Linear Operators on Vector-Valued Function Spaces with Mackey Topologies

Marian Nowak

Faculty of Mathematics, Computer Science and Econometrics, University of Zielona Góra, ul. Szafrana 4A, 65-516 Zielona Góra, Poland m.nowak@wmie.uz.zqora.pl

Received: May 19, 2006

Revised manuscript received: April 2, 2007

Let E be an ideal of L^0 over a σ -finite measure space (Ω, Σ, μ) and let E' be the Köthe dual of E. Let $(X, \|\cdot\|_X)$ be a real Banach space, and X^* the Banach dual of X. Let E(X) be a subspace of the space $L^0(X)$ of μ -equivalence classes of all strongly Σ -measurable function $f: \Omega \to X$, and consisting of all those $f \in L^0(X)$ for which the scalar function \widetilde{f} , defined by $\widetilde{f}(\omega) = \|f(\omega)\|_X$ for $\omega \in \Omega$, belongs to E. Assume that a Banach space X is an Asplund space. It is shown that a subset C of $E'(X^*)$ is relatively $\sigma(E'(X^*), E(X))$ -compact iff the set $\{\widetilde{g}: g \in E'(X^*)\}$ in E' is relatively $\sigma(E', E)$ -compact. We consider the topology $\tau(E, E')$ on E(X) associated with the Mackey topology $\tau(E, E')$ on E. It is shown that $\overline{\tau(E, E')}$ is strongly Mackey topology; hence $\overline{\tau(E, E')}$ coincides with the Mackey topology $\tau(E(X), E'(X^*))$. Moreover, $E'(X^*)$ is $\sigma(E'(X^*), E(X))$ -sequentially complete whenever E' is perfect. We examine the space $\mathcal{L}_{\tau}(E(X), Y)$ of all $(\tau(E(X), E'(X^*)), \|\cdot\|_Y)$ -continuous linear operators from E(X) to a Banach space $(Y, \|\cdot\|_Y)$, equipped with the weak operator topology (briefly WOT) and the strong operator topology (briefly SOT). It is shown that if E is perfect, then $\mathcal{L}_{\tau}(E(X), Y)$ is WOT-sequentially complete, and every SOT-compact subset of $\mathcal{L}_{\tau}(E(X), Y)$ is obtained.

Keywords: Vector-valued function spaces, Mackey topologies, strongly Mackey topologies, weak compactness, Radon-Nikodym property, Asplund spaces, sequential completeness, convex compactness property, weak operator topology, strong operator topology, linear operators

2000 Mathematics Subject Classification: 46E40, 46E30, 46A20, 46A70

1. Introduction and preliminaries

We denote by $\sigma(L, K)$ and $\tau(L, K)$ the weak-topology and the Mackey topology on L with respect to a dual pair $\langle L, K \rangle$. Given a Hausdorff locally convex space (L, ξ) by $(L, \xi)^*$ or L_{ξ}^* we will denote its topological dual. Recall that ξ is said to be a strongly Mackey topology if every relatively countably $\sigma(L_{\xi}^*, L)$ -compact subset of L_{ξ}^* is ξ -equicontinuous (see [22, Definition 4.1]). Clearly, if ξ is a strongly Mackey topology, then ξ is a Mackey topology, i.e., $\xi = \tau(L, L_{\xi}^*)$.

First we establish terminology concerning Riesz spaces and function spaces (see [1], [10], [11], [26]). Let (Ω, Σ, μ) be a complete σ -finite measure space. Let L^0 denote the space of μ -equivalence classes of all Σ -measurable real-valued functions defined and finite a.e. on Ω . Let χ_A stand for the characteristic function of a set A, and let $\mathbb N$ and $\mathbb R$ denote the sets of all natural and real numbers. Let E be an ideal of L^0 with supp $E = \Omega$, and let E' stand for the Köthe dual of E, i.e., $E' = \{v \in L^0 : \int_{\Omega} |u(\omega)v(\omega)| d\mu < \infty$ for all $u \in E\}$. Throughout the paper we assume that supp $E' = \Omega$. Let E^{\sim} and E^{\sim}_n

stand for the order dual and the order continuous dual of E, resp. Then E_n^{\sim} separates points of E and it can be identified with E' through the mapping: $E' \ni v \mapsto \varphi_v \in E_n^{\sim}$, where $\varphi_v(u) = \int_{\Omega} u(\omega)v(\omega)d\mu$ for all $u \in E$. E is said to be *perfect* whenever the natural embedding from E into $(E_n^{\sim})_n^{\sim}$ is onto, i.e., E'' = E.

For terminology and basic concepts from the theory of vector-valued function spaces E(X), we refer to the three main monographs: J. Diestel and J. J. Uhl's "Vector Measures" [8], P. Cembranos and J. Mendoza's "Banach spaces of Vector Valued Functions" [5] and Pei-Kee Lin's "Köthe-Bochner Function Spaces" [11].

Now we recall terminology and some basic results concerning the topological properties and the duality theory of vector-valued function spaces E(X) as set out in [2], [3], [4], [5], [8], [9], [11], [14], [15], [16]. Let $(X, \| \cdot \|_X)$ be a real Banach space and let X^* stand for the Banach dual of X. Let S_X , B_X stand for the unit sphere and the closed unit ball in X. By $L^0(X)$ we denote the set of μ -equivalence classes of all strongly Σ -measurable functions $f: \Omega \longrightarrow X$. For $f \in L^0(X)$ let us set $\widetilde{f}(\omega) := \|f(\omega)\|_X$ for $\omega \in \Omega$. Let

$$E(X) = \{ f \in L^0(X) : \widetilde{f} \in E \}.$$

Recall that the algebraic tensor product $E \otimes X$ is the subspace of E(X) spanned by the functions of the form $u \otimes x$, $(u \otimes x)(\omega) = u(\omega)x$, where $u \in E$, $x \in X$.

A subset H of E(X) is said to be solid whenever $\widetilde{f}_1 \leq \widetilde{f}_2$ and $f_1 \in E(X)$, $f_2 \in H$ imply $f_1 \in H$. A linear topology τ on E(X) is said to be locally solid if it has a local base at zero consisting of solid sets. A linear topology τ on E(X) that is as the same time locally solid and locally convex will be called a locally convex-solid topology on E(X). A seminorm ϱ on E(X) is called solid if $\varrho(f_1) \leq \varrho(f_2)$ whenever $f_1, f_2 \in E(X)$ and $\widetilde{f}_1 \leq \widetilde{f}_2$. It is known that a locally convex topology τ on E(X) is locally convex-solid if and only if it is generated by some family of solid seminorms defined on E(X) (see [9]). A locally solid topology τ on E(X) is said to be a Lebesgue topology whenever for a net (f_{α}) in E(X), $\widetilde{f}_{\alpha} \stackrel{(0)}{\longrightarrow} 0$ in E implies $f_{\alpha} \stackrel{\tau}{\longrightarrow} 0$ (see [16, Definition 2.2]).

Let (E,ξ) be a Hausdorff locally convex-solid function space. Then one can topologize the space E(X) as follows (see [9]). Let $\{p_{\alpha} : \alpha \in A\}$ be a family of Riesz seminorms on E that generates ξ . By putting

$$\bar{p}_{\alpha}(f) := p_{\alpha}(\tilde{f}) \text{ for } f \in E(X) \ (\alpha \in \mathcal{A}),$$

we obtain a family $\{\bar{p}_{\alpha} : \alpha \in \mathcal{A}\}$ of solid seminorms on E(X) that defines a Hausdorff locally convex-solid topology $\bar{\xi}$ on E(X) (called the *topology associated with* ξ). Then $\bar{\xi}$ is a Lebesgue topology whenever ξ is a Lebesgue topology (see [9]).

