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Let E be an ideal of L° over a o-finite measure space (0, %, ) and let E’ be the Kéthe dual of E.
Let (X,|-]lx) be areal Banach space, and X* the Banach dual of X. Let E(X) be a subspace of the
space L°(X) of pu-equivalence classes of all strongly - measurable function f : € — X, and consisting
of all those f € L9(X) for which the scalar function f, defined by f(w) = IIf(w )HX for w € Q,
belongs to E. Assume that a Banach space X is an Asplund space. It is shown that a subset C of
E'(X*) is relatively o(E'(X*), E(X))-compact iff the set {g: g € E'(X*)} in E’ is relatively o(E’, E)-
compact. We consider the topology 7(E, E’) on E(X) associated with the Mackey topology 7(E, E’)
on E. Tt is shown that 7(E, E’) is strongly Mackey topology; hence 7(E, E’) coincides with the Mackey
topology 7(E(X), E'(X*)). Moreover, E'(X*) is o(E'(X*), E(X))-sequentially complete whenever E’ is
perfect. We examine the space £.(E(X),Y) of all (7(E(X), E'(X*)),| - |ly)-continuous linear operators
from FE(X) to a Banach space (Y,| - ||y), equipped with the weak operator topology (briefly WOT)
and the strong operator topology (briefly SOT). It is shown that if E is perfect, then £, (E(X),Y) is
WOT-sequentially complete, and every SOT-compact subset of £.(E(X),Y)is (7(E(X), E'(X*)), ||-llv)-
equicontinuous. Moreover, a Vitali-Hahn-Saks type theorem for £, (E(X),Y") is obtained.
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1. Introduction and preliminaries

We denote by o(L,K) and 7(L,K) the weak-topology and the Mackey topology on
L with respect to a dual pair (L, K). Given a Hausdorff locally convex space (L,¢)
by (L,&)* or Lg we will denote its topological dual. Recall that ¢ is said to be a
strongly Mackey topology if every relatively countably o( Z,L)-compact subset of L
is &-equicontinuous (see [22, Definition 4.1]). Clearly, if £ is a strongly Mackey topology,
then ¢ is a Mackey topology, i.e., & =7(L, L).

First we establish terminology concerning Riesz spaces and function spaces (see [1], [10],
[11], [26]). Let (£2,%, 1) be a complete o-finite measure space. Let LY denote the space
of p-equivalence classes of all ¥-measurable real-valued functions defined and finite a.e.
on 2. Let x4 stand for the characteristic function of a set A, and let N and R denote
the sets of all natural and real numbers. Let £ be an ideal of L° with suppE =
and let E' stand for the Kéthe dual of E, ie., E' = {v € L : [ |u(w)v(w)|duy < oo
for all w € E}. Throughout the paper we assume that supp E' = Q. Let EN and E
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stand for the order dual and the order continuous dual of E, resp. Then FE separates
points of K and it can be identified with E’ through the mapping: E' 3 v — ¢, € £,
where @, (u fQ w)dp for all uw € E. E is said to be perfect whenever the natural
embedding from E 1nto (EN)N is onto, i.e., £ = F.

n

For terminology and basic concepts from the theory of vector-valued function spaces
E(X), we refer to the three main monographs: J. Diestel and J. J. Uhl’s "Vector Measures"
[8], P. Cembranos and J. Mendoza’s "Banach spaces of Vector Valued Functions" [5] and
Pei-Kee Lin’s "Kothe-Bochner Function Spaces" [11].

Now we recall terminology and some basic results concerning the topological properties
and the duality theory of vector-valued function spaces F(X) as set out in [2], [3], [4],
5], [8], [9], [11], [14], [15], [16]. Let (X,| -|x) be a real Banach space and let X* stand
for the Banach dual of X. Let Sx, Bx stand for the unit sphere and the closed unit ball
in X. By L°(X) we denote the set of p-equivalence classes of all strongly >-measurable
functions f:Q — X. For f € L°(X) let us set f(w):=||f(w)], for w € Q. Let

<

EX)={fel’X): feE}.

Recall that the algebraic tensor product F ® X is the subspace of E(X) spanned by the
functions of the form v ® z, (v ® x)(w) = u(w)x, where v € E, x € X.

A subset H of E(X) is said to be solid whenever fi<frand fi € E(X), fo € H imply
fi € H. A linear topology 7 on E(X) is said to be locally solid if it has a local base
at zero consisting of solid sets. A linear topology 7 on FE(X) that is as the same time
locally solid and locally convex will be called a locally convez-solid topology on E(X).
A seminorm ¢ on E(X) is called solid if o(fi1) < o(f2) whenever fi,fo € E(X) and
f1 < fo. It is known that a locally convex topology T on F (X) is locally convex-solid if
and only if it is generated by some family of solid seminorms defined on E(X) (see [9]).
A locally solid topology 7 on E(X) is said to be a Lebesgue topology whenever for a net

(fo) in B(X), fo % 0 in E implies f, — 0 (see [16, Definition 2.2]).

