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The maximal points of a nonempty closed bounded convex set in a reflexive Banach space, relative to an
ordering defined by a locally uniformly convex cone, are studied. The set of maximal points is proved
to be contractible, and sufficient conditions are found for it to be contractible by a homotopy with the
semigroup property, or by the flow of an ordinary differential equation.
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Our purpose here is to find sufficient conditions for contractibility of the set of maximal
points of a closed convex set in a Banach space, relative to an ordering defined by a cone.

To introduce terminology, let X be a Banach space. A cone in X will mean a convex set
C ⊂ X containing a nonzero vector, such that for all x ∈ C and λ > 0 we have λx ∈ C.
A cone may thus be topologically open, closed, or neither, and may or may not contain
0. A cone C ⊂ X defines a partial ordering on X by x ≺ y ⇔ y ∈ x + C; notice that if
0 /∈ C then the ordering is strict, in the sense that x 6≺ x always. Given a cone C ⊂ X
and a set K ⊂ X, we say x ∈ K is maximal if there is no y ∈ K \ {x} with x ≺ y (which
is equivalent to requiring (x+C)∩K ⊂ {x}); we call the set of maximal points of K the
maximal set.

Although in sufficiently regular finite-dimensional examples a maximal set must be a
topological ball (of dimension 1 less) and therefore be contractible trivially, in general the
situation is rather worse; a 3-dimensional example in which the maximal set is not locally
connected will be given below.

A set Q in a Banach space Y is said to be locally uniformly convex if Q is convex, bounded,
has nonempty interior, and whenever ξ ∈ Y ∗ attains its supremum relative to Q, every
maximising sequence for ξ relative to Q is (strongly) convergent. This definition extends
standard usage; notice that a Banach space is locally uniformly convex, in the terminology
of the geometry of Banach spaces, if and only if its unit ball is a locally uniformly convex
set according to our definition. For convex bodies in Euclidean space, local uniform
convexity is equivalent to strict convexity. A locally uniformly convex cone C in a Banach
space X is a cone such that, for some ξ ∈ X∗, the section ξ−1(1) ∩ C is a translate of a
locally uniformly convex set in the Banach space ξ−1(0).

We prove three main theorems. Firstly we prove contractibility of the maximal set of a
nonempty closed bounded convex subset of a reflexive Banach space, with an ordering
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defined by a locally uniformly convex cone. Secondly, for an ordering defined by an ellip-
tical open cone in Hilbert space, we prove that the maximal set of a nonempty compact
convex set can be contracted to a point through a homotopy having the semigroup prop-
erty. Thirdly for an elliptical open cone and a smooth convex body in Euclidean space,
we show that the homotopy of the preceding result can be used to construct a flow for a
certain tangent vector field on the surface of the body.

To set these results in context, let us note that, in the case of a smooth (i.e. C1) strictly
convex body in Rd and any cone, the outward unit normal vector field to the body
maps the compact maximal set, S, homeomorphically onto a topological (d − 1)-ball
in the unit sphere of Rd, so S is trivially contractible. Consider however the following
construction in R3. Let e = (0, 0, 1) ∈ R3, let Γ = {(x, y, 0) ∈ R3|x2 + y2 = 1}, and let
C = {(x, y, z) ∈ R3|z > (x2+y2)1/2}. Choose any compact set ∆ ⊂ Γ having at least three
points, and let K = conv(∆ ∪ {e}). The set of maximal points of K under the ordering
defined by C, is S :=

⋃

u∈∆[u, e]. Thus S may comprise a highly complicated compact
union of line segments having a common endpoint, and S can fail to be locally connected.
Hybrids of these two kinds of behaviour are also possible. The theorems proved here are
nevertheless sufficiently general to encompass the above example.

Our results are motivated by work of Hofer and Toland [2, 4], who used degree theory
to construct periodic or homoclinic solutions for certain indefinite Hamiltonian systems,
where the Hamiltonian was the sum of an indefinite quadratic “kineticÔ term, and a “po-
tentialÔ term that had a convex level surface. An important step in the degree calculation
was the contractibility of the set on this level surface comprising the maximal points with
respect to an ordering defined by an elliptical cone, which together with its reflection in
the origin forms the negative region of the quadratic. Assuming the surface was smooth
enough, the flow of a certain tangent vector field was used to contract the maximal set.

