
Journal of Convex Analysis

Volume 15 (2008), No. 1, 165–178

Linear Operators on Vector-Valued

Function Spaces with Mackey Topologies

Marian Nowak

Faculty of Mathematics, Computer Science and Econometrics,
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m.nowak@wmie.uz.zgora.pl

Received: May 19, 2006
Revised manuscript received: April 2, 2007

Let E be an ideal of L0 over a σ-finite measure space (Ω,Σ, µ) and let E′ be the Köthe dual of E.
Let (X, ‖ · ‖X) be a real Banach space, and X∗ the Banach dual of X. Let E(X) be a subspace of the
space L0(X) of µ-equivalence classes of all strongly Σ-measurable function f : Ω → X, and consisting
of all those f ∈ L0(X) for which the scalar function f̃ , defined by f̃(ω) = ‖f(ω)‖X for ω ∈ Ω,
belongs to E. Assume that a Banach space X is an Asplund space. It is shown that a subset C of
E′(X∗) is relatively σ(E′(X∗), E(X))-compact iff the set {g̃ : g ∈ E′(X∗)} in E′ is relatively σ(E′, E)-
compact. We consider the topology τ(E,E′) on E(X) associated with the Mackey topology τ(E,E′)
on E. It is shown that τ(E,E′) is strongly Mackey topology; hence τ(E,E′) coincides with the Mackey
topology τ(E(X), E′(X∗)). Moreover, E′(X∗) is σ(E′(X∗), E(X))-sequentially complete whenever E′ is
perfect. We examine the space Lτ (E(X), Y ) of all (τ(E(X), E′(X∗)), ‖ · ‖Y )-continuous linear operators
from E(X) to a Banach space (Y, ‖ · ‖Y ), equipped with the weak operator topology (briefly WOT)
and the strong operator topology (briefly SOT). It is shown that if E is perfect, then Lτ (E(X), Y ) is
WOT-sequentially complete, and every SOT-compact subset of Lτ (E(X), Y ) is (τ(E(X), E′(X∗)), ‖·‖Y )-
equicontinuous. Moreover, a Vitali-Hahn-Saks type theorem for Lτ (E(X), Y ) is obtained.
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1. Introduction and preliminaries

We denote by σ(L,K) and τ(L,K) the weak-topology and the Mackey topology on
L with respect to a dual pair 〈L,K〉. Given a Hausdorff locally convex space (L, ξ)
by (L, ξ)∗ or L∗

ξ we will denote its topological dual. Recall that ξ is said to be a
strongly Mackey topology if every relatively countably σ(L∗

ξ , L)-compact subset of L∗
ξ

is ξ-equicontinuous (see [22, Definition 4.1]). Clearly, if ξ is a strongly Mackey topology,
then ξ is a Mackey topology, i.e., ξ = τ(L,L∗

ξ).

First we establish terminology concerning Riesz spaces and function spaces (see [1], [10],
[11], [26]). Let (Ω,Σ, µ) be a complete σ-finite measure space. Let L0 denote the space
of µ-equivalence classes of all Σ-measurable real-valued functions defined and finite a.e.
on Ω. Let χA stand for the characteristic function of a set A, and let N and R denote
the sets of all natural and real numbers. Let E be an ideal of L0 with suppE = Ω,
and let E ′ stand for the Köthe dual of E, i.e., E ′ = {v ∈ L0 :

∫
Ω
|u(ω)v(ω)|dµ < ∞

for all u ∈ E}. Throughout the paper we assume that suppE ′ = Ω. Let E∼ and E∼
n
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stand for the order dual and the order continuous dual of E, resp. Then E∼
n separates

points of E and it can be identified with E ′ through the mapping: E ′ ∋ v 7→ ϕv ∈ E∼
n ,

where ϕv(u) =
∫
Ω
u(ω)v(ω)dµ for all u ∈ E. E is said to be perfect whenever the natural

embedding from E into (E∼
n )

∼
n is onto, i.e., E ′′ = E.

For terminology and basic concepts from the theory of vector-valued function spaces
E(X), we refer to the three main monographs: J. Diestel and J. J. Uhl’s "Vector Measures"
[8], P. Cembranos and J. Mendoza’s "Banach spaces of Vector Valued Functions" [5] and
Pei-Kee Lin’s "Köthe-Bochner Function Spaces" [11].

Now we recall terminology and some basic results concerning the topological properties
and the duality theory of vector-valued function spaces E(X) as set out in [2], [3], [4],
[5], [8], [9], [11], [14], [15], [16]. Let (X, ‖ · ‖X) be a real Banach space and let X∗ stand
for the Banach dual of X. Let SX , BX stand for the unit sphere and the closed unit ball
in X. By L0(X) we denote the set of µ-equivalence classes of all strongly Σ-measurable
functions f : Ω −→ X. For f ∈ L0(X) let us set f̃(ω) := ‖f(ω)‖

X
for ω ∈ Ω. Let

E(X) = { f ∈ L0(X) : f̃ ∈ E }.

Recall that the algebraic tensor product E⊗X is the subspace of E(X) spanned by the
functions of the form u⊗ x, (u⊗ x)(ω) = u(ω)x, where u ∈ E, x ∈ X.

A subset H of E(X) is said to be solid whenever f̃1 ≤ f̃2 and f1 ∈ E(X), f2 ∈ H imply
f1 ∈ H. A linear topology τ on E(X) is said to be locally solid if it has a local base
at zero consisting of solid sets. A linear topology τ on E(X) that is as the same time
locally solid and locally convex will be called a locally convex-solid topology on E(X).
A seminorm ̺ on E(X) is called solid if ̺(f1) ≤ ̺(f2) whenever f1, f2 ∈ E(X) and
f̃1 ≤ f̃2. It is known that a locally convex topology τ on E(X) is locally convex-solid if
and only if it is generated by some family of solid seminorms defined on E(X) (see [9]).
A locally solid topology τ on E(X) is said to be a Lebesgue topology whenever for a net

(fα) in E(X), f̃α
(0)
−→ 0 in E implies fα

τ
−→ 0 (see [16, Definition 2.2]).