Let (F,&) be a Hausdorff locally convex-solid function space. Then one can topologize
the space E(X) as follows (see [9]). Let {p, : @ € A} be a family of Riesz seminorms
on F that generates £. By putting

Pa(f) = pa(f) for f € B(X) (a € A),

we obtain a family {p, : a € A} of solid seminorms on E(X) that defines a Hausdorff
locally convex-solid topology & on E(X) (called the topology associated with &). Then &
is a Lebesgue topology whenever ¢ is a Lebesgue topology (see [9]).

Conversely, let 7 be a Hausdorff locally convex-solid topology on E(X) and let {p, :
a € A} be a family of solid seminorms on E(X) that generates 7. By putting for a fixed
T, € Sx

0a(u) == 0a(u®x,) forueE (ac A,

we obtain a family {0, : @ € A} of Riesz seminorms on E that defines a Hausdorff
locally convex-solid topology 7 on E.

One can note that E: ¢ and 7 =7 (see [9]). Thus every Hausdorff locally convex-solid
topology 7 on F(X) can be represented as the topology associated with some Hausdorff
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locally convex-solid topology ¢ (= 7) on E. In particular, for a Banach function space
(E,||-||g) the space E(X) provided with the norm || f||gx) := ||f||£ is usually called a
Kothe-Bochner space.

A linear functional F' on F(X) is said order continuous whenever for a net (f,) in E(X),
fa 2 0in E implies F'(f,) — 0. The set consisting of all order continuous linear
functionals on F(X) will be denoted by E(X), and called the order continuous dual of

n

E(X) (see [2], [13]). Since we assume that supp ' = Q, F(X)) separates points of

E(X). A Hausdorff locally convex-solid topology 7 on E(X) has the Lebesgue property
if and only if F(X); C E(X); (see [16, Theorem 2.4]).

n

~

To present the integral representation of E(X); we now recall terminology concerning
the spaces of weak*-measurable functions (see [5], [2], [4], [3]). For a given function
g:Q— X*and x € X we denote by g, the real function on 2 defined by g¢,(w) = g(w)(z)
for w € . A function g : Q@ — X* is said to be weak*-measurable if the functions
g, are measurable for each = € X. We shall say the two weak*-measurable functions
g1, g2 are weak*-equivalent whenever ¢;(w)(z) = go(w)(x) p-a.e. for each x € X. Let
L°(X*, X) be the set of weak*-equivalence classes of all weak*-measurable functions g :
) — X*. Following [2], [4] one can define the so-called abstract norm ¢ : L°(X*, X) — L°
by 9(g) := sup{|g.| : € Bx}. Then for f € L°(X) and g € L°(X*, X) the function
(f,9): Q@ — R defined by (f,g)(w) := (f(w), g(w)) is measurable and |{f, g)| < f3I(g).
Moreover, ¥(g) =g for g € L°(X*). Let

F'(X*,X)={ge L°(X*,X):9(g) € E'}.

Due to A. V. Bukhvalov (see [2, Theorem 4.1]) E(X); can be identified with E'(X*, X)

n

through the mapping: E'(X*, X) 3 g — F, € E(X);’, where

()= [ () gl dn forall f € ECY).
Q
Clearly E'(X*) C E'(X*, X). Moreover, the identities:
E'(X*) = E'(X*,X) and E(X) ={F,:g€ E(X")}

hold whenever the Banach space X* has the Radon-Nikodym property (see [8, Chap.
3.1], [3, Theorem 3.5]). Recall that a Banach space X is called an Asplund space if
every real-valued continuous convex function on an open convex domain in X is Fréchet
differentiable on a dense G subset of its domain (see [12], [18]). The following theorem
provides a characterization of Banach spaces X whose duals have the Radon-Nikodym
property (see [12], [18], [8, p. 213]).

Theorem 1.1. For a Banach space X the following statements are equivalent:

(i)  X* has the Radon-Nikodym property.
(ii) X is an Asplund space.

In the theory of function spaces the Mackey topology 7(E,E’)(= 7(E,E;)) on E is
of importance (see [6]). It is well known that 7(E,E’) is the finest Hausdorff locally
convex-solid topology on E with the Lebesgue property.
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In this paper we consider the topology 7(E, E’) on E(X) associated with 7(E, E'), i.e.,

T(E, E") is defined by solid seminorms:

pa(f) = pM(f) = sup { /ng(w)|v(w)|du ‘v € M} for f € E(X),

where M runs over the family of all absolutely convex and solid o(E’, E)-compact sets

in E’. The basic properties of 7(E, E') can be summarized in the following theorem (see
[16, Theorem 2.5, Theorem 2.6]).