Our theorems weaken very considerably the hypotheses imposed in the Hofer and Toland
theory, and are based on a different method, using nearest-point projections and related
maps. Under strong enough hypotheses, the result of our construction is indeed a flow
for a tangent vector field; by contrast a tangent flow was the basis for Hofer and Toland’s
construction.

Theorem 1. Let C be a locally uniformly convex cone in a reflexive Banach space X, let
K ⊂ X be a nonempty closed bounded convex set, and let S be the set of maximal points
of K with respect to the ordering defined by C. Then S is contractible.

Proof of Theorem 1. We may write C in the form C \ {0} =
⋃

λ>0 λ(e +Q) for some
ξ ∈ X∗, e ∈ X, where ξ(e) = 1 and Q is a locally uniformly convex set in ξ−1(0) with
0 ∈ Qo (the interior of Q relative to ξ−1(0)). We can assume that inf ξ(S) = 0 and
sup ξ(S) = 1. Reflexivity ensures the set S1 of maximisers of ξ on K is nonempty, and
since ξ is positive on C we have S1 ⊂ S.

For x ∈ S and 0 ≤ α ≤ 1− ξ(S) let λ(x, α) = inf{λ > 0|(x + αe + λQ) ∩K 6= ∅}. Then
reflexivity and local uniform convexity ensure that (x + αe + λ(x, α)Q) ∩ K comprises
exactly one point f(x, α), while (x+αe+ λ(x, α)Qo)∩K = ∅ (thus f(x, α) is a “nearest-
pointÔ in a “metricÔ with “ballÔ Q).

We now prove continuity of f(·, ·). Suppose, to seek a contradiction, that for some ε > 0
we can choose a sequence {xn}∞n=1 in S, converging say to x ∈ S, and a sequence {αn}∞n=1
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in [0, 1] satisfying αn ≤ 1 − ξ(xn) for each n ∈ N, and converging say to α, such that
||f(xn, αn) − f(x, α)|| ≥ ε for each n. Let z = f(x, α), let λn = λ(xn, αn) and let
zn = f(xn, αn) for each n. We assume ξ(xn) + αn < ξ(x) + α for each n; a similar
argument applies to the terms with ξ(xn) + αn > ξ(x) + α. We choose a point b ∈ K
with ξ(b) < ξ(x) + α; then [b, z] ⊂ K, and when n is large, [b, z] contains a point bn with
ξ(bn) = ξ(xn)+αn. This leads to an upper bound for λn, and hence to the conclusion that
lim supn→∞ λn ≤ λ(x, α). The sequence {zn}∞n=1 is bounded, and therefore has a weakly
convergent subsequence, which we assume to be the whole sequence, with weak limit z∗

say. Then ξ(z∗) = ξ(x) + α and z∗ ∈ (x + αe + λ∗Q) ∩ K, where λ∗ := lim infn→∞ λn,
hence λ(x, α) ≤ λ∗. These two inequalities show that λn → λ(x, α) = λ∗ as n → ∞, and
hence z∗ = z. If λ(x, α) 6= 0 then {λ−1

n (zn − xn − αne)}∞n=1 is a sequence in Q converging
weakly to λ(x, α)−1(z − x − αe) ∈ ∂Q, so an application of the Hahn-Banach Theorem,
together with local uniform convexity, ensures the convergence is strong. If λ(x, α) = 0
then α = 0 and z = x; since zn ∈ xn+αne+λnQ we now have zn → x = z strongly. This
contradiction proves the continuity of f(·, ·).
We now show that for x ∈ S and 0 ≤ α ≤ 1− ξ(S) we have f(x, α) ∈ S. We can assume
α > 0. We write λ = λ(x, α), z = f(x, α) and β = α−1λ. Suppose z /∈ S, so we can
choose u ∈ (z + C) ∩ K \ {z}; say u = z + γ(e + c) where c ∈ Q and γ > 0. Choose
0 < θ < 1 such that w := (1 − θ)x + θu satisfies ξ(w) = ξ(z); thus θ(γ + α) = α. Say
z = x+ α(e+ βq) where q ∈ Q. Now w ∈ K and

w = x+ θ(u− x)

= x+ θ(z + γ(e+ c)− x)

= x+ θ(x+ α(e+ βq) + γ(e+ c)− x)

= x+ θ((α+ γ)e+ αβq + γc)

= x+ αe+ (θαβq + θγc)

= x+ αe+ αβ(θq + (1− θ)β−1c).