Let (E, ξ) be a Hausdorff locally convex-solid function space. Then one can topologize
the space E(X) as follows (see [9]). Let {pα : α ∈ A} be a family of Riesz seminorms
on E that generates ξ. By putting

p̄α(f) := pα(f̃ ) for f ∈ E(X) (α ∈ A),

we obtain a family {p̄α : α ∈ A} of solid seminorms on E(X) that defines a Hausdorff
locally convex-solid topology ξ̄ on E(X) (called the topology associated with ξ). Then ξ̄
is a Lebesgue topology whenever ξ is a Lebesgue topology (see [9]).

Conversely, let τ be a Hausdorff locally convex-solid topology on E(X) and let {̺α :
α ∈ A} be a family of solid seminorms on E(X) that generates τ . By putting for a fixed
x0 ∈ SX

˜̺α(u) := ̺α(u⊗ x0) for u ∈ E (α ∈ A),

we obtain a family {˜̺α : α ∈ A} of Riesz seminorms on E that defines a Hausdorff
locally convex-solid topology τ̃ on E.

One can note that ˜̄ξ = ξ and ¯̃τ = τ (see [9]). Thus every Hausdorff locally convex-solid
topology τ on E(X) can be represented as the topology associated with some Hausdorff
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locally convex-solid topology ξ (= τ̃ ) on E. In particular, for a Banach function space
(E, ‖ · ‖E) the space E(X) provided with the norm ‖f‖E(X) := ‖f̃‖E is usually called a
Köthe-Bochner space.

A linear functional F on E(X) is said order continuous whenever for a net (fα) in E(X),

f̃α
(0)
−→ 0 in E implies F (fα) −→ 0. The set consisting of all order continuous linear

functionals on E(X) will be denoted by E(X)∼n and called the order continuous dual of
E(X) (see [2], [13]). Since we assume that suppE ′ = Ω, E(X)∼n separates points of
E(X). A Hausdorff locally convex-solid topology τ on E(X) has the Lebesgue property
if and only if E(X)∗ξ ⊂ E(X)∼n (see [16, Theorem 2.4]).

To present the integral representation of E(X)∼n we now recall terminology concerning
the spaces of weak∗-measurable functions (see [5], [2], [4], [3]). For a given function
g : Ω → X∗ and x ∈ X we denote by gx the real function on Ω defined by gx(ω) = g(ω)(x)
for ω ∈ Ω. A function g : Ω → X∗ is said to be weak∗-measurable if the functions
gx are measurable for each x ∈ X. We shall say the two weak∗-measurable functions
g1, g2 are weak∗-equivalent whenever g1(ω)(x) = g2(ω)(x) µ-a.e. for each x ∈ X. Let
L0(X∗, X) be the set of weak∗-equivalence classes of all weak∗-measurable functions g :
Ω → X∗. Following [2], [4] one can define the so-called abstract norm ϑ : L0(X∗, X) → L0

by ϑ(g) := sup {|gx| : x ∈ BX}. Then for f ∈ L0(X) and g ∈ L0(X∗, X) the function
〈f, g〉 : Ω −→ R defined by 〈f, g〉(ω) := 〈f(ω), g(ω)〉 is measurable and |〈f, g〉| ≤ f̃ ϑ(g).
Moreover, ϑ(g) = g̃ for g ∈ L0(X∗). Let

E ′(X∗, X) = { g ∈ L0(X∗, X) : ϑ(g) ∈ E ′ }.

Due to A. V. Bukhvalov (see [2, Theorem 4.1]) E(X)∼n can be identified with E ′(X∗, X)
through the mapping: E ′(X∗, X) ∋ g 7→ Fg ∈ E(X)∼n , where

Fg(f) =

∫

Ω

〈f(ω), g(ω)〉 dµ for all f ∈ E(X) .

Clearly E ′(X∗) ⊂ E ′(X∗, X). Moreover, the identities:

E ′(X∗) = E ′(X∗, X) and E(X)∼n = {Fg : g ∈ E ′(X∗)}

hold whenever the Banach space X∗ has the Radon-Nikodym property (see [8, Chap.
3.1], [3, Theorem 3.5]). Recall that a Banach space X is called an Asplund space if
every real-valued continuous convex function on an open convex domain in X is Fréchet
differentiable on a dense Gδ subset of its domain (see [12], [18]). The following theorem
provides a characterization of Banach spaces X whose duals have the Radon-Nikodym
property (see [12], [18], [8, p. 213]).

Theorem 1.1. For a Banach space X the following statements are equivalent:

(i) X∗ has the Radon-Nikodym property.

(ii) X is an Asplund space.

In the theory of function spaces the Mackey topology τ(E,E′)(= τ(E,E∼
n )) on E is

of importance (see [6]). It is well known that τ(E,E′) is the finest Hausdorff locally
convex-solid topology on E with the Lebesgue property.
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In this paper we consider the topology τ(E,E′) on E(X) associated with τ(E,E′), i.e.,
τ(E,E′) is defined by solid seminorms:

pM(f) := pM(f̃) = sup
{∫

Ω

f̃(ω)|v(ω)|dµ : v ∈ M
}

for f ∈ E(X),

where M runs over the family of all absolutely convex and solid σ(E ′, E)-compact sets
in E ′. The basic properties of τ(E,E′) can be summarized in the following theorem (see
[16, Theorem 2.5, Theorem 2.6]).

Theorem 1.2. Let E be an ideal of L0 and X be a Banach space. Then

(i) τ(E,E′) is the finest locally convex-solid topology on E(X) with the Lebesgue prop-

erty.

(ii) (E(X), τ(E,E′) )∗ = E(X)∼n , and hence τ(E,E′) ⊂ τ(E, (X), E(X)∼n ).