Theorem 1.2. Let E be an ideal of L° and X be a Banach space. Then

(i) T7(E,E") is the finest locally convez-solid topology on E(X) with the Lebesgue prop-
erty.
(ii) (E(X),7(E,E"))*=FE(X)Y, and hence 7(E,E") C 7(E,(X), E(X)y).

(iir) (E(X),7(E,E")) is complete whenever E is perfect.

We can state the following Mackey problem: under which conditions on X is 7(FE, E’)
a strongly Mackey topology on E(X)? Equivalently, when every relatively countably
o(E(X)y, E(X))-compact sets in F(X)> are 7(F, E')-equicontinuous? We show that it

holds whenever X is an Asplund space.

In Section 2 we obtain some results concerning duality of the space E(X) that will be
needed. In Section 3 we investigate the relationship between the 7(FE, E’)-equicontinuos
subsets of E(X), and relatively o(FE’, E')-compact subsets of E’. Moreover, in case when
X is an Asplund space, we obtain a characterization of relatively countably o(E'(X*),
E(X))-compact subsets of E'(X*). As a consequence, in Section 4 in case X is an
Asplund space, we obtain that 7(F, E’) is a strongly Mackey topology; hence 7(E, E') =
T(E(X), E'(X*)). Moreover, it is shown that the space E'(X*) is o(E'(X"), E(X))-
sequentially complete. We characterize 7(L>*,L') on L*(X) and 7(L®, L®") on the
Orlicz-Bochner spaces L?(X). In Section 5 we examine the space £,(F(X),Y) of all
(T(E(X), E(X)>), |||y )-continuous linear operators from F(X) to a Banach space (Y, ||-
|ly), equipped with the weak operator topology (briefly WOT) and the strong operator
topology (briefly SOT). It is shown that if £ is perfect and X is an Asplund space, then
the space L.(F(X),Y) is WOT-sequentially complete, and every SOT-compact subset
of L (E(X),Y)is (T(E(X), E'(X*)),| - |lv)-equicontinuous. As an application, a Vitali-
Hahn-Saks type theorem for £,(E(X),Y) is obtained.

2. Duality of vector-valued function spaces

In this section we establish terminology and prove a general result concerning duality of
vector-valued function spaces E(X) (see [2], [3], [4], [14] for more details). For a linear
functional F' on F(X) let us put

[FI(f) =sup{ [F(h)| : h € E(X),h < [} for f € B(X).

The set
E(X)” ={F c E(X)* :|F|(f) < oo forall fe E(X)}

will be called the order dual of E(X) (here E(X)# denotes the algebraic dual of E(X)).
For F\,F, € E(X)~ we will write |Fi| < |Fy| whenever |[Fi|(f) < |Fy|(f) for all
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f € E(X). A subset A of E(X)™~ is said to be solid whenever |Fj| < |F,| with
Fy € E(X)~ and Fy, € A imply F; € A. A linear subspace I of E(X)~ will be called
an ideal of E(X)~ whenever [ is solid. It is known that if 7 is a locally solid topology
on F(X), then (E(X),7)* is an ideal of E(X)™~ (see [14, Theorem 3.2]). Every subset
A of E(X)~ is contained in the smallest (with respect to inclusion) solid set called the
solid hull of A and denoted by S(A). One can note that S(A) = {F € E(X)~ : |F| < |G]|
for some G € A}. Let F € E(X)~ and zy € Sx be fixed. For u € ET let us set:

or(u) == |F|(u® zo) = sup{|F(h)| : h e E(X), h<u}.

Then ¢p: Bt — RT is an additive mapping and ¢ has a unique positive extension to
a linear mapping from F to R (denoted by ¢ again) and given by

op(u) == pr(u™) — pp(u”) forall u € E.
(see [4, Lemma 7]). Observe that ¢r € E™.

Assume now that 7 is a Hausdorff locally convex-solid topology on E(X). Then E(X)*
is an ideal of E(X)~ (see [13, Theorem 3.2]), and the pair (F(X), F(X)Z), under its

T

natural duality (f, F') = F(f) is a solid dual system (see [14, p. 206]). For a subset A of
E(X) and a subset B of E(X): let us put

={FeEX)I:|(f,F)|<1 foral fe A},
'B={fe B(X):|{f,F)|<1 forall F€B}.

Now given a Hausdorff locally convex-solid function space (E,£) we characterize -
equicontinuous subsets of (X )g
Proposition 2.1. Let & be a Hausdorff locally convex-solid topology on E. Then for a
subset Z of E(X)% the following statements are equivalent:

(i)  Zis E-equicontinuous.

(ii) conv (S(Z)) is &-equicontinuous.

(iii) S(Z) is E-equicontinuous.

(iv) {pr:F € Z} in Ef is §-equicontinuous.

