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We show that if K is a nonempty closed convex subset of a real Hilbert space H, e is a non-zero arbitrary
vector in H and for each t ∈ R, z(t) is the closest point in K+ te to the origin, then the angle z(t) makes
with e is a decreasing function of t while z(t) 6= 0, and the inner product of z(t) with e is increasing.
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1. Introduction

Given a nonempty closed convex subset K of a real Hilbert space H, we consider, for t
real, the translate

K(t) = K + te

where e 6= 0 is an element of H. Let z(t) = PK(t)(0), the projection of 0 on K(t), i.e. the
nearest point in K(t) to 0. We ask the questions: in which direction is z(t) moving, and
how is the inner product 〈z(t), e〉 changing? This problem came up in writing the paper
[2], when we wished to study the inner product 〈(A + tB)◦x,Bx〉. Here A is a maximal
monotone operator on a real Hilbert space H, B is a single valued monotone operator
defined everywhere on H, and for each x in domain of A, (A+ tB)◦x denotes the element
of minimal norm in (A+ tB)x. The questions are simple and so are the answers, namely,
the angle z(t) makes with e is decreasing, and the inner product of z(t) and e is increasing.
We also pose the same questions for the related set, K ′(t) = (1 − t)K + te for t ∈ [0, 1].
If z′(t) = PK′(t)(0), then how does the angle and the inner product with e change with
time? Now the angle is decreasing but the inner product need not be increasing.

Other properties of the projection PK onto K have been studied: for instance, non-
expansiveness (see [12]) and differentiability (see [7] and [9]). Zarantonello [14] gave
many useful properties of PK . The book by Dontchev and Zolezzi [6] is a useful reference
for the approximation to a given point, using more general sets in more general spaces.

Our translation K + te of K gives a particular case of moving convex sets. By a moving
convex set Moreau [10] means a set-valued mapping C from a real interval I to a real
Hilbert space H such that C(t) are nonempty closed convex subsets of H. The evolution
problem − �u(t) ∈ NC(t)(u(t)), (the normal cone to C(t) at u(t)), is studied in [10] and
[11]. The case of nonconvex sets C(t) is studied in [1], [3] and [13].
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In [4, 5] the authors address a time dependent variational inequality,

z(t) ∈ C(t), 〈γ(z(t)), y(t)− z(t)〉 ≥ 0 ∀ y(t) ∈ C(t), i.e. γ(z(t)) +NC(t)z(t) ∋ 0,

where γ is a mapping. A nice survey of time dependent variational inequalities is given
in [8].

2. Main Theorems

Let H be a real Hilbert space and K be a nonempty closed convex subset of H. Define
PK : H −→ K as, for each x ∈ H, PK(x) is the nearest point in K to x.

Theorem 2.1. Let K be a nonempty closed convex subset of a real Hilbert space H and
let e be an arbitrary non-zero but fixed vector in H. For each t ∈ R, let K(t) = K + te

and let z(t) be the element of minimal norm in K(t), z(t) = PK(t)(0). Then the angle z(t)
makes with e is a decreasing function of t on the set {t : z(t) 6= 0}. That means for each
t ≥ s; t, s ∈ R,

〈z(t), e〉

‖z(t)‖
≥

〈z(s), e〉

‖z(s)‖
, (1)

if z(t) and z(s) are not equal to 0.

Lemma 2.2. The following are equivalent:

(a) Theorem 2.1 holds.

(b) For all K, e as in Theorem 2.1, and z(t) defined as in Theorem 2.1, if t > 0 and
z(t) and z(0) are non-zero vectors then

〈z(t), e〉

‖z(t)‖
≥

〈z(0), e〉

‖z(0)‖
. (2)

(c) For all K, e as in Theorem 2.1, for t > 0, if −te and 0 are not in K then the angle
PK(−te) + te makes with e is less than or equal to the angle PK(0) makes with e.