(iii) (E(X), τ(E,E′)) is complete whenever E is perfect.

We can state the following Mackey problem: under which conditions on X is τ(E,E′)
a strongly Mackey topology on E(X)? Equivalently, when every relatively countably
σ(E(X)∼n , E(X))-compact sets in E(X)∼n are τ(E,E′)-equicontinuous? We show that it
holds whenever X is an Asplund space.

In Section 2 we obtain some results concerning duality of the space E(X) that will be
needed. In Section 3 we investigate the relationship between the τ(E,E′)-equicontinuos
subsets of E(X)∼n and relatively σ(E ′, E)-compact subsets of E ′. Moreover, in case when
X is an Asplund space, we obtain a characterization of relatively countably σ(E ′(X∗),
E(X))-compact subsets of E ′(X∗). As a consequence, in Section 4 in case X is an
Asplund space, we obtain that τ(E,E′) is a strongly Mackey topology; hence τ(E,E′) =
τ(E(X), E ′(X∗)). Moreover, it is shown that the space E ′(X∗) is σ(E ′(X∗), E(X))-
sequentially complete. We characterize τ(L∞, L1) on L∞(X) and τ(LΦ, LΦ∗) on the
Orlicz-Bochner spaces LΦ(X). In Section 5 we examine the space Lτ (E(X), Y ) of all
(τ(E(X), E(X)∼n ), ‖·‖Y )-continuous linear operators from E(X) to a Banach space (Y, ‖·
‖Y ), equipped with the weak operator topology (briefly WOT) and the strong operator
topology (briefly SOT). It is shown that if E is perfect and X is an Asplund space, then
the space Lτ (E(X), Y ) is WOT-sequentially complete, and every SOT-compact subset
of Lτ (E(X), Y ) is (τ(E(X), E ′(X∗)), ‖ · ‖Y )-equicontinuous. As an application, a Vitali-
Hahn-Saks type theorem for Lτ (E(X), Y ) is obtained.

2. Duality of vector-valued function spaces

In this section we establish terminology and prove a general result concerning duality of
vector-valued function spaces E(X) (see [2], [3], [4], [14] for more details). For a linear
functional F on E(X) let us put

|F |(f) = sup{ |F (h)| : h ∈ E(X), h̃ ≤ f̃ } for f ∈ E(X).

The set
E(X)∼ = {F ∈ E(X)# : |F |(f) < ∞ for all f ∈ E(X)}

will be called the order dual of E(X) (here E(X)# denotes the algebraic dual of E(X)).
For F1, F2 ∈ E(X)∼ we will write |F1| ≤ |F2| whenever |F1|(f) ≤ |F2|(f) for all
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f ∈ E(X). A subset A of E(X)∼ is said to be solid whenever |F1| ≤ |F2| with
F1 ∈ E(X)∼ and F2 ∈ A imply F1 ∈ A. A linear subspace I of E(X)∼ will be called
an ideal of E(X)∼ whenever I is solid. It is known that if τ is a locally solid topology
on E(X), then (E(X), τ)∗ is an ideal of E(X)∼ (see [14, Theorem 3.2]). Every subset
A of E(X)∼ is contained in the smallest (with respect to inclusion) solid set called the
solid hull of A and denoted by S(A). One can note that S(A) = {F ∈ E(X)∼ : |F | ≤ |G|
for some G ∈ A}. Let F ∈ E(X)∼ and x0 ∈ SX be fixed. For u ∈ E+ let us set:

ϕF (u) := |F |(u⊗ x0) = sup{|F (h)| : h ∈ E(X), h̃ ≤ u}.

Then ϕF : E+ → R
+ is an additive mapping and ϕF has a unique positive extension to

a linear mapping from E to R (denoted by ϕF again) and given by

ϕF (u) := ϕF (u
+)− ϕF (u

−) for all u ∈ E.

(see [4, Lemma 7]). Observe that ϕF ∈ E∼.

Assume now that τ is a Hausdorff locally convex-solid topology on E(X). Then E(X)∗τ
is an ideal of E(X)∼ (see [13, Theorem 3.2]), and the pair 〈E(X), E(X)∗τ 〉, under its
natural duality 〈f, F 〉 = F (f) is a solid dual system (see [14, p. 206]). For a subset A of
E(X) and a subset B of E(X)∗τ let us put

A0 = {F ∈ E(X)∗τ : |〈f, F 〉| ≤ 1 for all f ∈ A },

0B = {f ∈ E(X) : |〈f, F 〉| ≤ 1 for all F ∈ B }.

Now given a Hausdorff locally convex-solid function space (E, ξ) we characterize ξ-
equicontinuous subsets of E(X)∗

ξ
.

Proposition 2.1. Let ξ be a Hausdorff locally convex-solid topology on E. Then for a

subset Z of E(X)∗
ξ
the following statements are equivalent:

(i) Z is ξ-equicontinuous.

(ii) conv (S(Z)) is ξ-equicontinuous.

(iii) S(Z) is ξ-equicontinuous.

(iv) {ϕF : F ∈ Z} in E∗
ξ is ξ-equicontinuous.

Proof. (i) =⇒ (ii) Let Z be ξ-equicontinuous. Then there exists a convex-solid ξ-
neighborhood V of 0 such that Z ⊂ V 0. Hence conv (S(Z)) ⊂ conv (S(V 0)) = conv (V 0)
= V 0 (see [14, Theorem 3.3]), and this means that conv (S(Z)) is still ξ-equicontinuous.

(ii) =⇒ (iii) It is obvious.

(iii) =⇒ (iv) Assume that the subset S(Z) of E(X)∗ξ is ξ-equicontinuous. Let {pα :
α ∈ A} be a family of Riesz seminorms on E that generates ξ. Given ε > 0 there exist
α1, . . . , αn ∈ A and η > 0 such that sup{|F (f)| : F ∈ S(Z)} ≤ ε whenever pαi

(f) =

pαi
(f̃) ≤ ε, for i = 1, 2, . . . , n. To show that {ϕF : F ∈ Z} is ξ-equicontinuous, it is

enough to show that sup{|ϕF (u)| : F ∈ Z} ≤ ε whenever pαi
(u) ≤ η for i = 1, 2, . . . , n.