Conversely, let τ be a Hausdorff locally convex-solid topology on E(X) and let $\{\varrho_{\alpha} : \alpha \in \mathcal{A}\}$ be a family of solid seminorms on E(X) that generates τ . By putting for a fixed $x_0 \in S_X$

$$\widetilde{\varrho}_{\alpha}(u) := \varrho_{\alpha}(u \otimes x_0) \text{ for } u \in E \ (\alpha \in \mathcal{A}),$$

we obtain a family $\{\widetilde{\varrho}_{\alpha} : \alpha \in \mathcal{A}\}$ of Riesz seminorms on E that defines a Hausdorff locally convex-solid topology $\widetilde{\tau}$ on E.

One can note that $\tilde{\xi} = \xi$ and $\tilde{\tau} = \tau$ (see [9]). Thus every Hausdorff locally convex-solid topology τ on E(X) can be represented as the topology associated with some Hausdorff

locally convex-solid topology $\xi (= \tilde{\tau})$ on E. In particular, for a Banach function space $(E, \|\cdot\|_E)$ the space E(X) provided with the norm $\|f\|_{E(X)} := \|\tilde{f}\|_E$ is usually called a Köthe-Bochner space.

A linear functional F on E(X) is said order continuous whenever for a net (f_{α}) in E(X), $\widetilde{f}_{\alpha} \stackrel{(0)}{\longrightarrow} 0$ in E implies $F(f_{\alpha}) \longrightarrow 0$. The set consisting of all order continuous linear functionals on E(X) will be denoted by $E(X)_{n}^{\sim}$ and called the order continuous dual of E(X) (see [2], [13]). Since we assume that supp $E' = \Omega$, $E(X)_{n}^{\sim}$ separates points of E(X). A Hausdorff locally convex-solid topology τ on E(X) has the Lebesgue property if and only if $E(X)_{\xi}^{*} \subset E(X)_{n}^{\sim}$ (see [16, Theorem 2.4]).

To present the integral representation of $E(X)_n^{\sim}$ we now recall terminology concerning the spaces of weak*-measurable functions (see [5], [2], [4], [3]). For a given function $g:\Omega\to X^*$ and $x\in X$ we denote by g_x the real function on Ω defined by $g_x(\omega)=g(\omega)(x)$ for $\omega\in\Omega$. A function $g:\Omega\to X^*$ is said to be weak*-measurable if the functions g_x are measurable for each $x\in X$. We shall say the two weak*-measurable functions g_1,g_2 are weak*-equivalent whenever $g_1(\omega)(x)=g_2(\omega)(x)$ μ -a.e. for each $x\in X$. Let $L^0(X^*,X)$ be the set of weak*-equivalence classes of all weak*-measurable functions $g:\Omega\to X^*$. Following [2], [4] one can define the so-called abstract norm $\vartheta:L^0(X^*,X)\to L^0$ by $\vartheta(g):=\sup\{|g_x|:x\in B_X\}$. Then for $f\in L^0(X)$ and $g\in L^0(X^*,X)$ the function $\langle f,g\rangle:\Omega\to\mathbb{R}$ defined by $\langle f,g\rangle(\omega):=\langle f(\omega),g(\omega)\rangle$ is measurable and $|\langle f,g\rangle|\leq \widetilde{f}\,\vartheta(g)$. Moreover, $\vartheta(g)=\widetilde{g}$ for $g\in L^0(X^*)$. Let

$$E'(X^*, X) = \{ g \in L^0(X^*, X) : \vartheta(g) \in E' \}.$$

Due to A. V. Bukhvalov (see [2, Theorem 4.1]) $E(X)_n^{\sim}$ can be identified with $E'(X^*, X)$ through the mapping: $E'(X^*, X) \ni g \mapsto F_g \in E(X)_n^{\sim}$, where

$$F_g(f) = \int_{\Omega} \langle f(\omega), g(\omega) \rangle d\mu$$
 for all $f \in E(X)$.

Clearly $E'(X^*) \subset E'(X^*, X)$. Moreover, the identities:

$$E'(X^*) = E'(X^*, X)$$
 and $E(X)_n^{\sim} = \{F_q : g \in E'(X^*)\}$

hold whenever the Banach space X^* has the Radon-Nikodym property (see [8, Chap. 3.1], [3, Theorem 3.5]). Recall that a Banach space X is called an *Asplund space* if every real-valued continuous convex function on an open convex domain in X is Fréchet differentiable on a dense G_{δ} subset of its domain (see [12], [18]). The following theorem provides a characterization of Banach spaces X whose duals have the Radon-Nikodym property (see [12], [18], [8, p. 213]).

Theorem 1.1. For a Banach space X the following statements are equivalent:

- (i) X^* has the Radon-Nikodym property.
- (ii) X is an Asplund space.

In the theory of function spaces the Mackey topology $\tau(E, E') (= \tau(E, E_n^{\sim}))$ on E is of importance (see [6]). It is well known that $\tau(E, E')$ is the finest Hausdorff locally convex-solid topology on E with the Lebesgue property.

In this paper we consider the topology $\overline{\tau(E,E')}$ on E(X) associated with $\tau(E,E')$, i.e., $\overline{\tau(E,E')}$ is defined by solid seminorms:

$$\overline{p_M}(f) := p_M(\widetilde{f}) = \sup \left\{ \int_{\Omega} \widetilde{f}(\omega) |v(\omega)| d\mu : v \in M \right\} \text{ for } f \in E(X),$$

where M runs over the family of all absolutely convex and solid $\sigma(E', E)$ -compact sets in E'. The basic properties of $\overline{\tau(E, E')}$ can be summarized in the following theorem (see [16, Theorem 2.5, Theorem 2.6]).

Theorem 1.2. Let E be an ideal of L^0 and X be a Banach space. Then

- (i) $\overline{\tau(E,E')}$ is the finest locally convex-solid topology on E(X) with the Lebesgue property.
- (ii) $(E(X), \overline{\tau(E, E')})^* = E(X)_n^{\sim}$, and hence $\overline{\tau(E, E')} \subset \tau(E, (X), E(X)_n^{\sim})$.
- (iii) $(E(X), \tau(E, E'))$ is complete whenever E is perfect.

We can state the following *Mackey problem*: under which conditions on X is $\overline{\tau(E,E')}$ a strongly Mackey topology on E(X)? Equivalently, when every relatively countably $\sigma(E(X)_n^{\sim}, E(X))$ -compact sets in $E(X)_n^{\sim}$ are $\overline{\tau(E,E')}$ -equicontinuous? We show that it holds whenever X is an Asplund space.

In Section 2 we obtain some results concerning duality of the space E(X) that will be needed. In Section 3 we investigate the relationship between the $\overline{\tau(E,E')}$ -equicontinuos subsets of $E(X)_n^{\sim}$ and relatively $\sigma(E',E)$ -compact subsets of E'. Moreover, in case when X is an Asplund space, we obtain a characterization of relatively countably $\sigma(E'(X^*), E(X))$ -compact subsets of $E'(X^*)$. As a consequence, in Section 4 in case X is an Asplund space, we obtain that $\tau(E,E')$ is a strongly Mackey topology; hence $\overline{\tau(E,E')} = \tau(E(X),E'(X^*))$. Moreover, it is shown that the space $E'(X^*)$ is $\underline{\sigma(E'(X^*),E(X))}$ -sequentially complete. We characterize $\overline{\tau(L^{\infty},L^{1})}$ on $L^{\infty}(X)$ and $\overline{\tau(L^{\Phi},L^{\Phi^*})}$ on the Orlicz-Bochner spaces $L^{\Phi}(X)$. In Section 5 we examine the space $\mathcal{L}_{\tau}(E(X),Y)$ of all $(\tau(E(X),E(X)_n^{\sim}),\|\cdot\|_Y)$ -continuous linear operators from E(X) to a Banach space $(Y,\|\cdot\|_Y)$, equipped with the weak operator topology (briefly WOT) and the strong operator topology (briefly SOT). It is shown that if E is perfect and E is an Asplund space, then the space $\mathcal{L}_{\tau}(E(X),Y)$ is WOT-sequentially complete, and every SOT-compact subset of $\mathcal{L}_{\tau}(E(X),Y)$ is $(\tau(E(X),E'(X^*)),\|\cdot\|_Y)$ -equicontinuous. As an application, a Vitali-Hahn-Saks type theorem for $\mathcal{L}_{\tau}(E(X),Y)$ is obtained.