Proof. We first show that (a) is equivalent to (b). Obviously, (a) =⇒ (b). To see (b) =⇒
(a), given K, e, s and t, we note that K(t) = K(s)+ (t− s)e for t ≥ s. Applying (2) using
the set K(s) for K, and t− s > 0 for t > 0, we obtain (1).
Now we show that (b) and (c) are equivalent. Let K, e and t > 0 be given. There is one
to one correspondence between K and K(t) given by x 7→ x+ te. Since z(t) ∈ K(t) there
exists a unique x(t) ∈ K such that z(t) = x(t) + te and thus

〈z(t), e〉

‖z(t)‖
=

〈x(t) + te, e〉

‖x(t) + te‖
if z(t) 6= 0. (3)

Note that z(t) is nonzero iff−te is not inK. Also, note that for t = 0, z(0) = x(0) = PK(0)
and

〈z(0), e〉

‖z(0)‖
=

〈x(0), e〉

‖x(0)‖
if z(0) 6= 0. (4)

From (3) and (4), (b) is equivalent to

〈x(t) + te, e〉

‖x(t) + te‖
≥

〈x(0), e〉

‖x(0)‖
if z(t) 6= 0, z(0) 6= 0. (5)
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We note that , x(0) = PK(0) and x(t) = PK(−te) so that (5) is equivalent to:

〈PK(−te) + te, e〉

‖PK(−te) + te‖
≥

〈PK(0), e〉

‖PK(0)‖
if − te and 0 are not in K,

i.e. (b) is equivalent to (c).

Proof of Theorem 2.1. In view of Lemma 2.2, we assume t > 0, z(t) 6= 0, z(0) 6= 0, and
need to show (5).

Let x(t) := z(t)− te (as in the proof of Lemma 2.2) and K3 be the intersection of K with
the vector subspace spanned by {e, x(0), x(t)}, span{e, x(0), x(t)}. Then K3 is a closed
convex subset of K. We note that x(0) and x(t) are respectively the projections of the
origin and −te on K3. Depending upon the dimension of span{e, x(0), x(t)} three cases
arise:

Case 1. Span{e, x(0), x(t)} is 3-dimensional.
Let T (t) and T (0) respectively be the supporting planes in span{e, x(0), x(t)} toK3 at x(t)
and x(0) such that T (t) is orthogonal to x(t)+te and T (0) is orthogonal to x(0). Let X(t)
and X(0) be the closed half spaces of span{e, x(0), x(t)} with boundaries T (t) and T (0)
respectively, which do not contain −te and 0 respectively. We define K ′ = X(t) ∩X(0).
Then K ′ is a closed convex subset of span{e, x(0), x(t)} and K ′ ⊇ K3. We note that
the planes T (t) and T (0) are neither parallel nor equal to each other, otherwise, the
vectors x(t)+ te and x(0), their respective normal vectors, would be parallel to each other
contradicting the fact that {e, x(0), x(t)} are linearly independent. Then the following
two cases arise:

Case 1.1. The line L through the origin and the vector e does not pass through K ′.
For each t′ ∈ [0, t], let y(t′) be the closest point to −t′e in K ′. We note that y(0) = x(0)
and y(t) = x(t). Then we have for each t′ ∈ [0, t], either

(1.1.1) y(t′) ∈ T (0) and y(t′) + t′e orthogonal to T (0), or

(1.1.2) y(t′) ∈ T (t) and y(t′) + t′e orthogonal to T (t), or

(1.1.3) y(t′) ∈ T (0) ∩ T (t).

Let t1 and t2 be in [0, t] such that for t′ ∈ [0, t1], (1.1.1) holds, for t
′ ∈ [t1, t2], (1.1.3) holds

and for t′ ∈ [t2, t], (1.1.2) holds.