Indeed, let u ∈ E, x0 ∈ SX and pαi
(u) = pαi

(|u|) = pαi
(u ⊗ x0) ≤ η for i = 1, 2, . . . , n,

so sup{|F (u ⊗ x0)| : F ∈ S(Z)} ≤ ε. Hence in view of [14, Lemma 2.1] we obtain that
sup{|F (u ⊗ x0)| : F ∈ S(Z)} = sup{ϕF (|u|) : F ∈ Z}, and since |ϕF (u)| ≤ ϕF (|u|), the
proof is complete.
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(iv) =⇒ (i) Assume that the set {ϕF : F ∈ Z} in E∗
ξ is ξ-equicontinuous. Let {pα :

α ∈ A} be a family of Riesz seminorms on E that generates ξ. Given ε > 0 there exist
α1, . . . , αn ∈ A and η > 0 such that {|ϕF (u)| : F ∈ Z} ≤ ε whenever u ∈ E and
pαi

(u) ≤ η for i = 1, 2, . . . , n. Hence, for f ∈ E(X) with pαi
(f) = pαi

(f̃) ≤ η for

i = 1, 2, . . . , n we get sup{|ϕF (f̃)| : F ∈ Z} ≤ ε. But |F (f)| ≤ |F |(f) = ϕF (f̃), so
sup{|F (f)| : F ∈ Z} ≤ ε, and this means that Z in ξ-equicontinuous.

3. Weak compactness in the order continuous dual of vector-valued function

spaces

In this section we examine the relationship between the τ(E,E′)-equicontinuous subsets of
E(X)∼n , τ(E,E′)-equicontinuous subsets of E∼

n and relatively σ(E,E′)-compact subsets
of E ′. As an application, in case X is an Asplund space, we obtain a characterization of
σ(E ′(X∗), E(X))-compact subset of E ′(X∗).

We start by recalling a characterization of σ(E ′, E)-compact subsets of E ′. Assume that
M is a σ(E ′, E)-bounded subset of E ′. Then M is also |σ|(E ′, E)-bounded, so one can
define a Riesz seminorm pM on E by

pM(u) = sup
v∈M

∫

Ω

|u(ω)v(ω)|dµ.

Proposition 3.1. Let E be an ideal of L0. Then for a σ(E ′, E)-bounded subset M of E ′

the following statements are equivalent:

(i) For every u ∈ E the set {uv : v ∈ M} in L1 is uniformly integrable.

(ii) pM is absolutely continuous, i.e., pM(χAn
u) −→ 0 for every u ∈ E, as

An ցµ ∅ (i.e., An ↓ and µ(
⋂∞

n=1 An) = 0).

(iii) pM is σ-order continuous.

(iv) S(M) is relatively σ(E ′, E)-compact.

(v) M is relatively σ(E ′, E)-compact.

(vi) conv (S(M)) is relatively σ(E ′, E)-compact.

Proof. (i) ⇐⇒ (ii) It follows from the definition of uniform integrability in L1.

(ii) ⇐⇒ (iii) It is obvious.

(iii) ⇐⇒ (iv) See [1, Theorem 20.3].

(iv) ⇐⇒ (v) It is obvious.

(v) ⇐⇒ (vi) See [1, Corollary 20.10].

Now we recall some terminology and prove some technical results concerning the space
E ′(X∗, X). In view of [2, Theorem 4.1] for g ∈ E ′(X∗, X) we have:

|Fg|(f) =

∫

Ω

f̃(ω)ϑ(g)(ω)dµ = ϕϑ(g)(f̃ ) for all f ∈ E(X),

and
ϕFg

(u) = |Fg|(u⊗ x0) = ϕϑ(g)(u) for u ∈ E+.

Lemma 3.2. For g1, g2 ∈ E ′(X∗, X) the following statements are equivalent.
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(i) ϑ(g1) ≤ ϑ(g2).

(ii) |Fg1|(f) ≤ |Fg2|(f) for all f ∈ E(X).

(iii) ϕϑ(g1)(u) ≤ ϕϑ(g2)(u) for all u ∈ E+.

Proof. (i) ⇐⇒ (ii) See [14, Corollary 2.5].

(ii) =⇒ (iii) For u ∈ E+ we have

ϕϑ(g1)(u) = ϕFg1
(u) = |Fg1|(u⊗ x0) ≤ |Fg2|(u⊗ x0) = ϕFg2

(u) = ϕϑ(g2)(u).

(iii) =⇒ (ii) For f ∈ E(X) we have

|Fg1|(f) = ϕϑ(g1)(f̃) ≤ ϕϑ(g2)(f̃) = |Fg2|(f).

A subset C of E ′(X∗, X) is said to be solid if ϑ(g1) ≤ ϑ(g2) with g1 ∈ E ′(X∗, X) and
g2 ∈ C imply g1 ∈ C. Every subset A of E ′(X∗, X) is contained in the smallest (with
respect to inclusion) solid set in E ′(X∗, X) called the solid hull of A and denoted by
S(A). One can note that

S(A) = {g ∈ E ′(X∗, X) : ϑ(g) ≤ ϑ(h) for some h ∈ A}.

Lemma 3.3. Let C be a subset of E ′(X∗, X) and FC = {Fg : g ∈ C}. Then

conv (S(FC)) = Fconv (S(C)).

Proof. Assume that F ∈ conv (S(FC)). Then F = Σn
i=1αiFgi = FΣn

i=1αigi , where g1 ∈
E ′(X∗, X) and αi ≥ 0 for i = 1, 2, . . . , n with Σn

i=1αi = 1, and |Fgi| ≤ |Fg′i
| for some

g′i ∈ C and i = 1, 2, . . . , n. In view of Lemma 3.2 ϑ(gi) ≤ ϑ(g′i), i.e., gi ∈ S(C) for
i = 1, 2, . . . , n and Σn

i=1αigi ∈ conv (S(C)). This means that F ∈ Fconv (S(C)).