2. Duality of vector-valued function spaces

In this section we establish terminology and prove a general result concerning duality of vector-valued function spaces E(X) (see [2], [3], [4], [14] for more details). For a linear functional F on E(X) let us put

$$|F|(f) = \sup\{ |F(h)| : h \in E(X), \widetilde{h} \le \widetilde{f} \} \text{ for } f \in E(X).$$

The set

$$E(X)^{\sim} = \{ F \in E(X)^{\#} : |F|(f) < \infty \text{ for all } f \in E(X) \}$$

will be called the order dual of E(X) (here $E(X)^{\#}$ denotes the algebraic dual of E(X)). For $F_1, F_2 \in E(X)^{\sim}$ we will write $|F_1| \leq |F_2|$ whenever $|F_1|(f) \leq |F_2|(f)$ for all

169

 $f \in E(X)$. A subset A of $E(X)^{\sim}$ is said to be *solid* whenever $|F_1| \leq |F_2|$ with $F_1 \in E(X)^{\sim}$ and $F_2 \in A$ imply $F_1 \in A$. A linear subspace I of $E(X)^{\sim}$ will be called an *ideal* of $E(X)^{\sim}$ whenever I is solid. It is known that if τ is a locally solid topology on E(X), then $(E(X), \tau)^*$ is an ideal of $E(X)^{\sim}$ (see [14, Theorem 3.2]). Every subset A of $E(X)^{\sim}$ is contained in the smallest (with respect to inclusion) solid set called the solid hull of A and denoted by S(A). One can note that $S(A) = \{F \in E(X)^{\sim} : |F| \leq |G| \text{ for some } G \in A\}$. Let $F \in E(X)^{\sim}$ and $x_0 \in S_X$ be fixed. For $u \in E^+$ let us set:

$$\varphi_F(u) := |F|(u \otimes x_0) = \sup\{|F(h)| : h \in E(X), \ \widetilde{h} \le u\}.$$

Then $\varphi_F: E^+ \to \mathbb{R}^+$ is an additive mapping and φ_F has a unique positive extension to a linear mapping from E to \mathbb{R} (denoted by φ_F again) and given by

$$\varphi_F(u) := \varphi_F(u^+) - \varphi_F(u^-) \text{ for all } u \in E.$$

(see [4, Lemma 7]). Observe that $\varphi_F \in E^{\sim}$.

Assume now that τ is a Hausdorff locally convex-solid topology on E(X). Then $E(X)^*_{\tau}$ is an ideal of $E(X)^{\sim}$ (see [13, Theorem 3.2]), and the pair $\langle E(X), E(X)^*_{\tau} \rangle$, under its natural duality $\langle f, F \rangle = F(f)$ is a solid dual system (see [14, p. 206]). For a subset A of E(X) and a subset B of $E(X)^*_{\tau}$ let us put

$$A^{0} = \{ F \in E(X)_{\tau}^{*} : |\langle f, F \rangle| \le 1 \text{ for all } f \in A \},$$

$${}^{0}B = \{ f \in E(X) : |\langle f, F \rangle| \le 1 \text{ for all } F \in B \}.$$

Now given a Hausdorff locally convex-solid function space (E,ξ) we characterize $\overline{\xi}$ -equicontinuous subsets of $E(X)^*_{\overline{\xi}}$.

Proposition 2.1. Let ξ be a Hausdorff locally convex-solid topology on E. Then for a subset Z of $E(X)^*_{\overline{\xi}}$ the following statements are equivalent:

- (i) Z is $\overline{\xi}$ -equicontinuous.
- (ii) conv (S(Z)) is $\overline{\xi}$ -equicontinuous.
- (iii) S(Z) is $\overline{\xi}$ -equicontinuous.
- (iv) $\{\varphi_F : F \in Z\}$ in E_{ξ}^* is ξ -equicontinuous.

Proof. (i) \Longrightarrow (ii) Let Z be $\overline{\xi}$ -equicontinuous. Then there exists a convex-solid $\overline{\xi}$ -neighborhood V of 0 such that $Z \subset V^0$. Hence $\operatorname{conv}(S(Z)) \subset \operatorname{conv}(S(V^0)) = \operatorname{conv}(V^0) = V^0$ (see [14, Theorem 3.3]), and this means that $\operatorname{conv}(S(Z))$ is still $\overline{\xi}$ -equicontinuous.

- $(ii) \Longrightarrow (iii)$ It is obvious.
- $(iii) \Longrightarrow (iv)$ Assume that the subset S(Z) of $E(X)^*_{\xi}$ is $\overline{\xi}$ -equicontinuous. Let $\{p_{\alpha}: \alpha \in \mathcal{A}\}$ be a family of Riesz seminorms on E that generates ξ . Given $\varepsilon > 0$ there exist $\alpha_1, \ldots, \alpha_n \in \mathcal{A}$ and $\eta > 0$ such that $\sup\{|F(f)|: F \in S(Z)\} \le \varepsilon$ whenever $\overline{p}_{\alpha_i}(f) = p_{\alpha_i}(\widetilde{f}) \le \varepsilon$, for $i = 1, 2, \ldots, n$. To show that $\{\varphi_F : F \in Z\}$ is ξ -equicontinuous, it is enough to show that $\sup\{|\varphi_F(u)|: F \in Z\} \le \varepsilon$ whenever $p_{\alpha_i}(u) \le \eta$ for $i = 1, 2, \ldots, n$. Indeed, let $u \in E$, $x_0 \in S_X$ and $p_{\alpha_i}(u) = p_{\alpha_i}(|u|) = \overline{p}_{\alpha_i}(u \otimes x_0) \le \eta$ for $i = 1, 2, \ldots, n$, so $\sup\{|F(u \otimes x_0)|: F \in S(Z)\} \le \varepsilon$. Hence in view of [14, Lemma 2.1] we obtain that $\sup\{|F(u \otimes x_0)|: F \in S(Z)\} = \sup\{\varphi_F(|u|): F \in Z\}$, and since $|\varphi_F(u)| \le \varphi_F(|u|)$, the proof is complete.

170 M. Nowak / Linear Operators on Vector-Valued Function Spaces with Mackey ...

 $(iv) \Longrightarrow (i)$ Assume that the set $\{\varphi_F : F \in Z\}$ in E_ξ^* is ξ -equicontinuous. Let $\{p_\alpha : \alpha \in \mathcal{A}\}$ be a family of Riesz seminorms on E that generates ξ . Given $\varepsilon > 0$ there exist $\alpha_1, \ldots, \alpha_n \in \mathcal{A}$ and $\eta > 0$ such that $\{|\varphi_F(u)| : F \in Z\} \le \varepsilon$ whenever $u \in E$ and $p_{\alpha_i}(u) \le \eta$ for $i = 1, 2, \ldots, n$. Hence, for $f \in E(X)$ with $\overline{p}_{\alpha_i}(f) = p_{\alpha_i}(\widetilde{f}) \le \eta$ for $i = 1, 2, \ldots, n$ we get $\sup\{|\varphi_F(\widetilde{f})| : F \in Z\} \le \varepsilon$. But $|F(f)| \le |F|(f) = \varphi_F(\widetilde{f})$, so $\sup\{|F(f)| : F \in Z\} \le \varepsilon$, and this means that Z in $\overline{\xi}$ -equicontinuous.