Then there exists λ1 > 0 such that y(t1) + t1e = λ1x(0) and therefore

〈y(t1) + t1e, e〉

‖y(t1) + t1e‖
=

〈λ1x(0), e〉

‖λ1x(0)‖
=

〈x(0), e〉

‖x(0)‖
. (6)

Also there exists λ2 > 0 such that y(t2) + t2e = λ2 (x(t) + te) and therefore

〈y(t2) + t2e, e〉

‖y(t2) + t2e‖
=

〈λ2(x(t) + te), e〉

‖λ2(x(t) + te)‖
=

〈x(t) + te, e〉

‖x(t) + te‖
. (7)

So by (6) and (7), to prove (5) it suffices to show that

〈y(t2) + t2e, e〉

‖y(t2) + t2e‖
≥

〈y(t1) + t1e, e〉

‖y(t1) + t1e‖
. (8)
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To prove (8), we first note down a few useful properties of y(t1) and y(t2). Note that
y(t1) + t1e and y(t2) + t2e are both orthogonal to the vector y(t1)− y(t2). Therefore,

〈y(t1) + t1e, y(t1)− y(t2)〉 = 0, (9)

and
〈y(t2) + t2e, y(t1)− y(t2)〉 = 0. (10)

Note that t1 6= t2. Also, we can write e as

e =
(y(t2) + t2e)− (y(t1) + t1e)

t2 − t1
+

y(t1)− y(t2)

t2 − t1
. (11)

Then using (10) and (11) we obtain

〈y(t2) + t2e, e〉

‖y(t2) + t2e‖
=

〈

y(t2) + t2e,
(y(t2)+t2e)−(y(t1)+t1e)

t2−t1
+ y(t1)−y(t2)

t2−t1

〉

‖y(t2) + t2e‖

=

〈

y(t2) + t2e,
(y(t2)+t2e)−(y(t1)+t1e)

t2−t1

〉

‖y(t2) + t2e‖

=
1

t2 − t1

(

‖y(t2) + t2e‖ −
〈y(t2) + t2e, y(t1) + t1e〉

‖y(t2) + t2e‖

)

≥
1

t2 − t1
(‖y(t2) + t2e‖ − ‖y(t1) + t1e‖) . (12)

Similarly, using (9) and (11) we obtain

〈y(t1) + t1e, e〉

‖y(t1) + t1e‖
=

〈

y(t1) + t1e,
(y(t2)+t2e)−(y(t1)+t1e)

t2−t1
+ y(t1)−y(t2)

t2−t1

〉

‖y(t1) + t1e‖

=

〈

y(t1) + t1e,
(y(t2)+t2e)−(y(t1)+t1e)

t2−t1

〉

‖y(t1) + t1e‖

=
1

t2 − t1

(

〈y(t1) + t1e, y(t2) + t2e〉

‖y(t1) + t1e‖
− ‖y(t1) + t1e‖

)

≤
1

t2 − t1
(‖y(t2) + t2e‖ − ‖y(t1) + t1e‖) . (13)

Combining (12) and (13) we get (8).

Case 1.2. The line L through the origin and the vector e passes through K ′.
Let −t1e and −t2e respectively be the points of intersection of the line L with the planes
T (0) and T (t). We note that 0 < t1 ≤ t2 < t. The vectors x(0) and −t1e are in the plane
T(0) and thus x(0)+ t1e is orthogonal to x(0), and vectors x(t) and −t2e are in the plane
T(t) and thus x(t) + t2e is orthogonal to x(t) + te. That means

〈x(0), x(0) + t1e〉 = 0, (14)

and
〈x(t) + te, x(t) + t2e〉 = 0. (15)
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Then using (14) we obtain

〈x(0), e〉

‖x(0)‖
=

1

t1

〈x(0), t1e+ x(0)− x(0)〉

‖x(0)‖
=

−1

t1
‖x(0)‖ < 0, (16)

and using (15) we obtain

〈x(t) + te, e〉

‖x(t) + te‖
=

1

t− t2

〈x(t) + te, te− t2e+ x(t)− x(t)〉

‖x(t) + te‖
=

1

t− t2
‖x(t) + te‖ > 0. (17)

Combining (16) and (17) proves (5).

Case 2. Span{e, x(0), x(t)} is 2-dimensional.
Let T (t)and T (0) respectively be the supporting lines in span{e, x(0), x(t)} to K3 at x(t)
and x(0) which are orthogonal to x(t) + te and x(0) respectively. Let X(t) and X(0) be
the closed half spaces of span{e, x(0), x(t)} with boundaries T (t) and T (0) respectively,
which do not contain −te and 0 respectively. We define K ′ = X(t) ∩X(0). Then K ′ is a
closed convex subset of H and K ′ ⊇ K3. Then three cases arise.

