | i ∈ N), (βik | k ∈ N) ∈ Ωpsc, i ∈ N.

As Ωpc ⊂ Ωpsc (by identifying (α1, . . . , αn) ∈ Ωpc with Ýα := (αi | i ∈ N), αi := αi, 1 ≤ i ≤
n, αi = 0, for i > n) any positively superconvex module is in PC. A mapping f : P1 → P2

between positively superconvex modules is called positively superaffine or a morphism if

f

(

∞
∑

i=1

αixi

)

=
∞
∑

i=1

αif(xi)

holds for Ýα ∈ Ωpsc and xi ∈ P1, i ∈ N. The positively superconvex modules and these
morphisms form the subcategory PSC ⊂ PC. As in the case of PC we have a canonical

so-called “comparisonÔ functor ̂∆ : Ban+
1 → PSC. In [9] it was proved that PSC is

the Eilenberg-Moore category for the functor ∆ : Ban+
1 → Set with its left adjoint

l1 : Set → Ban+
1 . The construction of the left adjoint S1 : PSC → Ban+

1 of ̂∆ in [9] is
rather indirect and uses the Adjoint Functor Theorem.

A subset P of a linear space E is called a positively superconvex set if it is a positively
superconvex module and the positively superconvex sums extend the usual positively
convex sums in E, i.e. if Ýα ∈ Ωpsc, pi ∈ P, i ∈ N, and αi = 0 for i > n0, then
∞
∑

i=1

αipi =
n0
∑

i=1

αipi (cf. [3], [16]).

Examples of positively superconvex modules abound. All bounded positively convex sub-
sets of finite dimensional linear spaces are positively superconvex as are all bounded closed
positively convex subsets of Banach spaces. If L is a σ-complete lower semilattice one
defines

∞
∑

i=1

αixi :=
∞
∧

i=1
αi 6=0

xi

for xi ∈ L, i ∈ N, and (αi | i ∈ N) ∈ Ωpsc. Then L is a positively superconvex module
(cf. (2.4), (i)). Also any complete positively convex module is positively superconvex (see
5.2). As PSC is a subcategory of PC 2.3 also holds for PSC. But 2.3, (ii), is also true for
infinite combinations. To see this let xi, yi ∈ P, i ∈ N, for a positively superconvex module

P and Ýα ∈ Ωpsc. We may assume that αi > 0 for all i ∈ N. Put An :=
n
∑

i=1

αi > 0, n ∈ N,

and A :=
∞
∑

i=1

αi > 0. Then (PSC2) implies

∞
∑

i=1

αixi = An

n
∑

i=1

αi

An

xi + (A− An)
∞
∑

i=n+1

αi

A− An

xi,

and analogously for
∞
∑

i=1

αiyi. 2.3, (ii), now yields

dP

(

∞
∑

i=1

αixi,
∞
∑

i=1

αiyi

)

≤
n

∑

i=1

αidP (xi, yi) + (A− An),
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which proves the assertion.

Proposition 5.2. A complete positively convex module P is positively superconvex.

Proof. Let xi ∈ P, i ∈ N, and (αi | i ∈ N) ∈ Ωpsc. Moreover, we may assume that αi > 0

for all i ∈ N. With An :=
n
∑

i=1

αi > 0, n ∈ N, A :=
∞
∑

i=1

αi > 0 and

sn :=
n

∑

i=1

αi

An

xi,

n ∈ N, for m > n

(

1− An

Am

) m
∑

i=n+1

αi

Am − An

xi +
An

Am

sn =

(

1− An

Am

)

sm +
An

Am

sm

follows. If we denote the convex semimetric (cf. [16], 2.2), of P considered as as convex
module by dc(£,£) this implies

dc(sm, sn) ≤ A−1
n (Am − An) ≤ α−1

1 (Am − An).

Now dP (sm, sn) ≤ dc(sm, sn) holds because of (2.4), (iv), (∗). Hence sn is a dP (£,£)-
Cauchy sequence which has a limit in P and one defines

∞
∑

i=1

αixi := lim
n→∞

sn.

A routine computation shows that this definition makes P a positively superconvex mod-
ule and that the infinite combinations extend the finite ones. That the converse implica-

tion of 5.2 does not holds is shown by the positively superconvex set Cone(E) ∩
◦
O(E) in

any regularly ordered Banach space E, which in general is not complete.