Proof. (i) = (ii) Let Z be &-equicontinuous. Then there exists a convex-solid ¢-
neighborhood V' of 0 such that Z C V. Hence conv (S(Z)) C conv (S(V°)) = conv (V?)
= V0 (see [14, Theorem 3.3]), and this means that conv (S(Z)) is still £-equicontinuous.

(17) = (i4i) It is obvious.

(#4i) = (iv) Assume that the subset S(Z) of E(X)f is &-equicontinuous. Let {pq :
a € A} be a family of Riesz seminorms on E that generates £. Given ¢ > 0 there exist
a,...,an € A and > 0 such that sup{|F(f)|: F' € S(Z)} < ¢ whenever p, (f) =
pai(f) < e for i =1,2,...,n. To show that {¢p : F' € Z} is &-equicontinuous, it is
enough to show that sup{|pr(u)|: F' € Z} < e whenever p,,(u) <n for i =1,2,...,n
Indeed, let u € B, xy € Sx and pa,(u) = pa,(|u]) = Py, (u® 29) <1 fori =1,2,...,n,
so sup{|F(u® xo)| : F € S(Z)} < e. Hence in view of [14, Lemma 2.1] we obtain that

sup{|F(u ® zo)| : F' € S(Z)} = sup{pr(|u]) : F € Z}, and since |pp(u)| < pr(|u]), the
proof is complete.
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(iv) = (i) Assume that the set {pp : F' € Z} in Ef is {-equicontinuous. Let {p, :
a € A} be a family of Riesz seminorms on E that generates £. Given € > 0 there exist
at,...,a, € A and n > 0 such that {|op(u)| : FF € Z} < ¢ whenever v € E and

Pa;(u) < m for @ = 1,2,...,n. Hence, for f € E(X) with D, (f) = pa,(f) < n for

1 =1,2,...,n we get sup{|g0F(]7)| P e Zy <e But [F(f)] < |F|(f) = ¢r(f), so
sup{|F(f)| : F' € Z} < ¢, and this means that Z in &-equicontinuous. O

3. Weak compactness in the order continuous dual of vector-valued function
spaces

In this section we examine the relationship between the 7(FE, E’)-equicontinuous subsets of
E(X)y, 7(E, E')-equicontinuous subsets of E; and relatively o(E, E')-compact subsets
of E'. As an application, in case X is an Asplund space, we obtain a characterization of
o(E'(X*), E(X))-compact subset of E'(X*).

We start by recalling a characterization of o(E’, E)-compact subsets of E’. Assume that
M is a o(E', E)-bounded subset of E'. Then M is also |o|(E’, E)-bounded, so one can
define a Riesz seminorm py; on E by

= sup [ fu(w)ote)ld
veEM
Proposition 3.1. Let E be an ideal of L°. Then for a o(E’, E)-bounded subset M of E'

the following statements are equivalent:

(i)  For every u € E the set {uv:v € M} in L' is uniformly integrable.
(1) pup is absolutely continuous, i.e., ppr(xa,u) — 0 for every u € E, as

Ay Ny 0 (ice., Ap | and p(N,2, An) =0).
(@ii) py is o-order continuous.
(iv) S(M) is relatively o(E', E)-compact.
(v) M is relatively o(E', E)-compact.
(vi) conv (S(M)) is relatively o(E', E)-compact.
Proof. (i) <= (i1) It follows from the definition of uniform integrability in L.
(17) <= (7i7) It is obvious.
(17i) <= (iv) See [1, Theorem 20.3].
(iv) <= (v) It is obvious.
(v) <= (vi) See [1, Corollary 20.10]. O

Now we recall some terminology and prove some technical results concerning the space
E'(X*, X). In view of [2, Theorem 4.1] for g € E'(X*, X) we have:

R = [ F)ilo))dn = ea(F) for all £ € B(X),

and
or, (W) = |Fy| (u® 20) = @) (u) for u € EY.

Lemma 3.2. For g;,92 € E'(X*, X) the following statements are equivalent.
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(i) 9(g1) < Vg2)-
(i) | Fg|(f) < |Fgl(f) for all f e E(X).
(111)  Pag)(u) < Qo) (u) for all uw e ET.

Proof. (i) <= (it) See [14, Corollary 2.5].

11) = (111) For u € E* we have
(i) (4di)

P (1) = @r,, (1) = [Fy[(u @ o) < |Fy, |(u© 20) = ¢, (1) = (g, (u).