3. Weak compactness in the order continuous dual of vector-valued function spaces

In this section we examine the relationship between the $\overline{\tau(E,E')}$ -equicontinuous subsets of $E(X)_n^{\sim}$, $\tau(E,E')$ -equicontinuous subsets of E_n^{\sim} and relatively $\sigma(E,E')$ -compact subsets of E'. As an application, in case X is an Asplund space, we obtain a characterization of $\sigma(E'(X^*), E(X))$ -compact subset of $E'(X^*)$.

We start by recalling a characterization of $\sigma(E', E)$ -compact subsets of E'. Assume that M is a $\sigma(E', E)$ -bounded subset of E'. Then M is also $|\sigma|(E', E)$ -bounded, so one can define a Riesz seminorm p_M on E by

$$p_M(u) = \sup_{v \in M} \int_{\Omega} |u(\omega)v(\omega)| d\mu.$$

Proposition 3.1. Let E be an ideal of L^0 . Then for a $\sigma(E', E)$ -bounded subset M of E' the following statements are equivalent:

- (i) For every $u \in E$ the set $\{uv : v \in M\}$ in L^1 is uniformly integrable.
- (ii) p_M is absolutely continuous, i.e., $p_M(\chi_{A_n}u) \longrightarrow 0$ for every $u \in E$, as $A_n \searrow_{\mu} \emptyset$ (i.e., $A_n \downarrow$ and $\mu(\bigcap_{n=1}^{\infty} A_n) = 0$).
- (iii) p_M is σ -order continuous.
- (iv) S(M) is relatively $\sigma(E', E)$ -compact.
- (v) M is relatively $\sigma(E', E)$ -compact.
- (vi) conv (S(M)) is relatively $\sigma(E', E)$ -compact.

Proof. $(i) \iff (ii)$ It follows from the definition of uniform integrability in L^1 .

- $(ii) \iff (iii)$ It is obvious.
- $(iii) \iff (iv) \text{ See } [1, \text{ Theorem } 20.3].$
- $(iv) \iff (v)$ It is obvious.

$$(v) \iff (vi) \text{ See } [1, \text{ Corollary } 20.10].$$

Now we recall some terminology and prove some technical results concerning the space $E'(X^*, X)$. In view of [2, Theorem 4.1] for $g \in E'(X^*, X)$ we have:

$$|F_g|(f) = \int_{\Omega} \widetilde{f}(\omega)\vartheta(g)(\omega)d\mu = \varphi_{\vartheta(g)}(\widetilde{f}) \text{ for all } f \in E(X),$$

and

$$\varphi_{F_g}(u) = |F_g|(u \otimes x_0) = \varphi_{\vartheta(g)}(u) \text{ for } u \in E^+.$$

Lemma 3.2. For $g_1, g_2 \in E'(X^*, X)$ the following statements are equivalent.

- (i) $\vartheta(g_1) \leq \vartheta(g_2)$.
- (ii) $|F_{g_1}|(f) \le |F_{g_2}|(f)$ for all $f \in E(X)$.
- (iii) $\varphi_{\vartheta(g_1)}(u) \le \varphi_{\vartheta(g_2)}(u)$ for all $u \in E^+$.

Proof. $(i) \iff (ii)$ See [14, Corollary 2.5].

 $(ii) \Longrightarrow (iii)$ For $u \in E^+$ we have

$$\varphi_{\vartheta(g_1)}(u) = \varphi_{F_{g_1}}(u) = |F_{g_1}|(u \otimes x_0) \le |F_{g_2}|(u \otimes x_0) = \varphi_{F_{g_2}}(u) = \varphi_{\vartheta(g_2)}(u).$$

 $(iii) \Longrightarrow (ii)$ For $f \in E(X)$ we have

$$|F_{g_1}|(f) = \varphi_{\vartheta(g_1)}(\widetilde{f}) \le \varphi_{\vartheta(g_2)}(\widetilde{f}) = |F_{g_2}|(f).$$

A subset C of $E'(X^*, X)$ is said to be *solid* if $\vartheta(g_1) \leq \vartheta(g_2)$ with $g_1 \in E'(X^*, X)$ and $g_2 \in C$ imply $g_1 \in C$. Every subset A of $E'(X^*, X)$ is contained in the smallest (with respect to inclusion) solid set in $E'(X^*, X)$ called the *solid hull* of A and denoted by S(A). One can note that

$$S(A) = \{ g \in E'(X^*, X) : \vartheta(g) \le \vartheta(h) \text{ for some } h \in A \}.$$

Lemma 3.3. Let C be a subset of $E'(X^*, X)$ and $F_C = \{F_g : g \in C\}$. Then

$$\operatorname{conv}\left(S(F_C)\right) = F_{\operatorname{conv}\left(S(C)\right)}.$$

Proof. Assume that $F \in \text{conv}(S(F_C))$. Then $F = \sum_{i=1}^n \alpha_i F_{g_i} = F_{\sum_{i=1}^n \alpha_i g_i}$, where $g_1 \in E'(X^*, X)$ and $\alpha_i \geq 0$ for i = 1, 2, ..., n with $\sum_{i=1}^n \alpha_i = 1$, and $|F_{g_i}| \leq |F_{g_i'}|$ for some $g_i' \in C$ and i = 1, 2, ..., n. In view of Lemma 3.2 $\vartheta(g_i) \leq \vartheta(g_i')$, i.e., $g_i \in S(C)$ for i = 1, 2, ..., n and $\sum_{i=1}^n \alpha_i g_i \in \text{conv}(S(C))$. This means that $F \in F_{\text{conv}(S(C))}$.

Assume that $F \in F_{\text{conv}(S(C))}$. Then $F = F_{\sum_{i=1}^{n} \alpha_i g_i} = \sum_{i=1}^{n} \alpha_i F_{g_i}$, where $g_i \in E'(X^*, X)$ and $\alpha_i \geq 0$ for $i = 1, 2, \ldots, n$ with $\sum_{i=1}^{n} \alpha_i = 1$, and $\vartheta(g_i) \leq \vartheta(g_i')$ for some $g_i' \in C$ and $i = 1, 2, \ldots, n$. By Lemma 3.2, $|F_{g_i}|(f) \leq |F_{g_i'}|(f)$ for all $f \in E(X)$ and $i = 1, 2, \ldots, n$, so $F \in \text{conv}(S(F_C))$.

Now we ready to characterize $\overline{\tau(E,E')}$ -equicontinuous subsets of $E(X)_n^{\sim}$.

Proposition 3.4. Let E be an ideal of L^0 and let X be a Banach space. Then for a subset C of $E'(X^*, X)$ and a subset $\vartheta(C)$ (= $\{\vartheta(g) : g \in C\}$) of E' the following statements are equivalent:

- (i) $\{F_g:g\in C\}$ in a $\overline{\tau(E,E')}$ -equicontinuous subset of $E(X)_n^{\sim}$.
- (ii) $\{F_g : g \in \text{conv } S(C)\}\$ is a $\overline{\tau(E, E')}$ -equicontinuous subset of $E(X)_n^{\sim}$.
- (iii) $\{F_g: g \in S(C)\}\$ is a $\overline{\tau(E,E')}$ -equicontinuous subset of $E(X)_n^{\sim}$.
- (iv) $\{\varphi_{\vartheta(g)}: g \in C\}$ is a $\overline{\tau(E, E')}$ -equicontinuous subset of E_n^{\sim} .
- (v) $\{\varphi_{\vartheta(g)}: g \in C\}$ is a relatively $\sigma(E_n^{\sim}, E)$ -compact subset of E_n^{\sim} .
- (vi) $\vartheta(C)$ is a relatively $\sigma(E', E)$ -compact subset of E'.

172 M. Nowak / Linear Operators on Vector-Valued Function Spaces with Mackey ...

Proof. $(i) \iff (ii) \iff (iv)$ It follows from Proposition 2.1 and Lemma 3.3.