Assume that F ∈ Fconv (S(C)). Then F = FΣn
i=1αigi = Σn

i=1αiFgi , where gi ∈ E ′(X∗, X)
and αi ≥ 0 for i = 1, 2, . . . , n with Σn

i=1αi = 1, and ϑ(gi) ≤ ϑ(g′i) for some g′i ∈ C and
i = 1, 2, . . . , n. By Lemma 3.2, |Fgi|(f) ≤ |Fg′i

|(f) for all f ∈ E(X) and i = 1, 2, . . . , n,
so F ∈ conv (S(FC)).

Now we ready to characterize τ(E,E′)-equicontinuous subsets of E(X)∼n .

Proposition 3.4. Let E be an ideal of L0 and let X be a Banach space. Then for a subset

C of E ′(X∗, X) and a subset ϑ(C) (= {ϑ(g) : g ∈ C }) of E ′ the following statements

are equivalent:

(i) {Fg : g ∈ C } in a τ(E,E′) -equicontinuous subset of E(X)∼n .

(ii) {Fg : g ∈ convS(C) } is a τ(E,E′) -equicontinuous subset of E(X)∼n .

(iii) {Fg : g ∈ S(C) } is a τ(E,E′) -equicontinuous subset of E(X)∼n .

(iv) {ϕϑ(g) : g ∈ C } is a τ(E,E′) -equicontinuous subset of E∼
n .

(v) {ϕϑ(g) : g ∈ C } is a relatively σ(E∼
n , E)-compact subset of E∼

n .

(vi) ϑ(C) is a relatively σ(E ′, E)-compact subset of E ′.
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Proof. (i) ⇐⇒ (ii) ⇐⇒ (iii) ⇐⇒ (iv) It follows from Proposition 2.1 and Lemma 3.3.

(iv) ⇐⇒ (v) ⇐⇒ (vi) It is obvious (see [1, p. 142]).

(vi) ⇐⇒ (iv) Assume that ϑ(C) is a relatively σ(E ′, E)-compact subset of E ′. Hence
by Proposition 3.1, abs convϑ(C) (the closure taken for σ(E ′, E) ) is absolutely con-
vex σ(E ′, E)-compact. It follows that the set {ϕv : v ∈ abs convϑ(C) } is τ(E,E∼

n )-
equicontinuous, so {ϕϑ(g) : g ∈ C} is also τ(E,E′)-equicontinuous.

As an application of Proposition 3.4 we get:

Corollary 3.5. Let E be an ideal of L0 and let X be a Banach space. Let C be a subset

of E ′(X∗, X) such that the set ϑ(C) in E ′ is relatively σ(E ′, E)-compact. Then the set

conv (S(C)) in E ′(X∗, X) is relatively σ(E ′(X∗, X), E(X))-compact.

Proof. In view of Proposition 3.4, {Fg : g ∈ conv (S(C))} is a τ(E,E′) -equicon-
tinuous subset of E(X)∼n , so it is relatively σ(E(X)∼n , E(X))-compact. This means that
conv (S(C)) is a relatively σ(E ′(X∗, X), E(X))-compact subset of E ′(X∗, X).

Now we are in position to state a characterization of σ(E ′(X∗), E(X))-compact subsets
of E ′(X∗) whenever X is an Asplund space.

Proposition 3.6. Let E be an ideal of L0 and X be an Asplund space. Then for a subset

C of E ′(X∗) the following statements are equivalent:

(i) C is relatively σ(E ′(X∗), E(X))-compact.

(ii) C is relatively countably σ(E ′(X∗), E(X))-compact.

(iii) C̃ is relatively σ(E ′, E)-compact.

(iv) conv (S(C)) is relatively σ(E ′(X∗), E(X))-compact.

(v) abs conv (C) is relatively σ(E ′(X∗), E(X))-compact.

Proof. (i) =⇒ (ii) It is obvious.

(ii) =⇒ (iii) Assume that C is relatively countably σ(E ′(X∗), E(X))-compact. In view
of Proposition 3.1 it is enough to show that the set C̃ is σ(E ′, E)-bounded and for every
u ∈ E the set {ug̃ : g ∈ C } in L1 is uniformly integrable. Clearly C is σ(E ′(X∗), E(X))-
bounded (see [23, Problem 6-4-106, p. 86]). Hence {Fg : g ∈ C} is a σ(E ′(X∗), E(X))-

bounded subset of E(X)∼n . We shall show that C̃ is a |σ|(E ′, E)-bounded subset of E ′.
Indeed, let u0 ∈ E and f0 = u0 ⊗ x0 for some fixed x0 ∈ SX . Hence by [15, Theorem
2.1] we have

sup
{∫

Ω

|u0(ω)| g̃(ω)dµ : g ∈ C
}

= sup
{∫

Ω

f̃0(ω)g̃(ω)dµ : g ∈ C
}

= sup{|Fg|(f0) : g ∈ C} < ∞.

Now we shall show that for every u ∈ E the set {u g̃ : g ∈ C} in L1(µ) is uniformly
integrable. Assume on the contrary that there exists u0 ∈ E+ such that the set {u0 g̃ :
g ∈ C} is not uniformly integrable. For each g ∈ C let us put

νg(A) =

∫

A

u0(ω)g̃(ω)dµ for all A ∈ Σ.
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Then for every g ∈ C, νg : Σ → [0,∞) is µ-continuous countably additive measure
but the family {νg : g ∈ C} is not uniformly µ-continuous. In view of [17, Proposition
2.2] there exist a pairwise disjoint sequence (Bn) in Σ, a sequence (gn) in C and number
ε0 > 0 such that for every n ∈ N:

νgn(Bn) =

∫

Bn

u0(ω)g̃n(ω)dµ > ε0. (1)

Since χBn
u0gn ∈ L1(X∗) ⊂ L1(X∗, X), in view of [2, Theorem 1.1(3), p. 24] we have

νgn(Bn) = ‖χBn
u0gn‖L1(X∗,X)

= sup
{∣∣∣

∫

Bn

〈f(ω), u0(ω)gn(ω)〉 dµ
∣∣∣ : f ∈ L∞(X), ‖f‖L∞(X) ≤ 1

}
.