Case 2.1. The supporting lines T (t) and T (0) are distinct and meet each other in a point
and the line L through the origin and the vector e does not pass through K ′.
Then inequality (5) follows from the same argument as in Case 1.1. Note that here,
y(t1) = y(t2).

Case 2.2. The supporting lines T (t) and T (0) are distinct and meet each other in a point,
and the line L through the origin and the vector e passes through K ′.
Once again, (5) follows from the same argument as in Case 1.2.

Case 2.3. T (t) and T (0) are parallel or equal to each other.
Since x(0) and x(t) + te are respectively orthogonal to the lines T (0) and T (t), x(t) + te

and x(0) are parallel i.e., there exists λ 6= 0 such that x(t) + te = λx(0). Therefore,

〈x(t) + te, e〉

‖x(t) + te‖
=

〈λx(0), e〉

‖λx(0)‖
=

λ

|λ|

〈x(0), e〉

‖x(0)‖
.

Clearly for λ > 0,
〈x(t) + te, e〉

‖x(t) + te‖
=

〈x(0), e〉

‖x(0)‖
,

which proves (5). For λ < 0,

〈x(t) + te, e〉

‖x(t) + te‖
= −

〈x(0), e〉

‖x(0)‖
. (18)

Since x(t) + te and x(0) are in opposite directions there exists µ ∈ (0, 1) such that

µ (x(t) + te) + (1− µ)x(0) = 0,

implying
−µte = µx(t) + (1− µ)x(0) = k (say).

Since x(t) and x(0) are in the closed convex set K3, k ∈ K3. As x(0) is the element of
minimal norm in K3, we have

0 < ‖x(0)‖2 ≤ 〈x(0), k〉 = 〈x(0),−µte〉 ,
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implying

〈x(0), e〉 < 0. (19)

Therefore, combining (18) and (19) we get (5).

Case 3. Span{e, x(0), x(t)} is a one dimensional space.
Then x(t) + te and x(0) are parallel. Then (5) follows as in Case 2.3.

Corollary 2.3. Let K be a nonempty closed convex subset of a real Hilbert spaceH and let
e be an arbitrary non-zero but fixed vector inH. For each t ∈ [0, 1], let K ′(t) = (1−t)K+te

and z′(t) = PK′(t)(0). Then the angle z′(t) makes with e is a decreasing function of t on
the set {t : z′(t) 6= 0}. (In fact this corollary readily gives Theorem 2.1, as well.)

Proof. Let 0 ≤ s ≤ t < 1 and z′(t), z′(s) 6= 0. Since z′(t) is the element of minimal norm

in K ′(t) , z′(t)
1−t

will be the element of minimal norm in K + t
1−t

e. Similarly, z′(s)
1−s

will be
the element of minimal norm in K + s

1−s
e. Therefore, using (1) we obtain

〈

z′(t)
1−t

, e
〉

∥

∥

∥

z′(t)
1−t

∥

∥

∥

≥

〈

z′(s)
1−s

, e
〉

∥

∥

∥

z′(s)
1−s

∥

∥

∥

,

implying

〈z′(t), e〉

‖z′(t)‖
≥

〈z′(s), e〉

‖z′(s)‖
.

That means the angle z′(t) makes with e is a decreasing function of t on the set {t : z′(t) 6=
0}.

Now we study the inner products 〈z(t), e〉 and 〈z′(t), e〉, to see how they vary with t.

Theorem 2.4. Let K be a nonempty closed convex subset of a real Hilbert space H and
let e be an arbitrary non-zero but fixed vector in H. For each t ∈ R, let K(t) = K + te

and let z(t) be the element of minimal norm in K(t).