- $(iv) \iff (v) \iff (vi)$ It is obvious (see [1, p. 142]).
- $(vi) \iff (iv)$ Assume that $\vartheta(C)$ is a relatively $\sigma(E',E)$ -compact subset of E'. Hence by Proposition 3.1, $\overline{\operatorname{abs\,conv}}\,\vartheta(C)$ (the closure taken for $\underline{\sigma(E',E)}$) is absolutely convex $\sigma(E',E)$ -compact. It follows that the set $\{\varphi_v:v\in\overline{\operatorname{abs\,conv}}\,\vartheta(C)\}$ is $\tau(E,E_n^\sim)$ -equicontinuous, so $\{\varphi_{\vartheta(q)}:g\in C\}$ is also $\tau(E,E')$ -equicontinuous.

As an application of Proposition 3.4 we get:

Corollary 3.5. Let E be an ideal of L^0 and let X be a Banach space. Let C be a subset of $E'(X^*,X)$ such that the set $\vartheta(C)$ in E' is relatively $\sigma(E',E)$ -compact. Then the set conv (S(C)) in $E'(X^*,X)$ is relatively $\sigma(E'(X^*,X),E(X))$ -compact.

Proof. In view of Proposition 3.4, $\{F_g:g\in\operatorname{conv}(S(C))\}$ is a $\overline{\tau(E,E')}$ -equicontinuous subset of $E(X)_n^{\sim}$, so it is relatively $\sigma(E(X)_n^{\sim},E(X))$ -compact. This means that $\operatorname{conv}(S(C))$ is a relatively $\sigma(E'(X^*,X),E(X))$ -compact subset of $E'(X^*,X)$.

Now we are in position to state a characterization of $\sigma(E'(X^*), E(X))$ -compact subsets of $E'(X^*)$ whenever X is an Asplund space.

Proposition 3.6. Let E be an ideal of L^0 and X be an Asplund space. Then for a subset C of $E'(X^*)$ the following statements are equivalent:

- (i) C is relatively $\sigma(E'(X^*), E(X))$ -compact.
- (ii) C is relatively countably $\sigma(E'(X^*), E(X))$ -compact.
- (iii) \widetilde{C} is relatively $\sigma(E', E)$ -compact.
- (iv) conv (S(C)) is relatively $\sigma(E'(X^*), E(X))$ -compact.
- (v) abs conv (C) is relatively $\sigma(E'(X^*), E(X))$ -compact.

Proof. $(i) \Longrightarrow (ii)$ It is obvious.

 $(ii) \Longrightarrow (iii)$ Assume that C is relatively countably $\sigma(E'(X^*), E(X))$ -compact. In view of Proposition 3.1 it is enough to show that the set \widetilde{C} is $\sigma(E', E)$ -bounded and for every $u \in E$ the set $\{u\widetilde{g}: g \in C\}$ in L^1 is uniformly integrable. Clearly C is $\sigma(E'(X^*), E(X))$ -bounded (see [23, Problem 6-4-106, p. 86]). Hence $\{F_g: g \in C\}$ is a $\sigma(E'(X^*), E(X))$ -bounded subset of $E(X)_n^{\sim}$. We shall show that \widetilde{C} is a $|\sigma|(E', E)$ -bounded subset of E'. Indeed, let $u_0 \in E$ and $f_0 = u_0 \otimes x_0$ for some fixed $x_0 \in S_X$. Hence by [15, Theorem 2.1] we have

$$\sup \left\{ \int_{\Omega} |u_0(\omega)| \ \widetilde{g}(\omega) d\mu : g \in C \right\} = \sup \left\{ \int_{\Omega} \widetilde{f}_0(\omega) \widetilde{g}(\omega) d\mu : g \in C \right\}$$
$$= \sup \{ |F_g|(f_0) : g \in C \} < \infty.$$

Now we shall show that for every $u \in E$ the set $\{u \, \widetilde{g} : g \in C\}$ in $L^1(\mu)$ is uniformly integrable. Assume on the contrary that there exists $u_0 \in E^+$ such that the set $\{u_0 \, \widetilde{g} : g \in C\}$ is not uniformly integrable. For each $g \in C$ let us put

$$\nu_g(A) = \int_A u_0(\omega)\widetilde{g}(\omega)d\mu$$
 for all $A \in \Sigma$.

Then for every $g \in C$, $\nu_g : \Sigma \to [0, \infty)$ is μ -continuous countably additive measure but the family $\{\nu_g : g \in C\}$ is not uniformly μ -continuous. In view of [17, Proposition 2.2] there exist a pairwise disjoint sequence (B_n) in Σ , a sequence (g_n) in C and number

$$\nu_{g_n}(B_n) = \int_{B_n} u_0(\omega)\widetilde{g}_n(\omega)d\mu > \varepsilon_0.$$
 (1)

Since $\chi_{B_n}u_0g_n\in L^1(X^*)\subset L^1(X^*,X)$, in view of [2, Theorem 1.1(3), p. 24] we have

$$\nu_{g_n}(B_n) = \|\chi_{B_n} u_0 g_n\|_{L^1(X^*, X)}$$

$$= \sup \left\{ \left| \int_{B_n} \langle f(\omega), u_0(\omega) g_n(\omega) \rangle d\mu \right| : f \in L^{\infty}(X), \|f\|_{L^{\infty}(X)} \le 1 \right\}.$$

Hence by (1) one can choose a sequence (f_n) in $L^{\infty}(X)$ with $||f_n||_{L^{\infty}(X)} \leq 1$, $\chi_{\Omega \setminus B_n} f_n = 0$ and such that

$$\left| \int_{B_n} \langle f_n(\omega), u_0(\omega) g_n(\omega) \rangle d\mu \right| > \varepsilon_0 \text{ for all } n \in \mathbb{N}.$$
 (2)

Let

$$f_0(\omega) = \begin{cases} f_n(\omega) & \text{for } \omega \in B_n, \ n = 1, 2, \dots, \\ 0 & \text{for } \omega \in \Omega \setminus \bigcup_{n=1}^{\infty} B_n. \end{cases}$$

Then $f_0 \in L^{\infty}(X)$, $\chi_{B_n} f_0 = f_n$ for $n \in \mathbb{N}$ and $u_0 f_0 \in E(X)$. Note that for every $g \in E'(X^*)$ we have

$$\sum_{n=1}^{\infty} \left| \int_{\Omega} \langle u_0(\omega) f_n(\omega), g(\omega) \rangle d\mu \right|$$

$$\leq \sum_{n=1}^{\infty} \int_{B_n} |\langle u_0(\omega) f_n(\omega), g(\omega) \rangle| d\mu \leq \sum_{n=1}^{\infty} \int_{B_n} u_0(\omega) \widetilde{f}_n(\omega) \widetilde{g}(\omega) d\mu$$

$$= \sum_{n=1}^{\infty} \int_{B_n} u_0(\omega) \widetilde{f}_0(\omega) \widetilde{g}(\omega) d\mu = \int_{\Omega} u_0(\omega) \widetilde{f}_0(\omega) \widetilde{g}(\omega) d\mu < \infty.$$

Hence we can define a linear operator

 $\varepsilon_0 > 0$ such that for every $n \in \mathbb{N}$:

$$T_{f_0}: E'(X^*) \ni g \mapsto \left(\int_{\Omega} \langle u_0(\omega) f_n(\omega), g(\omega) \rangle d\mu \right)_{n=1}^{\infty} \in l^1.$$

Given $(s_n) \in l^{\infty}$ we define

$$h(\omega) = \begin{cases} s_n u_0(\omega) f_n(\omega) & \text{if } \omega \in B_n, \ n \in \mathbb{N}, \\ 0 & \text{if } \omega \in \Omega \setminus \bigcup_{n=1}^{\infty} B_n. \end{cases}$$