If β > 1 (in which case β−1c ∈ Qo) or q 6= β−1c, then θq+(1−θ)β−1c ∈ Qo, contradicting
(x + α(e + βQo)) ∩K = ∅. The remaining possibility is that β = 1 and q = c, and then
z = x + α(e + q) = x + α(e + c) ∈ x + C contrary to the supposition that x ∈ S. This
contradiction shows that z ∈ S as desired.

The map g : S × [0, 1] → S defined by g(x, s) = f(x,min{s, 1 − ξ(x)}) now provides a
deformation retraction of S onto S1. Since S1 is contractible, being a nonempty convex
set, it follows that S is contractible.

Lemma 2. Suppose the real Hilbert space H is separable, and let K ⊂ H be a nonempty
closed bounded convex subset. Then the set of z ∈ H for which the functional 〈·, z〉
achieves its supremum relative to K at a single point, is dense in H.

Proof of Lemma 2. Let χK denote the characteristic function of K defined by

χK(x) =

{

0, x ∈ K,
∞, x ∈ H \K,

let χ∗
K denote the conjugate convex function of χK , so that

χ∗
K(z) = sup

x∈K
〈x, z〉, z ∈ H,
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and let ∂χK : H → 2H and ∂χ∗
K : H → 2H denote the subdifferentials of χK and χ∗

K .

Now χ∗
K is convex, and continuous since K is nonempty and bounded. Hence by Mazur’s

Theorem (see [3, Thm. 1.20]) χ∗
K is GÝateaux differentiable on a dense Gδ-set A ⊂ H; thus

∂χ∗
K(z) is a singleton for all z ∈ A.

Observe that χK is convex, lower semicontinuous, and non-negative. It follows that for
x, z ∈ H we have z ∈ ∂χK(x) if and only if x ∈ ∂χ∗

K(z) (see [1, Ch. 1 Sect. 5]), which
shows that the set of maximisers of 〈·, z〉 relative to K is precisely ∂χ∗

K(z). Hence for
z ∈ A the functional 〈·, z〉 attains its supremum relative to K at exactly one point.

An elliptical cone in a Hilbert space H is a cone of the form {x ∈ H|〈x, e〉 > ||Tx||} where
T : H → H is a linear homeomorphism and 0 6= e ∈ H.

Theorem 3. Let C be an elliptical open cone in the real Hilbert space H, let K ⊂ H be a
nonempty compact convex set, and let S be the set of all points of K that are maximal with
respect to the ordering induced by C. Then there is a continuous map h : S × [0, 1] → S
and a point a ∈ S with the properties

h(x, 0) = x ∀x ∈ S,

h(x, 1) = a ∀x ∈ S,

h(h(x, s), t) = h(x, s+ t) ∀x ∈ S, s, t, s+ t ∈ [0, 1].

Proof of Theorem 3. Notice that S is a closed subset of K since C is open.

We begin by choosing a bounded linear functional ξ on H having the following four
convenient additional properties:

A1: ξ assumes its supremum relative to K at exactly one point, a say;

A2: C = {x ∈ H| ξ(x) > κ||x||} for some κ > 0;

A3: ξ(S) = [0, 1];

A4: η < 0, where η := inf ξ(K).

A1 holds for a dense set of ξ ∈ H∗ by Lemma 2, since K lies in a separable subspace of
H. Additionally, ξ may be assumed to lie in the nonempty open set of functionals in H∗

satisfying infx∈C ξ(x)/||x|| > 0; applying a suitable linear homeomorphism to C and K
then ensures A2. A suitable dilation and translation of K now ensure A3, for if ξ were
constant on S then S = {a} and S would be contractible trivially.

