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1. Introduction

Let us consider the integral functional

T(u) = / f(Du())dz (1)

where € is a bounded open subset of IR” and u : Q — IRY, N > 1, is a function in the
Sobolev class WP(Q, RY), p > 1.

The regularity of local minimizers of Z(u) has been widely investigated in case the inte-
grand f € C? is assumed to be convex or quasiconvex and to behave like |£|P. In 1977, K.
Uhlenbeck (see [20]), proved everywhere C1* regularity for local minimizers of the model
case f(&) = [£[P, with p > 2. This result was generalized first allowing dependence of the
integrand on (z,u) (see [12], [13]), and next considering the case 1 < p < 2 (see [1], [6],
[15]).

Recently, many papers have been devoted to the study of the regularity of minimizers of
non convex integrands satisfying suitable asymptotic growth assumptions. Remark that
in the vectorial case it is known that minimizers may have singularities, and, as recently
proved by Sverak and Yan [19], can be even unbounded. Anyway, prescribing a more
regular behavior at infinity allows to have more regular minimizers. As far as we know,
Lipschitz regularity results are available when f behaves asymptotically, in a C? sense,
like |¢]P (see [5] for the case p = 2, [13] for p > 2 and [17] for 1 < p < 2).
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Moreover higher integrability results are available in case f behaves asymptotically in a
C* or C° sense for every 1 < p < oo ([7], [16]).

The aim of this paper is to establish the local boundedness of the gradient of local mini-
mizers of variational integrals of the type

I(u) = / F(Du) + gl u)dz, 2)

where the integrand f is asymptotically, in a C? sense, subquadratic at infinity, thus
extending a previous result by the authors ([17]) to the case in which the functional
depends also on (z,u) (see Theorem 2.1). The proof of our result is achieved comparing
the minimizer of /(u) with the minimizers of two more regular integrals and then using a
standard iteration procedure.

We want to point out that, in case p > 2, Lipschitz regularity of local minimizers of (2)
has been proved in [18].

With respect to [18], in order to obtain the same growth condition on the lower order
terms, we have to face new difficulties due to subquadratic growth . Namely, the imple-
mentation of the result in the case 1 < p < 2 requires subtle subquadratic estimates and
a delicate technical effort. Here, we have to prove first that the gradient of a minimizer
of (2) belongs to a suitable Morrey space (see Section 3). Then, we use this information
to improve the regularity of Du via a comparison argument. We remark that in the
scalar case our result allows the lower order term g(z,u) to grow as any power |u|” with
0<r<p’.

2. Statement and Technical Lemmas

Let €2 be a bounded open set of IR™. Consider the integral
Ia) = [ $(Du)+ glaw)da, 3
)

where the functions f: R — IR, g: Q x RN — IR, n > 2, N > 1, satisfy the following
assumptions, for 1 < p < 2 and p > 0:

f € CX(R™) (4)
ID2f(€)] < L(i® + €)%, for all € € R™Y (5)
lim [D2f(€) — DXH(E)|(u? + |€[)F" = 0, (6)

|§]—o00

where
H(E) = (u + €)% (
9(517777) > CO+Cl‘n|q+17 (8
|Dyg(z,m)| < ea(|n|? + 1) (

1
9(z,m) — glz,n)| < ca|nf* + |0/ [F + 1)2|n — 17| (10
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with cg, ¢, co > 0, and

*

O<q+1<% i N> 1
O<g+l<p" ifN=1 (11)
A function v € W'P(Q, IRY) is a local minimizer of I(u) if the following inequality
I(u) < I(u+ ),
holds for every test function ¢ € W, 7(Q, IRYN) with compact support in €.

Our main result is the following theorem.

Theorem 2.1. Let f : R™ — IR satisfy assumptions (4), (5) and (6). Moreover let
g: QxRN — IR be a Carathéodory function satisfying the assumptions (8), (9), (10)
and (11). If u € WYP(Q, IRY) is a local minimizer of

) = [ (Du) + gl vy,

then Du 1s locally bounded in 2. Moreover, for almost every xq € €2, we have

|Du(zo)| < c<1+ (7{3

where Ry = dist(zg,0Q) and C' depends on n, N, L, p, 1.