Clearly $h \in E(X)$ and

$$\left| \sum_{n=1}^{\infty} \left(s_n \int_{\Omega} \langle u_0(\omega) f_n(\omega), g(\omega) \rangle d\mu \right) \right| = \left| \sum_{n=1}^{\infty} \int_{B_n} \langle u_0(\omega) s_n f_n(\omega), g(\omega) \rangle d\mu \right|$$
$$= \left| \int_{\Omega} \langle h(\omega), g(\omega) \rangle d\mu \right|.$$

It follows that the operator T_{f_0} is $(\sigma(E'(X^*), E(X)), \sigma(l^1, l^{\infty}))$ -continuous. Hence the set $\{T_{f_0}(g): g \in C\}$ is relatively countably $\sigma(l^1, l^{\infty})$ -compact in l^1 , and by the Eberlein theorem it is also relatively sequentially $\sigma(l^1, l^{\infty})$ -compact. On the other hand, in view of Schur's theorem the set $\{T_{f_0}(g): g \in C\}$ is relatively compact in the Banach space l^1 , and it follows that for every $\varepsilon > 0$ there exists $n_{\varepsilon} \in \mathbb{N}$ such that

$$\sup \left\{ \sum_{n=n_{\varepsilon}}^{\infty} \left| \int_{\Omega} \langle u_0(\omega) f_n(\omega), g(\omega) \rangle d\mu \right| : g \in C \right\} \le \varepsilon.$$

In particular, it follows that for $n \geq n_{\varepsilon_0}$ we get

$$\left| \int_{\Omega} \langle u_0(\omega) f_n(\omega), g_n(\omega) \rangle d\mu \right| \le \varepsilon_0$$

which contradicts (2).

- $(iii) \Longrightarrow (iv)$ It follows from Corollary 3.3.
- $(iv) \Longrightarrow (v)$ It is obvious because $abs conv(C) \subset conv(S(C))$.

$$(v) \Longrightarrow (i)$$
 It is obvious.

Recall that a locally convex space (L, ξ) is said to have the *convex compactness property* if the closed absolutely convex hull of every ξ -compact subset of L is still ξ -compact (see [22, p. 156], [23, Definition 9-2-8]).

As a consequence of Proposition 3.6 we have:

Corollary 3.7. Let E be an ideal of L^0 and X be an Asplund space. Then the space $(E'(X^*), \sigma(E'(X^*), E(X)))$ has the convex compactness property.

4. Strongly Mackey topologies on vector-valued function spaces

Now we are in position to state our main result:

Theorem 4.1. Let E be an ideal of L^0 and let X be an Asplund space. Then $\overline{\tau(E, E')}$ is a strongly Mackey topology on E(X); hence we have

$$\overline{\tau(E, E')} = \tau(E(X), E'(X^*)).$$

Proof. We have $E(X)_n^{\sim} = \{F_g : g \in E'(X^*)\}$ because X is an Asplund space. Assume that for $C \subset E'(X^*)$ the set $\{F_g : g \in C\}$ is a relatively countably $\sigma(E(X)_n^{\sim}, E(X))$ -compact subset of $E(X)_n^{\sim}$, i.e., C is a relatively countably $\sigma(E'(X^*), E(X))$ -compact subset of $E'(X^*)$. Then by Proposition 3.6 $\{\tilde{g} : g \in C\}$ is a relatively $\sigma(E', E)$ -compact subset of E'. Hence, in view of Proposition 3.4, $\{F_g : g \in C\}$ is a $\overline{\tau(E, E')}$ -equicontinuous subset of $E(X)_n^{\sim}$. This means that $\overline{\tau(E, E')}$ is a strongly Mackey topology on E(X). \square

As a consequence of Theorem 4.1 we get:

Corollary 4.2. Let E be a perfect ideal of L^0 and X be an Asplund space. Then the space $E'(X^*)$ is $\sigma(E'(X^*), E(X))$ -sequentially complete.

Proof. In view of Theorem 4.1, $\tau(E(X), E(X)_n^{\sim}) = \tau(E(X), E'(X^*)) = \overline{\tau(E, E')}$, and it follows that $\tau(E(X), E(X)_n^{\sim})$ is a locally solid topology on E(X). Hence by [17,

Theorem 3.6] the space $E(X)_n^{\sim}$ is $\sigma(E(X)_n^{\sim}, E(X))$ -sequentially complete. This means that $E'(X^*)$ is $\sigma(E'(X^*), E(X))$ -sequentially complete.

Now we consider the topology $\overline{\tau(L^{\infty}, L^{1})}$ on $L^{\infty}(X)$ associated with the Mackey topology $\tau(L^{\infty}, L^{1})$ on L^{∞} . It is known that $\overline{\tau(L^{\infty}, L^{1})}$ coincides with the natural mixed topology $\gamma[\mathcal{T}_{\infty}(X), \mathcal{T}_{0}(X)_{|L^{\infty}(X)}]$ (briefly $\gamma_{L^{\infty}(X)}$) (see [16, Theorem 4.2]). Here $\mathcal{T}_{\infty}(X)$ stands for the $\|\cdot\|_{\infty}$ -norm topology on $L^{\infty}(X)$, and $\mathcal{T}_{0}(X)$ denotes the topology of the F-norm $\|\cdot\|_{0}$ on $L^{0}(X)$ that generates convergence in measure on sets of finite measure. Then $\gamma_{L^{\infty}(X)}$ is the finest locally convex-topology on $L^{\infty}(X)$ which agrees with $\mathcal{T}_{0}(X)$ on $\|\cdot\|_{\infty}$ -bounded sets in $L^{\infty}(X)$ (see [24, 2.2.2]). This means that $(L^{\infty}(X), \gamma_{L^{\infty}(X)})$ is a generalized DF-space (see [20]). In particular, by Theorem 4.1 and Corollary 4.2 we get:

Corollary 4.3. Assume that X is an Asplund space. Then the mixed topology $\gamma_{L^{\infty}(X)}$ is a strongly Mackey topology; hence we have:

$$\gamma_{L^{\infty}(X)} = \overline{\tau(L^{\infty}, L^1)} = \tau(L^{\infty}(X), L^1(X^*)).$$

Moreover, the space $L^1(X^*)$ is $\sigma(L^1(X^*), L^{\infty}(X))$ -sequentially complete.

Now we consider the topology $\overline{\tau(L^{\Phi},L^{\Phi^*})}$ on the Orlicz-Bochner space $L^{\Phi}(X)$ associated with the Mackey topology $\tau(L^{\Phi},L^{\Phi^*})$ on the Orlicz space L^{Φ} . For this purpose we first recall some terminology (see [19]). By a Young function we mean here a continuous convex mapping $\Phi:[0,\infty)\to[0,\infty)$ that vanishes only at 0 and $\Phi(t)/t\to 0$ as $t\to 0$, $\Phi(t)/t\to\infty$ as $t\to\infty$. The Orlicz space $L^{\Phi}=\{u\in L^0:\int_{\Omega}\Phi(\lambda|u(\omega)|)d\mu<\infty$ for some $\lambda>0\}$ can be equipped with a complete topology \mathcal{T}_{Φ} of the Riesz norm $\|u\|_{\Phi}:=\inf\{\lambda>0:\int_{\Omega}\Phi(|u(\omega)|/\lambda)d\mu\leq 1\}$. It is known that $(L^{\Phi})'=L^{\Phi^*}$, where Φ^* stands for the Young function complementary to Φ in the sense of Young. The Orlicz-Bochner space $L^{\Phi}(X)=\{f\in L^0(X):\widetilde{f}\in L^{\Phi}\}$ can be equipped with the complete topology $\mathcal{T}_{\Phi}(X)$ of the norm $\|f\|_{L^{\Phi}(X)}:=\|\widetilde{f}\|_{\Phi}$ for $f\in L^{\Phi}(X)$, i.e., $\mathcal{T}_{\Phi}(X)=\overline{\mathcal{T}_{\Phi}}$. Note that $L^{\Phi}(X)_n^{\sim}=\{F_g:g\in L^{\Phi^*}(X^*,X)\}$.