A4 requires more justification; if it fails we show that K can be replaced by another
convex body satisfying A4, without changing the maximal set S. Suppose η = 0 and
choose e ∈ H such that ξ(·) = 〈·, e〉, so e ∈ C, and choose c ∈ H such that ξ(c) < 0 and
c+te ∈ K for some t > 0. Then c /∈ K, so defineK1 = conv({c}∪K) and let S1 denote the
set of maximal points of K1. We show S1 = S. Suppose x ∈ S. Then, by Hahn-Banach,
a bounded linear functional ϕ can be chosen such that C ⊂ ϕ−1((0,∞)) (hence ϕ(e) > 0)
and K ⊂ x+ϕ−1((−∞, 0]). Now a general point of K1 has the form (1−α)y+αc for some
y ∈ K and 0 ≤ α ≤ 1. Then ϕ((1−α)y+ αc) = ϕ((1−α)y+ α(c+ te))−αtϕ(e) ≤ ϕ(x)
since (1− α)y + α(c+ te) ∈ K. Thus (x+ C) ∩K1 = ∅. This shows S ⊂ S1.
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Conversely suppose x ∈ S1, so (x+C)∩K1 = ∅. Then x = (1−α)y+αc for some y ∈ K,
0 ≤ α ≤ 1. Also there exists a bounded linear functional ϕ such that C ⊂ ϕ−1((0,∞)) (so
ϕ(e) > 0) and K1 ⊂ x+ϕ−1((−∞, 0]). Again ϕ((1−α)y+αc) = ϕ((1−α)y+α(c+ te))−
αtϕ(e) < 0 unless α = 0. Thus α = 0, so x ∈ K and (x+C)∩K ⊂ (x+C)∩K1 = ∅, hence
x ∈ S. This shows S1 ⊂ S, hence S1 = S. Moreover A1, 2, 3 have not been disturbed.
This completes the justification of A4.

Thus ξ(a) = 1 and η := inf ξ(K) < 0. For 0 ≤ t ≤ 1 let

K(t) = {x ∈ K| ξ(x) = t}

and for x ∈ S and 0 ≤ t ≤ 1 − ξ(x) let f(x, t) be the nearest-point to x of K(ξ(x) + t).
This is the same construction employed in the proof of Theorem 1, and yields f(x, t) ∈ S
that is a (strongly) continuous function of (x, t).

For 0 ≤ γ ≤ 1 and x ∈ S define

g(x, γ) = f(x,min{γ, 1− ξ(x)}),

so g(·, ·) maps S × [0, 1] continuously into S. In particular

g(x, γ) → x as γ ↓ 0. (1)

Let D denote the set of dyadic rationals in [0, 1], let F = S ∩ ξ−1(D), and for natural
numbers m define

Dm = {k2−m|0 ≤ k ≤ 2m},
Fm = S ∩ ξ−1(Dm).

It follows from (1) that F is dense in S. For α = k2−m ∈ Dm let gm(·, α) denote the k-th
iterate of g(·, 2−m). Notice that gm(·, α) preserves Fm. Moreover gm has the properties

gm(x, 0) = x ∀x ∈ Fm, (2)

gm(x, 1) = a ∀x ∈ Fm, (3)

gm(x, α+ β) = gm(gm(x, α), β) ∀x ∈ Fm ∀α, β, α+ β ∈ Dm; (4)

(4) holds because gm(·, α), gm(·, β) and gm(·, α + β) are respectively the α2m-th, β2m-
th and (α + β)2m-th iterates of g(·, 2−m). We now prove the following “equicontinuityÔ
property for the gm:

(P) For all ε > 0 there exists δ > 0 such that for every m ≥ 1 and for every
(x, α) and (y, β) in Fm × Dm satisfying ||x − y|| + ||α − β|| < δ there holds
||gm(x, α)− gm(y, β)|| < ε.

Let ε > 0. Since K is compact and K ∩ ξ−1(1) = {a} we can choose 0 < θ < 1 such that
K ∩ ξ−1[1− 2θ, 1] has diameter less than ε. Since η < 0 the map t 7→ K(t) is Lipschitz on
[0, 1− θ], say with rank ρ, with respect to the Hausdorff metric. Recall that the nearest-
point map, of any nonempty closed convex set in a Hilbert space, is Lipschitz of rank 1.
Observe that if u ∈ S and 0 ≤ ξ(u) < ξ(u) + 2−m ≤ 1− θ then

||g(u, 2−m)− u|| ≤ ρ2−m.
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Iteration of this inequality yields

||gm(u, α)− u|| ≤ ρα if α ∈ Dm and 0 ≤ ξ(u) < ξ(u) + α ≤ 1− θ. (5)

Consider the case when α ∈ Dm, x, y ∈ S and ξ(x) = ξ(y). Then gm(x, α) and gm(y, α)
are obtained by composing the same family of m nearest-point maps. Hence

||gm(x, α)− gm(y, α)|| ≤ ||x− y|| if ξ(x) = ξ(y) and α ∈ Dm. (6)