Hence by (1) one can choose a sequence (fn) in L∞(X) with ‖fn‖L∞(X) ≤ 1, χΩ\Bn
fn = 0

and such that ∣∣∣
∫

Bn

〈fn(ω), u0(ω)gn(ω)〉 dµ
∣∣∣ > ε0 for all n ∈ N. (2)

Let

f0(ω) =

{
fn(ω) for ω ∈ Bn, n = 1, 2, . . . ,

0 for ω ∈ Ωr
⋃∞

n=1 Bn.

Then f0 ∈ L∞(X), χBn
f0 = fn for n ∈ N and u0f0 ∈ E(X). Note that for every

g ∈ E ′(X∗) we have

∞∑

n=1

∣∣∣
∫

Ω

〈u0(ω)fn(ω), g(ω)〉dµ
∣∣∣

≤
∞∑

n=1

∫

Bn

|〈u0(ω)fn(ω), g(ω)〉|dµ ≤
∞∑

n=1

∫

Bn

u0(ω)f̃n(ω)g̃(ω)dµ

=
∞∑

n=1

∫

Bn

u0(ω)f̃0(ω)g̃(ω)dµ =

∫

Ω

u0(ω)f̃0(ω)g̃(ω)dµ < ∞.

Hence we can define a linear operator

Tf0 : E
′(X∗) ∋ g 7→

(∫

Ω

〈u0(ω)fn(ω), g(ω)〉dµ
)∞

n=1
∈ l1.

Given (sn) ∈ l∞ we define

h(ω) =

{
snu0(ω)fn(ω) if ω ∈ Bn, n ∈ N,

0 if ω ∈ Ωr
⋃∞

n=1 Bn.

Clearly h ∈ E(X) and

∣∣∣
∞∑

n=1

(
sn

∫

Ω

〈u0(ω)fn(ω), g(ω)〉dµ
)∣∣∣ =

∣∣∣
∞∑

n=1

∫

Bn

〈u0(ω)snfn(ω), g(ω)〉dµ)
∣∣∣

=
∣∣∣
∫

Ω

〈h(ω), g(ω)〉dµ
∣∣∣.
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It follows that the operator Tf0 is (σ(E ′(X∗), E(X)), σ(l1, l∞))-continuous. Hence the
set {Tf0(g) : g ∈ C} is relatively countably σ(l1, l∞)-compact in l1, and by the Eberlein
theorem it is also relatively sequentially σ(l1, l∞)-compact. On the other hand, in view
of Schur’s theorem the set {Tf0(g) : g ∈ C} is relatively compact in the Banach space l1,
and it follows that for every ε > 0 there exists nε ∈ N such that

sup
{ ∞∑

n=nε

∣∣∣
∫

Ω

〈u0(ω)fn(ω), g(ω)〉dµ
∣∣∣ : g ∈ C

}
≤ ε.

In particular, it follows that for n ≥ nε0 we get

∣∣∣
∫

Ω

〈u0(ω)fn(ω), gn(ω)〉dµ
∣∣∣ ≤ ε0

which contradicts (2).

(iii) =⇒ (iv) It follows from Corollary 3.3.

(iv) =⇒ (v) It is obvious because abs conv (C) ⊂ conv (S(C)).

(v) =⇒ (i) It is obvious.

Recall that a locally convex space (L, ξ) is said to have the convex compactness property

if the closed absolutely convex hull of every ξ-compact subset of L is still ξ-compact (see
[22, p. 156], [23, Definition 9-2-8]).

As a consequence of Proposition 3.6 we have:

Corollary 3.7. Let E be an ideal of L0 and X be an Asplund space. Then the space

(E ′(X∗), σ(E ′(X∗), E(X))) has the convex compactness property.

4. Strongly Mackey topologies on vector-valued function spaces

Now we are in position to state our main result:

Theorem 4.1. Let E be an ideal of L0 and let X be an Asplund space. Then τ(E,E′)
is a strongly Mackey topology on E(X); hence we have

τ(E,E′) = τ(E(X), E ′(X∗)).

Proof. We have E(X)∼n = {Fg : g ∈ E ′(X∗)} because X is an Asplund space. Assume
that for C ⊂ E ′(X∗) the set {Fg : g ∈ C} is a relatively countably σ(E(X)∼n , E(X))-
compact subset of E(X)∼n , i.e., C is a relatively countably σ(E ′(X∗), E(X))-compact
subset of E ′(X∗). Then by Proposition 3.6 {g̃ : g ∈ C} is a relatively σ(E ′, E)-compact
subset of E ′. Hence, in view of Proposition 3.4, {Fg : g ∈ C} is a τ(E,E′)-equicontinuous
subset of E(X)∼n . This means that τ(E,E′) is a strongly Mackey topology on E(X).

As a consequence of Theorem 4.1 we get:

Corollary 4.2. Let E be a perfect ideal of L0 and X be an Asplund space. Then the

space E ′(X∗) is σ(E ′(X∗), E(X))-sequentially complete.

Proof. In view of Theorem 4.1, τ(E(X), E(X)∼n ) = τ(E(X), E ′(X∗)) = τ(E,E′), and
it follows that τ(E(X), E(X)∼n ) is a locally solid topology on E(X). Hence by [17,
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Theorem 3.6] the space E(X)∼n is σ(E(X)∼n , E(X))-sequentially complete. This means
that E ′(X∗) is σ(E ′(X∗), E(X))-sequentially complete.