Lemma 5.3. ([14], 1.5, [16], 4.2): Let E be a linear space ordered by the proper cone
C = R+P , where P is a positively convex set, and let ‖£‖ denote the Minkowski functional
of sol(P ), ‖x‖ = inf{α > 0 | −αp ≤ x ≤ αp, p ∈ P}, x ∈ E. If P is positively
superconvex, in particular, if it is complete, E with ‖£‖ is a regularly ordered Banach
space.

Proof. If x ∈ 2−1P − 2−1P holds, x ∈ sol(P ) follows. x ∈ sol(P ), i.e. −p ≤ x ≤ p with
p ∈ P , implies ‖p± x‖ < 4. Hence, there are λ± with ‖p± x‖ ≤ λ± < 4 and q± ∈ P with
p ± x = λ±q±. As λ±q± ∈ 4P and x = 2−1λ+q+ − 2−1λ−q− holds, we get x ∈ 2P − 2P
and

1

2
P − 1

2
P ⊂ sol(P ) ⊂ 2P − 2P. (∗)

If the Minkowski functional of the absolutely convex set P − P is denoted by ‖£‖0, (∗)
yields

1

2
‖£‖0 ≤ ‖£‖ ≤ 2‖£‖0.
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Now, P − P is linearly bounded ([1], 4.2), and superconvex ([1]), hence totally convex
and E with ‖£‖0 is a Banach space (cf. [14], 1.5). The assertion now follows from the
last inequality.

There is a universal completion of a positively convex module, which is presented in two
forms, 5.4 and 5.5.

Theorem 5.4. (cp. [16], 3.3): ̂∆ : Ban+
1 → PC has a left adjoint S1 : PC → Ban+

1 .

Proof. In the following the notations and results in the proof of 4.4 are used. We will

also omit the index P in ÝσP . Ýσ(P ) ⊂ C′
0(P ) ∩

◦
O(Q′

0(P )) holds and, because of [21],
6.12, C′

0(P ) is complete i.e. ∆(Q′
0(P )) is complete and hence positively superconvex.

Therefore the positively superconvex hull of Ýσ(P ) psconv(Ýσ(P )) = {
∞
∑

i=1

αiÝσ(pi) | (αi | i ∈

N) ∈ Ωpsc, pi ∈ P, i ∈ N} exists in ∆(Q′
0(P )). Define C1(P ) := R+psconv(Ýσ(P )) and

S1(P ) := C1(P ) − C1(P ). Then 5.3 implies S1(P ) ∈ Ban+
1 and the restriction of ÝσP to

̂∆(S1(P )) is denoted by τP or simply by τ in the following.

Now, consider E ∈ Ban+
1 and a morphism f : P → ̂∆(E) in PC and x, y ∈ P with τ(x) =

τ(y). For any λ ∈ E ′ λf ∈ Q0(P ) holds hence τ(x)(λf) = τ(y)(λf) or λ(f(x)) = λ(f(y))

follows. This yields f(x) = f(y) and therefore a unique PC-morphism ϕ0 : τ(P ) → ̂∆(E)
with f = ϕ0τ . If

∑

i

αiτ(pi) =
∑

i

βiτ(qi) in psconv(Ýσ(P )), application ..... λf, λ ∈ E ′,

yields
∑

i

αiλf(pi) =
∑

i

βiλf(qi) i.e.
∑

i

αif(pi) =
∑

i

βif(qi). Hence, ϕ1

(

∑

i

αiτ(pi)

)

:=

∑

i

αif(pi) is a well-defined positively superaffine mapping ϕ1 : psconv(Ýσ(P )) → ̂∆(E),

which, in turn, can be uniquely extended to a cone morphism ϕ2 : C1(P ) → Cone(E).
To see this, consider αu = βv, α, β > 0, u, v ∈ psconv(Ýσ(P )) and any M > α, β.
Then (M−1α)u = (M−1β)v ∈ psconv(Ýσ(P )) holds and M−1αϕ1(u) = M−1βϕ1(v) or
αϕ1(u) = βϕ1(v) follows. Hence, ϕ2(αu) := αϕ1(u) yields the unique extension of ϕ1. An
analogous argument shows that for z ∈ S1(P ), z = c1 − c2, ci ∈ C1(P ), i = 1, 2, ϕ(z) :=
ϕ2(c1)− ϕ2(c2) defines a unique extension ϕ : S1(P ) → E of ϕ2. ϕ satisfies the equation

f = ̂∆(ϕ)τ and is uniquely determined by it as retracing the above argument step by step
shows.