For $\varepsilon > 0$ let $U_{\Phi}(\varepsilon) = \{ f \in L^{\Phi}(X) : \int_{\Omega} \Phi(\widetilde{f}(\omega)) d\mu \leq \varepsilon \}$. Then the family of all sets of the form: $\bigcup_{n=1}^{\infty} (\sum_{i=1}^{n} U_{\Phi}(\varepsilon_{i}))$, where (ε_{n}) is a sequence of positive numbers, forms a local base at 0 (consisting of solid and convex subsets of $L^{\Phi}(X)$) for a locally convex topology $\mathcal{T}_{\Phi}^{\wedge}(X)$, and called the *modular topology* (see [9]). In particular, we will write $\mathcal{T}_{\Phi}^{\wedge}$ instead of $\mathcal{T}_{\Phi}^{\wedge}(\mathbb{R})$. Then $\mathcal{T}_{\Phi}^{\wedge} = \tau(L^{\Phi}, L^{\Phi^{*}})$ (see [13, Theorem 1.3]). The basic properties of the modular topology $\mathcal{T}_{\Phi}^{\wedge}(X)$ are included in the following theorem (see [9, Theorem 6.3, Theorem 6.5]).

Corollary 4.4. Let Φ be a Young function and let X be a Banach space. Then

- (i) $\mathcal{T}_{\Phi}^{\wedge}(X)$ is the finest locally convex-solid topology on $L^{\Phi}(X)$ with the Lebesgue property.
- (ii) $\mathcal{T}_{\Phi}^{\wedge}(X) = \overline{\mathcal{T}_{\Phi}^{\wedge}} = \overline{\tau(L^{\Phi}, L^{\Phi^*})}.$
- (iii) $\mathcal{T}_{\Phi}^{\wedge}(X)$ is generated by the family of norms $\|\cdot\|_{L^{\Psi}(X)}$, where Ψ runs over the

family of all Young functions such that $\Psi \lhd \Phi$ (i.e., for every c > 1 there exists d > 1 such that $\Psi(ct) \leq d\Phi(t)$ for all $t \geq 0$).

Making use of Theorem 4.1, Corollary 4.2 and Theorem 4.4 we get:

Theorem 4.5. Let Φ be a Young function and X be an Asplund space. Then the modular topology $\mathcal{T}_{\Phi}^{\wedge}(X)$ on $L^{\Phi}(X)$ is a strongly Mackey topology; hence we have:

$$\mathcal{T}_\Phi^\wedge(X) = \overline{\tau(L^\Phi, L^{\Phi^*})} = \tau(L^\Phi(X), L^{\Phi^*}(X^*)).$$

Moreover, the space $L^{\Phi^*}(X^*)$ is $\sigma(L^{\Phi^*}(X^*), L^{\Phi}(X))$ -sequentially complete.

5. Linear operators on vector-valued function spaces with Mackey topologies

From now on we assume that E is an ideal of L^0 and $(X, \|\cdot\|_X)$ and $(Y, \|\cdot\|_Y)$ are real Banach spaces. For a linear operator $T: E(X) \to Y$ let $T^*: Y^\# \to E(X)^\#$ stand for the conjugate of T defined via the duality identity $\langle f, T^*(y^*) \rangle = \langle T(f), y^* \rangle$ for $f \in E(X)$, $y^* \in Y^\#$ (here $Y^\#$ denotes the algebraic dual of Y).

We start with the following well-known characterization.

Proposition 5.1. For a linear operator $T: E(X) \to Y$ the following statements are equivalent:

- (i) T is $(\tau(E(X), E(X)_n^{\sim}), \|\cdot\|_Y)$ -continuous.
- (ii) T is $(\sigma(E(X), E(X)_n^{\sim}), \sigma(Y, Y^*))$ -continuous.
- (iii) $T^*(Y^*) \subset E(X)_n^{\sim}$.

Proof. $(i) \iff (ii)$ See [23, Corollary 11-1-3, Corollary 11-2-6]; $(ii) \iff (iii)$ See [23, Lemma 11-1-1].

Let $\mathcal{L}_{\tau}(E(X),Y)$ stand for the space of all $(\tau(E(X),E(X)_n^{\sim}),\|\cdot\|_Y)$ -continuous linear operators from E(X) to Y. The strong operator topology (briefly SOT) is a locally convex topology on $\mathcal{L}_{\tau}(E(X),Y)$ defined by the family of seminorms $\{p_f: f \in E(X)\}$, where $p_f(T) = \|T(f)\|_Y$ for all $T \in \mathcal{L}_{\tau}(E(X),Y)$. The weak operator topology (briefly WOT) is a locally convex topology on $\mathcal{L}_{\tau}(E(X),Y)$ defined by the family of seminorms $\{p_{f,y^*}: f \in E(X), y^* \in Y^*\}$, where $p_{f,y^*}(T) = |\langle T(f), y^* \rangle|$ for all $T \in \mathcal{L}_{\tau}(E(X),Y)$. Note that for $Y = \mathbb{R}$, both SOT and WOT coincide on $E(X)_n^{\sim}$ with $\sigma(E(X)_n^{\sim}, E(X))$.

Proposition 5.2. Assume that $E(X)_n^{\sim}$ is $\sigma(E(X)_n^{\sim}, E(X))$ -sequentially complete. Then the space $\mathcal{L}_{\tau}(E(X), Y)$ is WOT-sequentially complete.

Proof. Let (T_n) be a WOT-Cauchy sequence in $\mathcal{L}_{\tau}(E(X), Y)$. Then one can define a linear operator $T: E(X) \to Y$ such that for every $f \in E(X)$, $y^* \in Y^*$,

$$\langle T(f), y^* \rangle := \lim_{n} \langle T_n(f), y^* \rangle.$$
 (3)

It is enough to show that T is $(\tau(E(X), E(X)_n^{\sim}), \|\cdot\|_Y)$ -continuous. In fact, in view of Proposition 5.1, $T_n^*(Y^*) \subset E(X)_n^{\sim}$ for every $n \in \mathbb{N}$. Moreover, one can easily observe that $T_n^*: Y^* \to E(X)_n^{\sim}$ is $(\sigma(Y^*, Y), \sigma(E(X)_n^{\sim}, E(X)))$ -continuous for $n \in \mathbb{N}$. Let $y_0^* \in Y^*$ be given. Then for every $f \in E(X)$ by (3) we have:

$$T^*(y_0^*)(f) = \langle T(f), y_0^* \rangle = \lim_{n} \langle T_n(f), y_0^* \rangle = \lim_{n} T_n^*(y_0^*)(f).$$
 (4)

It follows that $(T_n^*(y_0^*))$ is a $\sigma(E(X)_n^{\sim}, E(X))$ -Cauchy sequence in $E(X)_n^{\sim}$, so there exists $F_0 \in E(X)_n^{\sim}$ such that $F_0(f) = \lim_n T_n^*(y_0^*)(f)$ for every $f \in E(X)$. By (4) $T^*(y_0^*) = F_0 \in E(X)_n^{\sim}$; hence $T^*(Y^*) \subset E(X)_n^{\sim}$, and this means that $T \in \mathcal{L}_{\tau}(E(X), Y)$ (see Proposition 5.1).

As an application of Proposition 5.2 and Corollary 4.2 we get:

Corollary 5.3. Assume that E is a perfect ideal of L^0 and X is an Asplund space. Then the space $\mathcal{L}_{\tau}(E(X), Y)$ is WOT-sequentially complete.

The following general result will be usuful (see [21, Theorem 2]).