Then for each t ≥ s; t, s ∈ R,

〈z(t), e〉 ≥ 〈z(s), e〉, (20)

and

〈z(t)− te, e〉 ≤ 〈z(s)− se, e〉. (21)

Proof. Let t ≥ s; t, s ∈ R be given. Since z(t) and z(s) are the elements of minimal
norm in K(t) and K(s) respectively we have for all y ∈ K

〈y + te− z(t), z(t)〉 ≥ 0, (22)

and

〈y + se− z(s), z(s)〉 ≥ 0. (23)

In particular, (22) and (23) hold for y = z(s)− se and y = z(t)− te respectively, giving

〈z(s)− se+ te− z(t), z(t)〉 ≥ 0, (24)
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and

〈z(t)− te+ se− z(s), z(s)〉 ≥ 0. (25)

Adding (24) and (25) gives

−‖z(t)− z(s)‖2 + (t− s)〈e, z(t)− z(s)〉 ≥ 0. (26)

Hence (20) follows from (26).
To show (21) assume t > s and 〈z(t)− te, e〉 > 〈z(s)− se, e〉. Then

〈z(t)− te+ se− z(s), (t− s)e〉 > 0. (27)

Adding (25) and (27) gives

〈z(t)− te+ se− z(s), z(s)− se+ te〉 > 0,

implying ‖z(t)‖ > ‖z(s)− se+ te‖ which contradicts the fact that z(t) is the element of
minimal norm in K(t). Hence (21) holds.

Remark 2.5. From (26) we get

‖z(t)− z(s)‖ ≤ (t− s)‖e‖,

that implies z(t) is Lipschitz continuous and almost everywhere differentiable. The in-
equality (20) gives 〈 �z(s), e〉 ≥ 0 for a.e. s, but we can strengthen this to give (28). We
note that if z is differentiable at s, then dividing (26) by (t− s)2 and taking the limit as
t ց s, one obtains

‖ �z(s)‖2 ≤ 〈e, �z(s)〉,

which can be rewritten as

‖ �z(s)−
e

2
‖2 = ‖ �z(s)‖2 − 〈e, �z(s)〉+

‖e‖2

4
≤

(

‖e‖

2

)2

. (28)

When we studied the angle, we found the angle z′(t) made with e and the angle z(t) made
with e were both decreasing. However, for the inner product, the result is surprisingly
different. Although we have Theorem 2.4 showing the inner product 〈z(t), e〉 increasing,
the next corollary gives 〈z′(t), e〉 strictly decreasing if each x ∈ K satisfies 〈x, e〉 > ‖e‖2.

Corollary 2.6. Let K be a nonempty closed convex subset of a real Hilbert spaceH and let
e be an arbitrary non-zero but fixed vector inH. For each t ∈ [0, 1], let K ′(t) = (1−t)K+te

and z′(t) be the element of minimal norm in K ′(t). Then for each t, s ∈ [0, 1),

〈
z′(t)− te

1− t
, e〉 ≤ 〈

z′(s)− se

1− s
, e〉 for t ≥ s, (29)

and if 〈x, e〉 > ‖e‖2 for all x in K,

〈z′(t), e〉 < 〈z′(s), e〉 for t > s.
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Proof. Let t ≥ s; t, s ∈ [0, 1) be given. Since z′(t) is the element of minimal norm in

K ′(t) , z′(t)
1−t

will be the element of minimal norm in K + t
1−t

e. Similarly, z′(s)
1−s

will be the
element of minimal norm in K + s

1−s
e. Therefore, using (21) gives (29).

We note that for each t ∈ [0, 1), z′(t)−te

1−t
∈ K. Therefore 〈 z

′(t)−te

1−t
, e〉 > ‖e‖2, implying

〈z′(t), e〉 > ‖e‖2. (30)

Also the inequality (29) gives

〈z′(s), e〉 ≥ (1− s)〈
z′(t)− te

1− t
, e〉+ s‖e‖2.

Therefore for t > s

〈z′(s), e〉 − 〈z′(t), e〉 ≥ (1− s)〈
z′(t)− te

1− t
, e〉+ s‖e‖2 − 〈z′(t), e〉

=

(

1− s

1− t
− 1

)

〈z′(t), e〉+

(

s−
t(1− s)

1− t

)

‖e‖2

=
t− s

1− t

(

〈z′(t), e〉 − ‖e‖2
)

> 0 (using (30)).
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