]Du\pdx);>, (12)

Rg (z0)

In what follows we will denote by Bgr(z¢) the ball {z € IR" : |x — x| < R}. To simplify
the notation, the letter ¢ will denote any positive constant, which may vary throughout
the paper. If u € LP, for any Br(xo) we set

1
Uxro,R = 75 1
’ |BR| Br(wo)

u(z)dr = ][ u(z)dx. (13)
Br(wo)
For £ € IR, we define the following function

p—2
V(€)= (u* +[EF) T ¢ (14)
We begin by giving the following basic inequality .

Lemma 2.2. For every v € (—3,0), there exist two positive constants co(y) and c;(7)
such that, for every k € IN,

S 4 In -+ t(€ —n)|)dt
(12 + 2 + €2

co(y) < <ay), (15)
for all ¢£,m € IR* and p > 0.

For the proof see Lemma 2.1 in [1] .

Next Lemma contains some useful properties of the function V' (see [3]).
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Lemma 2.3. Let 1 < p < 2 and V be the function defined in (14), then for every
EnelRF, >0

(1+ )" min{l¢, [€]5} < V()] < |¢]2
|V (t€)] < max{t, 5}V (€)]
V(E+n)] < c@)[[VE)]+IV)] (16)

2le —p| < VWL < o(k, p)|¢ — 1)
(12+lgl2+ P2

V(&) = V)| < elk,p)[V(E—n)l.

The next regularity theorem can be found in [1], see Proposition 2.8.

Proposition 2.4. Let xy € 0, Br(xy) C Q, and let w € WHP(Q, RN). If w is a mini-

mizer of the functional
/ H(Dw)dx
Br(zo)

w—1ué€E W&’p(BR(xO),RN)

such that

then w € CY*(Bg(z0); RYN) for some 0 < a < 1. Moreover, there exists a constant ¢ > 0
such that

sup |[Dw|P < c][ | Dw|Pdx (17)
Br(zo)

B g (z0)
2

and

/ |V (Dw) — V(Dw)x07p|2dx
BP(IO) (18)

< ()" / V(Dw) — V(Dw),, a%dz

— R BR(Z,O) 0,

for every p < R.

The following Lemma has been proved in [17]. We reproduce the proof here for the sake
of completeness.

Lemma 2.5. Let 1 < p < 2 and let f, h : R™ — IR be two functions such that, for
some p > 0,

fih e C*(R™) (19)
ID2f(€)], ID*h(E)| < L + €)%, for all € € R™ (20)
lim |D2f(€) — D*R(E)|(1® + |€]>) =" = 0. (21)

|§|—o00
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Then for every e > 0 there exist §(¢) > 0, w(e) > 0 with lim._ow(e) = 0, and ¢ depending
only on L and p, such that

\< [ =00t + (1= 08) — DG + (1~ Dl - o). (€ - &) -

p—2
< cw(@)(I€ =&l + A7) + 6 + [6l”) >
holds for all £,& € R™ and \ > 0 satisfying |&|* + A2 > 62%(e).
Proof. Assumption (21) implies that for every ¢ > 0 there exists A(¢) > 0 such that if
€] > A(e) then
p—2
|D*f(€) = D*h(€)| < e(p® +1€°) = (23)

Now, for & € IR™, consider the set I = {t € [0,1] : [t& + (1 — t)&| < A(e)} and split
the integral in the left hand side of (22) into the sum of the integrals on I and (0,1) \ /,
respectively. Thus, thanks to Lemma 2.2 and inequality (23),

MO o L DIDA(EE + (1= ) = DB(EE + (1= H&)JdH(E ~ o). (€ ~ &)

(24)
< ap)elé — &P (u® + I€° + &) 7.
Assumption (20), Holder’s inequality and again Lemma 2.2 yield
(1= 010t + (1= )60 = D + 1 = 0N — o). €~ o)
I
< 2L [+ 6+ (1= 06 ) T dtle - o
, 1 (25)
1 o
< 2t ([ e+ -0l a) e - 6
0
< 2Le(p, a)lI[=[€ = & (i + €] + [&f) =
where é + i = 1 and o' is choosen strictly less than 2%]) in order to apply Lemma 2.2
with v = ’%20/.