Consider the more general case when x, y ∈ Fm, with ξ(x) = λ ≤ µ = ξ(y), and α ∈ Dm

such that µ + α ≤ 1 − θ. Then µ − λ ∈ Dm, and z = gm(x, µ − λ) satisfies ξ(z) = µ, so
by (6) we have

||gm(z, α)− gm(y, α)|| ≤ ||z − y||. (7)

From (5) we obtain

µ− λ ≤ ||z − x|| ≤ ρ(µ− λ)

and therefore

||z − y|| ≤ ||z − x||+ ||x− y|| ≤ ρ(µ− λ) + ||x− y||. (8)

Writing w = gm(x, α), we have by (5)

||gm(z, α)− gm(x, α)|| = ||gm(w, µ− λ)− w|| ≤ ρ(µ− λ). (9)

Hence, by (9), (7) and (8),

||gm(x, α)− gm(y, α)|| ≤ ||gm(x, α)− gm(z, α)||+ ||gm(z, α)− gm(y, α)||
≤ 2ρ(µ− λ) + ||x− y|| ≤ (2ρ+ 1)||x− y||. (10)

Now consider the still more general case when (x, α), (y, β) ∈ Fm ×Dm, with ξ(x) + α ≤
1− θ and ξ(y) + β ≤ 1− θ; suppose α ≤ β. Then, using (5) and (10),

||gm(x, α)− gm(y, β)||
≤ ||gm(y, α)− gm(y, β)||+ ||gm(x, α)− gm(y, α)||
= ||gm(y, α)− gm(gm(y, α), β − α)||+ ||gm(x, α)− gm(y, α)||
≤ ρ(β − α) + (2ρ+ 1)||x− y||
≤ (2ρ+ 1)((β − α) + ||x− y||)
< ε

provided ||β − α||+ ||x− y|| < ε/(2ρ+ 1).

The final case to be considered in the verification of (P) is when (x, α), (y, β) ∈ Fm×Dm

and, say, ξ(x)+α > 1− θ. If ||x−y||+ ||α−β|| < θ then ξ(y)+β > 1−2θ, and it follows
from the choice of θ that ||gm(x, α) − gm(y, β)|| < ε. The proof of (P) is completed by
taking δ = min{θ, ε/(2ρ+ 1)}.
We now take the limit as m → ∞. It follows from (P) that for each l the family
{gm}∞m=l is equicontinuous on Fl ×Dl, and is therefore precompact in C(Fl ×Dl, K) by
Ascoli’s theorem. We can now use a diagonal sequence argument to choose a subsequence
{gmj

}∞j=1 that is uniformly convergent on every Fl×Dl, and therefore converges pointwise
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on F ×D. The limit function h is uniformly continuous on F ×D by (P), hence h extends
to a continuous function (also denoted h) on S × [0, 1]. From (2), (3) we deduce

h(x, 0) = x (11)

h(x, 1) = a (12)

for all x ∈ F ; hence by continuity (11), (12) hold for all x ∈ S.

To take the limit in (4), consider x ∈ F and α, β, α+β ∈ D. Then x ∈ Fl and α, β, α+β ∈
Dl for some l; for all m ≥ l we then have gm(x, α) ∈ Fl, and hence h(x, α) ∈ Fl. Given
ε > 0, we can take the number δ > 0 provided by (P), and then for all large j we have
||gmj

(x, α)− h(x, α)|| < δ, hence ||gmj
(h(x, α), β)− gmj

(gmj
(x, α), β)|| < ε. This enables

us to pass to the limit in (4) yielding

h(x, α+ β) = h(h(x, α), β) (13)

for all x ∈ F and α, β, α + β ∈ D. By continuity we deduce (13) for all x ∈ S and
α, β, α+ β ∈ [0, 1].

Recall that a convex body is a compact convex subset of Euclidean space having nonempty
interior. A convex body is said to be smooth if each boundary point lies in only one
supporting hyperplane; this is equivalent to requiring that the boundary is a surface of
class C1.

It should be noted that in the following Theorem, standard theory of ordinary differential
equations does not suffice to construct a flow, having the semigroup property, for the
vector field (1− ξ(·))v(·) which is continuous but may not be Lipschitz.

Generally, in the case of a smooth convex body and an elliptical cone, an affine transfor-
mation must be performed to ensure the hypotheses of Theorem 4 hold; should this be
necessary, the resulting flow will not have the same trajectories as the flow constructed
by Hofer and Toland [2, 4].