Proposition 5.4. Let K be a SOT-compact subset of $\mathcal{L}_{\tau}(E(X), Y)$, and let A be a $\sigma(Y^*, Y)$ -closed, equicontinuous subset of Y^* . Then the set $\bigcup \{T^*(A) : T \in K\}$ is a $\sigma(E(X)_n^{\infty}, E(X))$ -compact subset of $E(X)_n^{\infty}$.

Now we are in position to state our main result.

Theorem 5.5. Assume that X is an Asplund space and Y is a Banach space. Let \mathcal{K} be a SOT-compact subset of $\mathcal{L}_{\tau}(E(X),Y)$. Then \mathcal{K} is $(\tau(E(X),E'(X^*)),\|\cdot\|_Y)$ -equicontinuous.

Proof. In view of the Alaoglu theorem the unit ball in Y^* is $\sigma(Y^*, Y)$ -closed and equicontinuous. Hence by Proposition 5.4 $Z = \bigcup \{T^*(B_{Y^*}) : T \in \mathcal{K}\}$ is $\sigma(E(X)_n^{\sim}, E(X))$ -compact subset of $E(X)_n^{\sim} = \{F_g : g \in E'(X^*)\}$. Let $C_Z = \{g \in E'(X^*) : F_g \in Z\}$. Then by Corollary 3.7 the set abs conv (C_Z) (the closure in $\sigma(E'(X^*), E(X))$) is still a $\sigma(E'(X^*), E(X))$ -compact subset of $E'(X^*)$. Putting

$$p_0(f) = \sup\{|F_q(f)| : g \in \overline{\operatorname{abs conv}(C_Z)}\} \text{ for } f \in E(X)$$

we get

$$p_0(f) \ge \sup\{|F(f)| : F \in Z\} = \sup_{T \in \mathcal{K}} \{|T^*(y^*)| : y^* \in B_{Y^*}\}$$
$$= \sup_{T \in \mathcal{K}} \{|\langle T(f), y^* \rangle| : y^* \in B_{Y^*}\} = \sup_{T \in \mathcal{K}} \|T(f)\|_Y.$$

Now, let $\varepsilon > 0$ be given. Then $W_{\varepsilon} = \{ f \in E(X) : p_0(f) \leq \varepsilon \}$ is a neighborhood of 0 for $\tau(E(X), E'(X^*))$. It follows that $||T(f)||_Y \leq \varepsilon$ for every $T \in \mathcal{K}$ and all $f \in W_{\varepsilon}$, and this means that \mathcal{K} is $(\tau(E(X), E'(X^*)), ||\cdot||_Y)$ -equicontinuous.

As an application of Theorem 5.5 we get the following Vitali-Hahn-Saks type theorem.

Corollary 5.6. Let E be a perfect ideal of L^0 . Assume that X is an Asplund space, and Y a Banach space. Let (T_n) be a sequence in $\mathcal{L}_{\tau}(E(X),Y)$ and assume that $T(f) := \lim_n T_n(f)$ exists in $(Y, \|\cdot\|_Y)$ for every $f \in E(X)$. Then $T \in \mathcal{L}_{\tau}(E(X),Y)$ and the set $\{T_n : n \in \mathbb{N}\}$ in $\mathcal{L}_{\tau}(E(X),Y)$ is $(\tau(E(X),E'(X^*)), \|\cdot\|_Y)$ -equicontinuous.

Proof. Note that $\langle T(f), y^* \rangle = \lim_n \langle T_n(f), y \rangle$ for every $f \in E(X)$, $y^* \in Y^*$. Since $E(X)_n^{\sim}$ is $\sigma(E(X)_n^{\sim}, E(X))$ is sequentially complete (see Corollary 4.2), in view of the proof of Proposition 5.2, $T \in \mathcal{L}_{\tau}(E(X), Y)$ and $T_n \to T$ in $\mathcal{L}_{\tau}(E(X), Y)$ for SOT, so the set $\{T_n : n \in \mathbb{N}\}$ is relatively compact for SOT. Hence by Theorem 5.5 it is $(\tau(E(X), E'(X^*)), \|\cdot\|_Y)$ -equicontinuous.

References

[1] C. D. Aliprantis, O. Burkinshaw: Locally Solid Riesz Spaces, Academic Press, New York (1978).

- 178 M. Nowak / Linear Operators on Vector-Valued Function Spaces with Mackey ...
- [2] A. V. Bukhvalov: On an analytic representation of operators with abstract norm, Izv. Vyssh. Uchebn. Zaved. Mat 11 (1975) 21–32.
- [3] A. V. Bukhvalov: On an analytic representation of linear operators by means of measurable vector-valued functions, Izv. Vyssh. Uchebn. Zaved. Mat 7 (1977) 21–32.
- [4] A. V. Bukhvalov, G. Ya. Lozanowskii: On sets closed in measure in spaces of measurable function, Trans. Mosc. Math. Soc. 2 (1978) 127–148.
- [5] P. Cembranos, J. Mendoza: Banach Spaces of Vector-Valued Functions, Lect. Notes in Math. 1676, Springer, Berlin (1997).
- [6] M. Duhoux: Mackey topologies on Riesz spaces and weak compactness, Math. Z. 158 (1978) 199–209.
- [7] N. Dunford, J. Schwartz: Linear Operators, Part. I, Interscience, New York (1958).
- [8] J. Diestel, J. J. Uhl: Vector Measures, Math. Surveys 15, American Mathematical Society, Providence (1977).
- [9] K. Feledziak, M. Nowak: Locally solid topologies on vector-valued function spaces, Collect. Math. 48(4-6) (1997) 487-511.
- [10] L. V. Kantorovitch, A. V. Akilov: Functional Analysis, Third Edition, Nauka, Moskow (1984) (in Russian).
- [11] P.-K. Lin: Köthe-Bochner Function Spaces, Birkhäuser, Boston (2003).
- [12] I. Namioka, R. R. Phelps: Banach spaces which are Asplund spaces, Duke Math. J. 42 (1975) 735–750.
- [13] M. Nowak: A characterization of the Mackey topology $\tau(L^{\varphi}, L^{\varphi^*})$ on Orlicz spaces, Bull. Pol. Acad. Sci., Math. 34 (1986) 577–583.
- [14] M. Nowak: Duality of vector-valued function spaces I, Ann. Soc. Math. Pol., Ser. I, Commentat. Math. 37 (1997) 195–215.
- [15] M. Nowak: Strong topologies on vector-valued function spaces, Czechoslovak Math. J. 50 (2000) 401–414.
- [16] M. Nowak: Lebesgue topologies on vector-valued function spaces, Math. Jap. 52(2) (2000) 171–182.
- [17] M. Nowak: Conditional weak compactness in vector-valued function spaces, Proc. Amer. Math. Soc. 129(10) (2001) 2947–2953.
- [18] R. R. Phelps: Convex Functions, Monotone Operators and Differentiability, Lect. Notes in Math. 1364, Springer, Berlin (1989).
- [19] M. M. Rao, Z. D. Ren: Theory of Orlicz Spaces, Marcel Dekker, New York (1991).
- [20] W. Ruess: (Weakly) compact operators and DF spaces, Pac. J. Math. 98(2) (1982) 419–441.
- [21] H. Schaefer, Xiao-Dong Zhang: On the Vitali-Hahn-Saks theorem, Oper. Theory Adv. Appl. 75 (1995) 289–297.
- [22] R. Wheeler: A survey of Baire measures and strict topologies, Expo. Math. 2 (1983) 97–190.
- [23] A. Wilansky: Modern Methods in Topological Vector-Spaces, McGraw-Hill, Düsseldorf (1978).
- [24] A. Wiweger: Linear spaces with mixed topology, Stud. Math. 20 (1961) 47–68.
- [25] A. C. Zaanen: Riesz Spaces II, North-Holland, Amsterdam (1983).