Let us now estimate |I|. If S denotes the segment with end points &, &y, we have

Sn{ee RV g < AE _ 2A()

d =& STe-al
Let us choose
2 2
6%(e) = (1 + %) A%(e) + (%) A% (e),

and note that if
4L
1§ — &l > ?A(g)



136 A. Passarelli di Napoli, A. Verde /' A Regularity Result for Asymptotically ...

then
€
I < —.
1l < 2L

On the other hand if
4L
£~ &l < “UAE)

let A2 + |&|? > 6%(e); then

> (gz\(e)>2 or  |&]F > (1 + %)2/\2(5).

£

In the first case we have
1 2 4—L o 1,1 A(e) - —Llyg 1
15 - &P <2 i1 ad(e) (T ) < 20) N
In the second case one can easily see that |I| = 0. We conclude the proof combining

previous estimate with (25).

Next Lemma has been proved in [18] in case p > 2, but it holds also in case 1 < p < 2,
with a slight modification.

Lemma 2.6. Let H be the function defined at (7) and V' the one defined at (14). Then
there exist two positive constants c; and ¢y such that, for every &,mn € IR™, we have

alV(€) = Vn)|* < H(&) — H(n) = DH(n)(€ —n) < e V(€) = V(n)|* (26)

We shall need also the following

Lemma 2.7. Let H be the function defined at (7) and let [ satisfy assumptions (4), (5)
and (6). For every e > 0, there exists c. > 0 such that, for every & € R™, we have

(&) — H(| < eH(E) +c. (27)
Proof. For every £ we have

[£(§) = H(E)]
< |f(0)—H(O)|+\Df(0)—DH(0)||§|+/O (1 =)D f(t€) — D*H(ts)|[¢[*dt

< et el€P + e DF(0) - DH(0) + / (1— 1) D2f(t€) — D*H(1¢)|¢
< et eH(E) + / (1 — 1) D2/ (t€) — DH (1) ¢ dt.

Thanks to the growth assumption (5) and since by the assumption (6) for every € > 0
there exists ¢, such that if 5| > ¢. = |D2f(n) — D2 H(n)| < e(u® + |[n|2)"=", we easily
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get that

/ (1 - 1) D2/ (t€) — D*H(t)| ¢t

0

= [ (DDA — DG

s - 0iee) - D P 29
{tlg]>cz}
< [ -y TP [ e+ 2l TP
{tlé]<cc} {tlg]>cz}
<

1
c / Rlepdt + / et 2lgrdt < clle] + elgl
{tlel<er} 0

Now inserting (29) in (28) and using again Young’s inequality, we get (27).

Let us remark that, by the growth assumptions on f, in the scalar case, if g grows less
than p*, u is locally Holder continuous and thus locally bounded (see [14]).

Having this Lemma at our disposal, we can prove the following maximum principle in the
scalar case.

Theorem 2.8. Let w: Br(xg) — IR be the solution of the problem

min / H(Dw)dz (30)
Br(zo)

weu+Wy P (Br(zo))

where u : Q C R™ — IR is a minimizer of I(u) and Br(xg) CC Q. Then w is bounded in
Br(xo) and

[0]| L (B (o)) < llullLo(Br(o)-
Proof. Fix Br(xo) CC Q and set ||u||z(By(z0)) = k- Consider
w = max{min{w(x), k}, —k}.

Notice that, since |u(z)] < k on 0Bg(zg) and w = u on 9dBg(xg), also w € w +
Wy (Br(z0)). Moreover

0 otherwise.