Theorem 4. Let K ⊂ Rd be a smooth convex body, let C ⊂ Rd be an elliptical open cone,
and let S be the set of points of K that are maximal with respect to the ordering induced
by C. Let ξ be a linear functional on Rd and suppose assumptions A1, 2, 3, 4 of the proof
of Theorem 3 are satisfied. Let h : S × [0, 1] → S be the homotopy derived from the
construction of Theorem 3, so h(x, 1) = a say for all x ∈ S, and define p(x, t) = h(x, (1−
ξ(x))(1 − e−t)) for x ∈ S and t ≥ 0. For x ∈ S \ {a} let v(x) be the tangent vector to
∂K at x having least length subject to ξ(v(x)) = 1. Then p(x, ·) ∈ C1([0,∞),Rd) for each
x ∈ S, p has the semigroup property on S×[0,∞), and ∂tp(x, t) = (1−ξ(p(x, t)))v(p(x, t))
for all x ∈ S and t ≥ 0, with the convention 0v(a) = 0.

Proof of Theorem 4. Let x0 ∈ S and 0 < τ < 1 with h(x0, τ) 6= a, with the object
of studying ∂th(x0, τ). We adopt the notation of the proof of Theorem 3. We identify
ξ with the d-th coordinate function, and let π be the orthogonal projection map on
Π = ξ−1(0). We can then express some neighbourhood of S relative to the surface of K
as {(z, φ(z))|z ∈ U} where U = π(Ko) is a convex open subset of Π and −φ is a convex
function of class C1. Notice that ∇φ(z) 6= 0 for all z ∈ U \{πa}, and that πS is a compact
subset of U . For z ∈ U we write ẑ = (z, φ(z)) ∈ ∂K.
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If z ∈ πS \ {πa} and 0 < t < ξ(a) − φ(z), then setting g := g(ẑ, t) it follows that
πg ∈ πS \ {πa} is the minimiser of ||w − z||2 over w satisfying φ(w) = φ(z) + t, and
therefore πg− z = λ∇φ(πg) for some λ > 0; thus φ(πg) = φ(πg−λ∇φ(πg)) + t. We now
fix u = πh(x0, τ) ∈ U \ {πa}, and show that the equation

φ(w) = φ(w − λv) + t (14)

defines λ as a C1 function of (w, v, t) near to (u,∇φ(u), 0). Observe that ∂λ(φ(u −
λ∇φ(u))) = ||∇φ(u)||2 > 0 at λ = 0. Hence by the Implicit Function Theorem there are
neighbourhoods U0 ⊂ U \ {πa} of u, V0 ⊂ Rd of ∇φ(u), and positive numbers η0, δ, such
that for w ∈ U0, v ∈ V0, and |t| < η0, equation (14) has a unique solution λ(w, v, t) in the
interval (−δ, δ), and that λ(·, ·, ·) is continuously differentiable.

Let ε > 0, and choose a neighbourhood U1 ⊂ U0 of u and and a number 0 < η1 < η0 such
that

y ∈ U1, |t| < η1 ⇒
{

πg(ŷ, t) ∈ U0, ∇φ(y) ∈ V0, ||∇φ(y)−∇φ(u)|| < ε/2,
||∇φ(πg(ŷ, t))||−1||πg(ŷ, t)− y|| < δ,

so that in particular

y ∈ U1, |t| < η1 ⇒ πg(ŷ, t)− y = λ(πg(ŷ, t),∇φ(πg(ŷ, t)), t)∇φ(πg(ŷ, t)).

We claim that U1 and η1 may also be assumed small enough that

y, z ∈ U1, |t| < η1 ⇒ |λ(z,∇φ(z), t)− t∂tλ(y,∇φ(y), 0)| ≤ εt. (15)

To see this, suppose y, z ∈ U1 and |t| < η1. Then λ(z,∇φ(z), 0) = 0 so

|λ(z,∇φ(z), t)− t∂tλ(y,∇φ(y), 0)|
= |λ(z,∇φ(z), t)− λ(z,∇φ(z), 0)− t∂tλ(y,∇φ(y), 0)|
= |t∂tλ(z,∇φ(z), θ)− t∂tλ(y,∇φ(y), 0)|

for some θ, |θ| ≤ |t|, by the Mean Value Theorem. Then by continuity of ∇φ and ∂tλ we
have (15) provided U1 and η1 are sufficiently small.