(1ii) = (ii) For f € E(X) we have

Fanl () = poton () < @otea) (F) = 1Fal(£)-

O

A subset C' of E'(X*, X) is said to be solid if 9(g1) < ¥(g2) with ¢ € E'(X*, X) and
g2 € C imply ¢g; € C. Every subset A of E'(X*, X) is contained in the smallest (with
respect to inclusion) solid set in E'(X*, X) called the solid hull of A and denoted by
S(A). One can note that

S(A)={g € E'(X*,X) :9(g9) <I(h) for some h € A}.
Lemma 3.3. Let C be a subset of E'(X*,X) and Fo ={F,:g€ C}. Then
conv (S(FC)) = Fconv (S(C))-

Proof. Assume that I’ € conv(S(F¢)). Then F = X 0, F,, = Fxn 4,4, Where g; €
E'(X* X) and a; > 0 for i =1,2,...,n with ¥ a; = 1, and [F,| < |Fy| for some
g€ C and i = 1,2,...,n. In view of Lemma 3.2 9(g;) < 9(¢g)), i.e., g; € S(C) for
i=1,2,...,n and X} a;g; € conv (S(C)). This means that F € Fiony(s(0))-

Assume that F' € Fiony(scy)- Then F = Fyn o4 = X a;Fy,, where g; € E'(X*, X)
and «o; >0 for i =1,2,...,n with ¥ ;o; = 1, and 9(g;) < J(g}) for some g, € C'" and
i=1,2,...,n. By Lemma 3.2, [Fy|(f) < |Fg|(f) forall fe€ E(X) and i=1,2,...,n,
so F' € conv (S(Fg)). O

~

Proposition 3.4. Let E be an ideal of L° and let X be a Banach space. Then for a subset
C of F'(X*,X) and a subset 9(C) (= {V(g) : g € C}) of E' the following statements
are equivalent:

Now we ready to characterize 7(F, E')-equicontinuous subsets of E(X)

i) {F,:9€C} ina 7(E,E")-equicontinuous subset of E(X)).

i) {F,:g€convS(C)}isa 7(E,E") -equicontinuous subset of E(X)).

(

( isar(F

(i) {F,:9€ S(C)}isa 7(E,E')-equicontinuous subset of E(X);.
() {pog) :9€C}isa 7(E, E')-equicontinuous subset of E.
(v)  {pog) 19 € C}is arelatively o(Ey, E)-compact subset of E .
(

vi) V(C) is a relatively o(E', E)-compact subset of E'.
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Proof. (i) <= (ii) <= (iit) <= (iv) It follows from Proposition 2.1 and Lemma 3.3.
(iv) <= (v) <= (vi) It is obvious (see [1, p. 142]).

(vi) <= (iv) Assume that ¥(C) is a relatively o(E’, E)-compact subset of E’. Hence
by Proposition 3.1, absconvd(C) (the closure taken for o(E’, E)) is absolutely con-
vex o(E', E)-compact. It follows that the set {p, : v € absconvd(C)} is 7(E, E))-
equicontinuous, so {py) : g € C} is also 7(E, E')-equicontinuous. O

As an application of Proposition 3.4 we get:

Corollary 3.5. Let E be an ideal of L° and let X be a Banach space. Let C' be a subset
of E'"(X*,X) such that the set 9(C) in E" is relatively o(E', E)-compact. Then the set
conv (S(C)) in E'(X*, X) is relatively o(E'(X*, X), E(X))-compact.

Proof. In view of Proposition 3.4, {F, : g € conv(S(C))} is a 7(E,E’)-equicon-
tinuous subset of E(X)>, so it is relatively o(E(X),, E(X))-compact. This means that
conv (S(C)) is a relatlvely o(E'(X*, X), E(X))-compact subset of E'(X* X). O

Now we are in position to state a characterization of o(E'(X*), E(X))-compact subsets
of E'(X*) whenever X is an Asplund space.

Proposition 3.6. Let E be an ideal of L° and X be an Asplund space. Then for a subset
C of E'(X*) the following statements are equivalent:

(i)  C is relatively o(E'(X*), E(X))-compact.

(i) C is relatively countably o(E'(X*), E(X))-compact.
(iii) C is relatively o(E', E)-compact.

(iv) conv (S(C)) is relatively o(E'(X*), E(X))-compact.
(v) absconv (C) is relatively o(E'(X*), E(X))-compact.

Proof. (i) = (ii) It is obvious.

(4i) = (dii) Assume that C is relatively countably o(E'(X*), E(X))-compact. In view
of Proposition 3.1 it is enough to show that the set C' is o(F’, E)-bounded and for every
u € Etheset {ug:ge C} in L' is uniformly integrable. Clearly C'is o(E'(X*), E(X))-
bounded (see [23, Problem 6-4-106, p. 86]). Hence {F, : g € C} is a o(E'(X"), E(X))-
bounded subset of E(X)>. We shall show that C is a |o|(E’, E)-bounded subset of E.
Indeed, let up € E and fy = up ® zo for some fixed zy € Sx. Hence by [15, Theorem
2.1] we have

sup{/on(w)lﬁ(w)du:geC} = sup /fo w)dp : gEC}
Q
= sup{|F|(fy) g € C} < oo
Now we shall show that for every u € E the set {ug: g € C} in L'(p) is uniformly

integrable. Assume on the contrary that there exists ug € E™ such that the set {ugg :
g € C} is not uniformly integrable. For each g € C let us put

ve(A) = /Auo(w)ﬁ(w)d,u for all A € 3.
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Then for every g € C, v, : ¥ — [0,00) is p-continuous countably additive measure
but the family {v, : g € C'} is not uniformly p-continuous. In view of [17, Proposition
2.2] there exist a pairwise disjoint sequence (B,) in ¥, a sequence (g,) in C' and number
€9 > 0 such that for every n € N:

vy (By) = / o ()G (@) > 0. (1)