Dw:{Dwif—kSwgk

By the minimality of w

hence

/ H(Dw(2))dx < 1| Ba(xo)|.
Br(zo)N{|w|>k}
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Since w is continuous, this implies that [{z € Bgr(zo) : |w(x)| > k}| = 0, hence the result
follows.

We conclude this section with a standard decay Lemma (see [14]).

Lemma 2.9. Let ¢(t) a non negative and non decreasing function. Suppose that the
following inequality
P)O‘
—= €
(5) *

holds for every p < R < Ry, for some positive constants A, o, B with o > [ and for some
non negative constants B,e. Then there exists a constant 9 = £o(A, a, 3) such that if
€ < gy, for every p < R < Ry we have

p(p) < A »(R) + BR’ (31)

p(p) < c(%)ﬁ[w(fﬂ) + BRY] (32)
where ¢ = ¢(A, o, B).

3. Holder regularity

This Section is devoted to the proof of our first regularity result which shows that a
minimizer of I(v) has the gradient in the Morrey space LI'"(Q; RY) for all 0 < v < n
and as a consequence is Holder continuous. To this aim we recall that the Morrey space
LYY IRY) is defined as the space of the functions v such that, for every ball Br C €,

loc

the following quantity

sup p V[ |v|Pdx
0<p<R B,

is finite.

We recall also that v is locally a-Holder continuous if, for every ball Bg C ),

o(z) = v(y)]

sup ————— < 0.
z,yeBRr |$ - y|a

Lemma 3.1. For every local minimizers u of I(v) we have
Due IP’(Q;RY) YOo<v<n (33)

loc

and
ue Cpf (U RY) Vo<a<l (34)

loc

Proof. Let zp € Q, R < Ry = min {3 dist(zo,99), 1} and fix 0 < p < R. Our aim is to

prove that
/BQ H(Du)dz < c <<%>n + e> /BR H(Du)dz + cR™.

Such inequality is obviously satisfied if

H(Du)dx < R"

B,
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then, in what follows, we will assume that

H(Du)dz > R" (35)

By

Let w be the minimizer of the problem

/ H(Dw)dx
Br(zo)

w—u e WOLP(BR(I'()), BN)

such that
and observe that, from the first estimate of Proposition 2.4, we get
/ H(Dw)dx < c<£>n H(Dw)dx < c(ﬁ)n H(Du)dzx. (36)
B, R Br R Br
By the definition of H (&), we easily get that

H(Du)dx <c | H(Dw)dr+¢ | |Du— Dw|’dx (37)
B, B, B,

Now, observe that

[ Du — DwHip(Bp)

< ¢ [ [V(Du) - V(Dw)P(|Duf + |Dw|? + p2) 5" dx
BP
< c(/ |V(Du)—V(Dw)|2dx>2</ Duf? + |Dwpdr) *
Br B,
n(22—p) (38)

+c</B IV (Du) — V(Dw)|2d:c>gR

2—p

< c(/B H(Du)—H(Dw)dxf(/B ]Du\p—i—]Dw]pda:) ’

1
< c H(Du) — H(Dw)dx + —/ |DulPdx + ¢ | |Dw|Pdx
Br 2c B, B,

where we used Lemmas 2.3 and 2.6 together with (35), the minimality of w and Young’s
inequality. Then inserting (38) in (37) and using (36) we get

/B H(Du)dx

IN

c | H(Dw)dx+c H(Du) — H(Dw)dx + 1/ |Du|Pdx + c/ |Dw[Pdz (39)
By

Bp BR 2 BP

n 1
c<£> H(Du)dx + ¢ H(Du) — H(Dw)dx + = | H(Du)dx
R Br Br 2 By

IN
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and then

/B H(Du)dx < c(%)n ; H(Du)dzx + ¢ H(Du) — H(Dw) dx (40)