Now we consider the topology τ(L∞, L1) on L∞(X) associated with the Mackey topology
τ(L∞, L1) on L∞. It is known that τ(L∞, L1) coincides with the natural mixed topology

γ[T∞(X), T0(X)|L∞(X)] (briefly γL∞(X)) (see [16, Theorem 4.2]). Here T∞(X) stands for
the ‖ · ‖∞-norm topology on L∞(X), and T0(X) denotes the topology of the F -norm
‖ · ‖0 on L0(X) that generates convergence in measure on sets of finite measure. Then
γL∞(X) is the finest locally convex-topology on L∞(X) which agrees with T0(X) on
‖ · ‖∞-bounded sets in L∞(X) (see [24, 2.2.2]). This means that (L∞(X), γL∞(X)) is a
generalized DF-space (see [20]). In particular, by Theorem 4.1 and Corollary 4.2 we get:

Corollary 4.3. Assume that X is an Asplund space. Then the mixed topology γL∞(X) is

a strongly Mackey topology; hence we have:

γL∞(X) = τ(L∞, L1) = τ(L∞(X), L1(X∗)).

Moreover, the space L1(X∗) is σ(L1(X∗), L∞(X))-sequentially complete.

Now we consider the topology τ(LΦ, LΦ∗) on the Orlicz-Bochner space LΦ(X) associated
with the Mackey topology τ(LΦ, LΦ∗

) on the Orlicz space LΦ. For this purpose we first
recall some terminology (see [19]). By a Young function we mean here a continuous
convex mapping Φ : [0,∞) → [0,∞) that vanishes only at 0 and Φ(t)/t → 0 as t → 0,
Φ(t)/t → ∞ as t → ∞. The Orlicz space LΦ = {u ∈ L0 :

∫
Ω
Φ(λ|u(ω)|)dµ < ∞ for

some λ > 0} can be equipped with a complete topology TΦ of the Riesz norm ‖u‖Φ :=
inf{λ > 0 :

∫
Ω
Φ(|u(ω)|/λ)dµ ≤ 1}. It is known that (LΦ)′ = LΦ∗

, where Φ∗ stands
for the Young function complementary to Φ in the sense of Young. The Orlicz-Bochner
space LΦ(X) = {f ∈ L0(X) : f̃ ∈ LΦ} can be equipped with the complete topology
TΦ(X) of the norm ‖f‖LΦ(X) := ‖f̃‖Φ for f ∈ LΦ(X), i.e., TΦ(X) = TΦ. Note that
LΦ(X)∼n = {Fg : g ∈ LΦ∗

(X∗, X)}.

For ε > 0 let UΦ(ε) = {f ∈ LΦ(X) :
∫
Ω
Φ(f̃(ω))dµ ≤ ε}. Then the family of all sets of

the form:
⋃∞

n=1(Σ
n
i=1UΦ(εi)), where (εn) is a sequence of positive numbers, forms a local

base at 0 (consisting of solid and convex subsets of LΦ(X)) for a locally convex topology
T ∧
Φ (X), and called the modular topology (see [9]). In particular, we will write T ∧

Φ instead
of T ∧

Φ (R). Then T ∧
Φ = τ(LΦ, LΦ∗

) (see [13, Theorem 1.3]). The basic properties of the
modular topology T ∧

Φ (X) are included in the following theorem (see [9, Theorem 6.3,
Theorem 6.5]).

Corollary 4.4. Let Φ be a Young function and let X be a Banach space. Then

(i) T ∧
Φ (X) is the finest locally convex-solid topology on LΦ(X) with the Lebesgue prop-

erty.

(ii) T ∧
Φ (X) = T ∧

Φ = τ(LΦ, LΦ∗).

(iii) T ∧
Φ (X) is generated by the family of norms ‖ · ‖LΨ(X), where Ψ runs over the

family of all Young functions such that Ψ ⊳ Φ (i.e., for every c > 1 there exists d > 1
such that Ψ(ct) ≤ dΦ(t) for all t ≥ 0).

Making use of Theorem 4.1, Corollary 4.2 and Theorem 4.4 we get:
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Theorem 4.5. Let Φ be a Young function and X be an Asplund space. Then the modular

topology T ∧
Φ (X) on LΦ(X) is a strongly Mackey topology; hence we have:

T ∧
Φ (X) = τ(LΦ, LΦ∗) = τ(LΦ(X), LΦ∗

(X∗)).

Moreover, the space LΦ∗

(X∗) is σ(LΦ∗

(X∗), LΦ(X))-sequentially complete.

5. Linear operators on vector-valued function spaces with Mackey topologies

From now on we assume that E is an ideal of L0 and (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) are real
Banach spaces. For a linear operator T : E(X) → Y let T ∗ : Y # → E(X)# stand for the
conjugate of T defined via the duality identity 〈f, T ∗(y∗)〉 = 〈T (f), y∗〉 for f ∈ E(X),
y∗ ∈ Y # (here Y # denotes the algebraic dual of Y ).

We start with the following well-known characterization.

Proposition 5.1. For a linear operator T : E(X) → Y the following statements are

equivalent:

(i) T is (τ(E(X), E(X)∼n ), ‖ · ‖Y )-continuous.

(ii) T is (σ(E(X), E(X)∼n ), σ(Y, Y
∗))-continuous.

(iii) T ∗(Y ∗) ⊂ E(X)∼n .

Proof. (i) ⇐⇒ (ii) See [23, Corollary 11-1-3, Corollary 11-2-6]; (ii) ⇐⇒ (iii) See [23,
Lemma 11-1-1].