Since xp, g, € L'(X*) C LY(X*, X), in view of [2, Theorem 1.1(3), p. 24] we have

Vg, (Bn) = HXBnuognHLl(X*,X)
= sup{| [ () uollan) du : f € L0l < 1}

Hence by (1) one can choose a sequence (f,,) in L>(X) with || f,||zx) < 1, xo\B,fn =0
and such that

(fn(w),uo(w)gn(w)) du| > o for all n € N. (2)
A \

Let
folw) forwe B, n=1,2,...,
fow) = { ) .
0 for w e Q@ U,_; Bn.

Then fy € L>®(X), xB,fo = fn for n € N and ugfy € F(X). Note that for every
g € E'(X*) we have

i‘/g<u0(w)fn(w),g(w)>du’

IN

Z/mwmwwmmszémmemm

= > [ w)f@i@in = [ wlfiied <o

Hence we can define a linear operator

Ty B(x) 3 9= ([ (wle)ful)odn) € 1.

n=1

Given (s,) € [* we define

h(w) = Sntio(w) fr(w) %f weB,,n oeo N,
0 ifweQ~U,_, B

Clearly h € E(X) and

‘i (Sn/Q@O(w)fn(w),g(w»dM)’ = ’io:/n<UQ(w)Snfn(w),g(w)>du)

n=1

= | [ te).anan]
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It follows that the operator T}, is (o(E'(X*), E(X)),c(l',1°°))-continuous. Hence the
set {T},(g9) : g € C} is relatively countably o(I*,(°)-compact in [*, and by the Eberlein
theorem it is also relatively sequentially o(I',[°°)-compact. On the other hand, in view
of Schur’s theorem the set {T%,(g) : g € C} is relatively compact in the Banach space [,
and it follows that for every € > 0 there exists n. € N such that

swp{ 3| [ twlrtu). ] g € 0} <

In particular, it follows that for n > n., we get

‘/Q<“0<w)fn(w>,9n(w)>du\ < &

which contradicts (2).
(131) = (1v) It follows from Corollary 3.3.
(iv) = (v) It is obvious because absconv (C') C conv (S(C)).

(v) = (i) It is obvious. O

Recall that a locally convex space (L, &) is said to have the convexr compactness property
if the closed absolutely convex hull of every &-compact subset of L is still £&-compact (see
22, p. 156, [23, Definition 9-2-8]).

As a consequence of Proposition 3.6 we have:

Corollary 3.7. Let E be an ideal of L' and X be an Asplund space. Then the space
(E'(X*),0(E"(X*),E(X))) has the convex compactness property.

4. Strongly Mackey topologies on vector-valued function spaces

Now we are in position to state our main result:

Theorem 4.1. Let E be an ideal of L° and let X be an Asplund space. Then 7(E,E’)
is a strongly Mackey topology on E(X); hence we have

7(E,FE') = 7(FE(X), E'(X")).

Proof. We have E(X)y = {F,: g € E'(X")} because X is an Asplund space. Assume
that for C C E'(X*) the set {Fj, : g € C} is a relatively countably o(E(X)y, E(X))-

n?

compact subset of E(X)Y, i.e., C is a relatively countably o(E'(X*), E(X))-compact

n?

subset of E'(X*). Then by Proposition 3.6 {g: g € C} is a relatively o(E’, F')-compact

subset of E'. Hence, in view of Proposition 3.4, {F, : g € C} isa 7(E, E’)-equicontinuous
subset of E(X),. This means that 7(F, E’) is a strongly Mackey topology on E(X). O

As a consequence of Theorem 4.1 we get:

Corollary 4.2. Let E be a perfect ideal of L° and X be an Asplund space. Then the
space E'(X*) is o(E'(X*), E(X))-sequentially complete.