By property (P) we can choose a neighbourhood u ∈ U2 ⊂ U1 and a number 0 < η2 < η1
such that if z ∈ U2 ∩ πFm, t ∈ [0, η2] ∩ Dm, and m ≥ 1 then πgm(ẑ, t) ∈ U1. We may
further suppose η2 is small enough that h(x0, τ − η2) ∈ U2, and that ξ(h(x0, τ − η2)) ∈ D.
Consider s, t with τ−η2 ≤ s < t ≤ τ such that t−τ+η2, s−τ+η2 ∈ D, so t−s ∈ D. Set
x := h(x0, s); then v := πx ∈ U2∩Fm and t−s ∈ Dm provided m ≥ 1 is sufficiently large,
an assumption we make henceforth. Thus t−s = k2−m for some k, 0 ≤ k ≤ 2m. Then for
1 ≤ j ≤ k we have gm(v̂, j2

−m) = g(gm(v̂, (j − 1)2−m), 2−m) and gm(v̂, (j − 1)2−m) ∈ U1,
hence by (15)

||πgm(v̂, j2−m)− πgm(v̂, (j − 1)2−m)− 2−m∂tλ(u,∇φ(u), 0)∇φ(u)||
= |λ(πgm(v̂, j2−m),∇φ(πgm(v̂, j2

−m)), 2−m)∇φ(πgm(v̂, j2
−m))

−2−m∂tλ(u,∇φ(u), 0)∇φ(u)|
≤ 2Mε2−m,

where M is an upper bound for ||∇φ(·)|| and |∂tλ(·,∇φ(·), 0)| on U0. Summing over j
and using the triangle inequality we obtain

||πgm(v̂, k2−m)− πgm(v̂, 0)− k2−m∂tλ(u,∇φ(u), 0)∇φ(u)|| ≤ 2Mε2−mk,
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that is,

||πgm(x, t− s)− v − (t− s)∂tλ(u,∇φ(u), 0)∇φ(u)|| ≤ 2Mε(t− s).

Letting m → ∞ yields

||πh(x, t− s)− v − (t− s)∂tλ(u,∇φ(u), 0)∇φ(u)|| ≤ 2Mε(t− s),

that is,

||πh(x0, t)− πh(x0, s)− (t− s)∂tλ(u,∇φ(u), 0)∇φ(u)|| ≤ 2Mε(t− s)

By continuity we deduce

||πh(x0, t)− h(x0, s)− (t− s)∂tλ(u,∇φ(u), 0)∇φ(u)|| ≤ 2Mε(t− s)

for all real s, t with τ − η2 ≤ s < t ≤ τ . Setting t = τ then letting ε ↓ 0 and s ↑ τ yields
the existence and value of the left derivative

∂−
t πh(x0, τ) = ∂tλ(u,∇φ(u), 0)∇φ(u).

Trivially
∂tξ(h(x0, τ)) = 1.

Thus ∂−
t h(x0, τ) exists, and necessarily lies in the tangent plane to K at h(x0, τ) =

(u, φ(u)); since its component parallel to Π is parallel to ∇φ(u), it follows that ∂−
t h(x0, τ)

is orthogonal to all the tangent vectors parallel to Π, hence ∂−
t h(x0, τ) = v(h(x0, τ)).

Since the above calculations show that ∂−
t h(x0, t) is a continuous function of t, it easily

follows that the two-sided derivative ∂th(x0, t) exists at values t ∈ (0, 1) where h(x0, t) 6= a.
Moreover h(x0, ·) is right-continuous at 0 and ∂th(x0, ·) has a finite right limit at 0, hence
we can also deduce the existence of the right derivative ∂+

t h(x0, 0).

Convexity of φ together with ∇φ(0) = 0 ensures ||∇φ(z)||−1φ(z) → 0 as z → 0, hence
(1− ξ(x))v(x) → 0 as x → a, suggesting the convention 0v(a) = 0.

It follows from the definition that 1− ξ(p(x, t)) = (1 − ξ(x))e−t for x ∈ S and t ≥ 0. A
direct calculation shows that p has the semigroup property, and that for x ∈ S \ {a} and
t ≥ 0,

∂tp(x, t) = ∂th(x, (1− ξ(x))(1− e−t))

= (1− ξ(x))e−tv(h(x, (1− ξ(x))(1− e−t)))

= (1− ξ(p(x, t)))v(p(x, t)),

and a is a fixed point of p.
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