Let Lτ (E(X), Y ) stand for the space of all (τ(E(X), E(X)∼n ), ‖ · ‖Y )-continuous linear
operators from E(X) to Y . The strong operator topology (briefly SOT) is a locally
convex topology on Lτ (E(X), Y ) defined by the family of seminorms {pf : f ∈ E(X)},
where pf (T ) = ‖T (f)‖Y for all T ∈ Lτ (E(X), Y ). The weak operator topology (briefly
WOT) is a locally convex topology on Lτ (E(X), Y ) defined by the family of seminorms
{pf,y∗ : f ∈ E(X), y∗ ∈ Y ∗}, where pf,y∗(T ) = |〈T (f), y∗〉| for all T ∈ Lτ (E(X), Y ).
Note that for Y = R, both SOT and WOT coincide on E(X)∼n with σ(E(X)∼n , E(X)).

Proposition 5.2. Assume that E(X)∼n is σ(E(X)∼n , E(X))-sequentially complete. Then

the space Lτ (E(X), Y ) is WOT-sequentially complete.

Proof. Let (Tn) be a WOT-Cauchy sequence in Lτ (E(X), Y ). Then one can define a
linear operator T : E(X) → Y such that for every f ∈ E(X), y∗ ∈ Y ∗,

〈T (f), y∗〉 := lim
n

〈Tn(f), y
∗〉. (3)

It is enough to show that T is (τ(E(X), E(X)∼n ), ‖ · ‖Y )-continuous. In fact, in view of
Proposition 5.1, T ∗

n(Y
∗) ⊂ E(X)∼n for every n ∈ N. Moreover, one can easily observe that

T ∗
n : Y ∗ → E(X)∼n is (σ(Y ∗, Y ), σ(E(X)∼n , E(X)))-continuous for n ∈ N. Let y∗0 ∈ Y ∗ be

given. Then for every f ∈ E(X) by (3) we have:

T ∗(y∗0)(f) = 〈T (f), y∗0〉 = lim
n

〈Tn(f), y
∗
0〉 = lim

n
T ∗
n(y

∗
0)(f). (4)

It follows that (T ∗
n(y

∗
0)) is a σ(E(X)∼n , E(X))-Cauchy sequence in E(X)∼n , so there exists

F0 ∈ E(X)∼n such that F0(f) = limn T
∗
n(y

∗
0)(f) for every f ∈ E(X). By (4) T ∗(y∗0) = F0 ∈

E(X)∼n ; hence T ∗(Y ∗) ⊂ E(X)∼n , and this means that T ∈ Lτ (E(X), Y ) (see Proposition
5.1).
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As an application of Proposition 5.2 and Corollary 4.2 we get:

Corollary 5.3. Assume that E is a perfect ideal of L0 and X is an Asplund space. Then

the space Lτ (E(X), Y ) is WOT-sequentially complete.

The following general result will be usuful (see [21, Theorem 2]).

Proposition 5.4. Let K be a SOT-compact subset of Lτ (E(X), Y ), and let A be a

σ(Y ∗, Y )-closed, equicontinuous subset of Y ∗. Then the set
⋃
{T ∗(A) : T ∈ K} is a

σ(E(X)∼n , E(X))-compact subset of E(X)∼n .

Now we are in position to state our main result.

Theorem 5.5. Assume that X is an Asplund space and Y is a Banach space. Let

K be a SOT-compact subset of Lτ (E(X), Y ). Then K is (τ(E(X), E ′(X∗)), ‖ · ‖Y )-
equicontinuous.

Proof. In view of the Alaoglu theorem the unit ball in Y ∗ is σ(Y ∗, Y )-closed and equicon-
tinuous. Hence by Proposition 5.4 Z =

⋃
{T ∗(BY ∗) : T ∈ K} is σ(E(X)∼n , E(X))-

compact subset of E(X)∼n = {Fg : g ∈ E ′(X∗)}. Let CZ = {g ∈ E ′(X∗) : Fg ∈ Z}.
Then by Corollary 3.7 the set abs conv (CZ) (the closure in σ(E ′(X∗), E(X)) ) is still a
σ(E ′(X∗), E(X))-compact subset of E ′(X∗). Putting

p0(f) = sup{|Fg(f)| : g ∈ abs conv (CZ) } for f ∈ E(X)

we get
p0(f) ≥ sup{|F (f)| : F ∈ Z} = sup

T∈K
{ |T ∗(y∗)| : y∗ ∈ BY ∗}

= sup
T∈K

{|〈T (f), y∗〉| : y∗ ∈ BY ∗} = sup
T∈K

‖T (f)‖Y .

Now, let ε > 0 be given. Then Wε = {f ∈ E(X) : p0(f) ≤ ε} is a neighborhood of 0
for τ(E(X), E ′(X∗)). It follows that ‖T (f)‖Y ≤ ε for every T ∈ K and all f ∈ Wε,
and this means that K is (τ(E(X), E ′(X∗)), ‖ · ‖Y )-equicontinuous.

As an application of Theorem 5.5 we get the following Vitali-Hahn-Saks type theorem.

Corollary 5.6. Let E be a perfect ideal of L0. Assume that X is an Asplund space, and

Y a Banach space. Let (Tn) be a sequence in Lτ (E(X), Y ) and assume that T (f) :=
limn Tn(f) exists in (Y, ‖ · ‖Y ) for every f ∈ E(X). Then T ∈ Lτ (E(X), Y ) and the set

{Tn : n ∈ N} in Lτ (E(X), Y ) is (τ(E(X), E ′(X∗)), ‖ · ‖Y )-equicontinuous.

Proof. Note that 〈T (f), y∗〉 = limn〈Tn(f), y〉 for every f ∈ E(X), y∗ ∈ Y ∗. Since
E(X)∼n is σ(E(X)∼n , E(X)) is sequentially complete (see Corollary 4.2), in view of the
proof of Proposition 5.2, T ∈ Lτ (E(X), Y ) and Tn → T in Lτ (E(X), Y ) for SOT,
so the set {Tn : n ∈ N} is relatively compact for SOT. Hence by Theorem 5.5 it is
(τ(E(X), E ′(X∗)), ‖ · ‖Y )-equicontinuous.
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