Proof. In view of Theorem 4.1, 7(E(X), E(X)y) = 7(E(X), E'(X*)) = 7(E, E"), and

n

it follows that 7(E(X), E(X)y) is a locally solid topology on E(X). Hence by [17,

n
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Theorem 3.6] the space E(X)) is o(E(X),, E(X))-sequentially complete. This means

n?’

that E'(X*) is o(E'(X*), E(X))-sequentially complete. O

Now we consider the topology 7(L>, L') on L*>°(X) associated with the Mackey topology
7(L>®,L') on L. It is known that 7(L*>, L) coincides with the natural mized topology
Y7Too(X), To(X) 1o (x)] (briefly yr=(x)) (see [16, Theorem 4.2]). Here To(X) stands for
the || - [|co-norm topology on LOO(X), and 7o(X) denotes the topology of the F-norm
|- llo on L°(X) that generates convergence in measure on sets of finite measure. Then
Yreo(x) is the finest locally convex-topology on L*°(X) which agrees with 75(X) on
|| - [[oo-bounded sets in L*°(X) (see [24, 2.2.2]). This means that (L*(X),yr~(x)) is a
generalized DF-space (see [20]). In particular, by Theorem 4.1 and Corollary 4.2 we get:

Corollary 4.3. Assume that X is an Asplund space. Then the mized topology vre(x) s
a strongly Mackey topology; hence we have:

Yee(x) = T(L%, LY) = 7(L*(X), L'(X")).
Moreover, the space L*(X*) is o(LY(X™*), L°°(X))-sequentially complete.

Now we consider the topology 7(L®, L*") on the Orlicz-Bochner space L?(X) associated
with the Mackey topology 7(L®, L®") on the Orlicz space L®. For this purpose we first
recall some terminology (see [19]). By a Young function we mean here a continuous
convex mapping ® : [0,00) — [0,00) that vanishes only at 0 and P(¢ )/t — 0ast — 0,
®(t)/t — oo as t — oo. The Orlicz space L* = {u € L° : [, P(Au(w)])du < oo for
some A > 0} can be equipped with a complete topology 7 of the Riesz norm ||ul|¢ =
inf{\ > 0 : [, ®(|Ju(w)|/A)dp < 1}. It is known that (L®) = L*", where ®* stands
for the Young functlon complementary to ® in the sense of Young. The Orlicz-Bochner
space L?(X) = {f € LY(X ) f € L‘I’} can be equipped with the complete topology
To(X) of the norm | f||ze(x) = = ||flle for f € L*(X), ie., To(X) = T5. Note that
LM(X)y = (£, g € L% (X)),

For ¢ > 0 let Ug(e) = {f € L*(X) : |, ®(f(w))du < e}. Then the family of all sets of
the form: |J,~, (27 ,Us (&), Where (en) is a sequence of positive numbers, forms a local
base at 0 (consisting of solid and convex subsets of L*(X)) for a locally convex topology
74 (X), and called the modular topology (see [9]). In particular, we will write 7" instead
of T{(R). Then 7 = 7(L® L?") (see [13, Theorem 1.3]). The basic properties of the
modular topology 74'(X) are included in the following theorem (see [9, Theorem 6.3,
Theorem 6.5)).

Corollary 4.4. Let ® be a Young function and let X be a Banach space. Then
(1)  TP(X) is the finest locally convex-solid topology on L*(X) with the Lebesgue prop-

erty.
(1) Tg(X) =Ty =7(L? L*).
(1) Tg'(X) is generated by the family of norms || - ||pv(x), where ¥ runs over the

family of all Young functions such that W <1 ® (i.e., for every ¢ > 1 there exists d > 1
such that V(ct) < d®(t) for all t > 0).

Making use of Theorem 4.1, Corollary 4.2 and Theorem 4.4 we get:
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Theorem 4.5. Let ® be a Young function and X be an Asplund space. Then the modular
topology T (X) on L®(X) is a strongly Mackey topology; hence we have:

T(X) = 7(L*, L*) = 7(L*(X), L™ (X")).
Moreover, the space L* (X*) is o(L® (X*), L®(X))-sequentially complete.

5. Linear operators on vector-valued function spaces with Mackey topologies

From now on we assume that F is an ideal of L° and (X, || - ||x) and (Y] - ||y) are real
Banach spaces. For a linear operator T : E(X) — Y let T* : Y# — E(X)# stand for the
conjugate of T defined via the duality identity (f,T*(y*)) = (T'(f),y*) for f € E(X),
y* € Y# (here Y# denotes the algebraic dual of ).

We start with the following well-known characterization.

Proposition 5.1. For a linear operator T : E(X) — Y the following statements are
equivalent:

(i) T s (t(E(X),E(X))), | - |lv)-continuous.
(i) T is (c(E(X),E(X)y),0(Y,Y™"))-continuous.
(1) T*(Y*) C E(X);.