This proof also shows that, for a positively superconvex module P , S1(P ) = S(P ) and
τP = σP hold because ÝσP (P ) is already positively superconvex. Moreover, the fact that
S1(P ) is the completion of S(P ) as shown in the proof of 5.4 is only a special case of a
general method. If E is a regularly ordered normed linear space let e : E → E ′′ be the
canonical isometric and isotonic embedding and put P := psconv(e(∆(E))). Then it can
be shown as in the proof of 5.4 that E1 := R+P − R+P together with e1 : E → E1, the
restriction of e, is the completion of E.

Proposition 5.5. A positively convex module P is metric if and only if τP is an injective
isometry.

Proof. If P is metric, 4.6 implies that τ = τP is injective because τP = in σP with the
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inclusion in: ∆(S(P )) → ∆(S1(P )). Let d(£,£) = dP (£,£), then, for x, y ∈ P ,

1

2
‖τ(x)− τ(y)‖ ≤ d(x, y)

follows from 2.3, (iv). We may assume ‖τ(x)− τ(y)‖ < 2 and 2−1‖τ(x)− τ(y)‖ < α < 1.
Then there is p ∈ P with −ατ(p) ≤ 2−1(τ(x) − τ(y)) ≤ ατ(p) and there exist u, v ∈
P, ε, δ ≥ 0, such that

1

2
(τ(x)− τ(y)) = −ατ(p) + δτ(u),

1

2
(τ(x)− τ(y)) = ατ(p)− ετ(v).

By dividing by an M > max{1, ε, δ} and rearranging one gets

α

M
τ(p) +

1

2M
τ(x) =

δ

M
τ(u) +

1

2M
τ(y),

α

M
τ(p) +

1

2M
τ(y) =

ε

M
τ(v) +

1

2M
τ(x).

As τ is injective the above equations also hold in P . Hence d(x, y) ≤ α and d(x, y) =
2−1‖τ(x)− τ(y)‖ follow. The converse statement is trivial.

Theorem 5.6. (cp. [16]): The full subcategory ComplPC of PC of complete positively

convex modules is a reflective subcategory with reflection functor C(P ) := τp(P ) and
reflection morphism γP : P → C(P ) the restriction of τP .

Proof. For P ∈ PC denote by γP the restriction of τP to C(P ) := τP (P ), the closure of
τP (P ) in S1(P ). C(P ) is complete and we consider a morphism f : P → Q in PC, Q ∈
ComplPC. Because of 5.4 there is a unique morphism ϕ : S1(P ) → S1(Q) with ̂∆(ϕ)τP =

τQf . ϕ can be restricted to a morphism ϕ1 : τP (P ) → τQ(Q). For any z ∈ C(Q) = τQ(Q)
there is a Cauchy sequence τQ(qn), qn ∈ Q, n ∈ N, converging to z. As τQ is an injective
isometry, qn is a Cauchy sequence, hence convergent in Q and z = τQ( lim

n→∞
qn) ∈ τQ(Q).

Hence, τQ(Q) = τQ(Q) follows, γQ is an isomorphism and ϕ0 := γ−1
Q ϕ1 is the unique

morphism with f = ϕ0γQ.

If B is the full subcategory of ComplPC spanned by the P ∈ ComplPC such that

τP is an isomorphism, it can be easily verified that ̂∆ : Ban+
1 → B is an equivalence.

The restriction K of ̂∆ ◦ S1 to ComplPC together with τP : P ∈ ComplPC, is a
mono-reflection K : ComplPC → B, τP : P → K(P ). If fτP = gτP in ComplPC,

f : K(P ) → Q, τQf = ̂∆(f1) and τQg = ̂∆(g1) follows with unique f1, g1 : S1(P ) → S1(Q).

This implies ̂∆(f1)τP = ̂∆(g1)τP or f1 = g1, i.e. τQg = τQf which yields g = f . Hence,
τP is a bimorphism and B a bireflective subcategory.
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[19] A. Wickenhäuser: Positively convex spaces I, Seminarberichte, FB Mathematik, Bd. 30,
Hagen (1988) 119–172.
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