Proof. (i) <= (it) See [23, Corollary 11-1-3, Corollary 11-2-6]; (ii) <= (iii) See [23,
Lemma 11-1-1]. O

Let £,(E(X),Y) stand for the space of all (7(E(X), E(X)y),| - ||y)-continuous linear
operators from FE(X) to Y. The strong operator topology (briefly SOT) is a locally
convex topology on L.(E(X),Y) defined by the family of seminorms {py: f € E(X)},
where p;(T) = ||T(f)|ly for all T € L,(E(X),Y). The weak operator topology (briefly
WOT) is a locally convex topology on L,(E(X),Y) defined by the family of seminorms
{ppy o [ € E(X),y* € Y*}, where pg,«(T) = (T(f),y*)| for all T € L,(E(X),Y).
Note that for Y = R, both SOT and WOT coincide on E(X), with o(E (X)), E(X)).

n n

Proposition 5.2. Assume that E(X); is o(E(X)y, E(X))-sequentially complete. Then

n

the space L.(E(X),Y) is WOT-sequentially complete.

Proof. Let (T,,) be a WOT-Cauchy sequence in £,(E(X),Y). Then one can define a
linear operator 7" : F(X) — Y such that for every f € E(X), y* € Y*,

(T(f),y") =l (Tn(f), y)- (3)

It is enough to show that T is (7(E(X), E(X)y),| - ||y)-continuous. In fact, in view of
Proposition 5.1, T¥(Y*) C E(X); for every n € N. Moreover, one can easily observe that
TF:Y* - E(X)yis (o(Y*,Y),0(E(X)y, E(X)))-continuous for n € N. Let y5 € Y* be

given. Then for every f € E(X) by (3) we have:
T (yo)(f) = (T(f), yo) = lim (T5.(f), yo) = lim T (yo)(f)- (4)
It follows that (T} (yg)) is a o( E(X);, E(X))-Cauchy sequence in E(X);, so there exists

Fy € E(X); such that Fy(f) = lim,, T,5(y3)(f) for every f € E(X). By (4) T*(y5) = Fy €
E(X)y; hence T*(Y*) C E(X),’, and this means that T € L. (F(X),Y) (see Proposition

5.1). 0
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As an application of Proposition 5.2 and Corollary 4.2 we get:

Corollary 5.3. Assume that E is a perfect ideal of L° and X is an Asplund space. Then
the space L.(E(X),Y) is WOT-sequentially complete.

The following general result will be usuful (see [21, Theorem 2).

Proposition 5.4. Let K be a SOT-compact subset of L.(E(X),Y), and let A be a
o(Y*,Y)-closed, equicontinuous subset of Y*. Then the set |J{T*(A) : T € K} is a
o(E(X)y, E(X))-compact subset of E(X)

n n-

Now we are in position to state our main result.

Theorem 5.5. Assume that X is an Asplund space and Y is a Banach space. Let
I be a SOT-compact subset of L.(E(X),Y). Then K is (t(E(X), E' (X)), - llv)-

equicontinuous.

Proof. In view of the Alaoglu theorem the unit ball in Y*is o(Y™*,Y)-closed and equicon-
tinuous. Hence by Proposition 5.4 Z = |J{T*(By+) : T € K} is o(E(X)y, E(X))-
compact subset of E(X)y = {F, : g € E'(X*)}. Let Cy ={g9 € E'(X*) : F, € Z}.
Then by Corollary 3.7 the set absconv (Cy) (the closure in o(E'(X*), E(X))) is still a
o(E'(X*), E(X))-compact subset of E'(X*). Putting

po(f) =sup{|F,(f)|: g € absconv (Cy) } for f € E(X)

we get
po(f) = sup{|F(f)|: F' € Z} = 5}612{ T*(y*)| : y* € By~}
= sup{(T'(f),y")|: y* € By-} = sup [[T(f)|v-
TeK Tex

Now, let € > 0 be given. Then W, = {f € E(X) : po(f) < €} is a neighborhood of 0
for 7(E(X), E'(X*)). It follows that ||T(f)||y < e for every T € K and all f € W,
and this means that IC is (7(E(X), E'(X")),] - |ly)-equicontinuous. O

As an application of Theorem 5.5 we get the following Vitali-Hahn-Saks type theorem.

Corollary 5.6. Let E be a perfect ideal of L. Assume that X is an Asplund space, and
Y a Banach space. Let (T,) be a sequence in L.(E(X),Y) and assume that T(f) :=
lim,, T,,(f) exists in (Y,|||ly) for every f € E(X). Then T € L(E(X),Y) and the set
{T,, :neN} in L(E(X),Y) is (1(E(X), E'"(X")), || - |lv)-equicontinuous.

Proof. Note that (T(f),y*) = lim,(T,.(f),y) for every f € E(X), y* € Y*. Since
E(X)y is o(E(X)y,E(X)) is sequentially complete (see Corollary 4.2), in view of the
proof of Proposition 5.2, T" € L (FE(X),Y) and T, — T in L, (E(X),Y) for SOT,
so the set {T,, : n € N} is relatively compact for SOT. Hence by Theorem 5.5 it is

(T(E(X), E"(X*)), || - |ly)-equicontinuous. O
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