Br

Let us remark that, by the minimality of w, we have
/ DH(Dw)(Du — Dw)dz = 0.
Br
By Lemma 2.7 and (10), using the minimality of u, we have
/ (H(Du) — H(Dw)] dz
Br

= /B [H(Du) = f(Du) + f(Du) + g(z,u) — (f(Dw) + g(z,w)) — g(z,u)

+ f(Dw) — H(Dw) + g(x,w)] dx

(41)

< ¢ R"+ 2¢ H(Du)dm—l—/ (Ju]® + [w|* + 1) |u — w]|dz.
Bg Br

In the scalar case, using Theorem 2.8, since ¢ + 1 < p*, we immediately get that
/ (H(Du) — H(Dw)] de < c.R" +2¢ | H(Du)de + c(l[ull =5y B, (42)
Br Bgr

In the vectorial case, we use Holder and Sobolev’s inequalities and the assumption ¢+ 1 <
%, to get:

/ (Jul? + [w]? + D3 u —wlde < e(||ullg, + [w][2)]Du = Dw| oz BRI @FD)
Br

+e|| Du — Dw| o R (43)
< ¢|Du— Dw||LP(BR)RH(1—19*’1(11+1))
By calculations similar to those in (38), we obtain
1 2—p
[Du — Dl sy < / H(Du) ~ H(Dw)ds ) ( / Dudr) (44)
Bgr Br

Then inserting (43) and (44) in (41), using Young’s inequality we obtain

H(Du) — H(Dw)dz

Bgr

< ¢ R"+2¢ H(Du)dx + c(/

Br Br

2—p

1)

1
H(Du) — H(Dw)d:c) | Dull 25 B2

]_ q+1
< ¢R"42¢ | H(Du)ds + 5/ H(Du) — H(Dw)dz + c||Du||%;7, R~ %)  (45)

L?(Br)
Br Br

1
< cR"+2¢ H(Du)dx + = / H(Du) — H(Dw)dx
Bgr 2 Br

te | H(Du)+ RO %G
Br
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The assumption ¢ + 1 < ”% yields that n(1 — (1;_*1)(1%> > n, and then inequality (45)
implies

H(Du) — H(Dw) < c.R" + 3¢ H(Du)dz + c¢.R"7,

Br Br

for some o > 0. Therefore, by (40), we deduce
/ H(Du)dz < c <<£>n - e) / H(Du)dz + c.R".
B, R Br
Using Lemma 2.9, we have, in the scalar as in the vectorial case, that
/ H(Du)dx < ¢, (ﬁ)n/ H(Du)dz + c,R".
B, R Br

The regularity of Du is then proved and by standard results in Morrey-Campanato spaces
it implies also that u € C%*, for every a < 1 (see for instance [14]).

4. Proof of the main result

We are now in position to prove Theorem 2.1.

Proof of Theorem 2.1. Let zy € Q, R < dist(xq,0S2). Consider the following problems

/ H(Dw)dx
Br(ao) (P1)
w—u € WyP(Bg(zo), RN),

/ [H(Dv)dz + g(x,v)]|dz
Br(o)
v —u € WyP(Bg(zo), RN).

(P2)

Let w be a minimizer of (P1) and let v be a minimizer of (P2).

Step 1. Comparison between v and w

Since w is a minimizers of problem (P1), w solves the corresponding Euler Lagrange
equation and then

/ DH(Dw)(Dv — Dw)dx =0
Br(zo)
Lemma 2.6 implies that

/ V(Dv) — V(Dw)[2dz < / H(Dv) — H(Dw)dz
Br(z0) Br(z0)
< /B D) = (o) + o)
o (46)
+ [ glew) +glew) - HDw)s
Br(o)

IN

/ 19z, v) — 9(z, w)dz
Br(zo)
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where in the last line we used the minimality of v. Then the assumption (10) and an
argument similar to the one used to derive (38) yield

/ |V (Dw) — V(Dv)[*dx < / (Jul?* + Jw]* + 1) % |u — w|dz
BR(iﬂo)

Br

< ol|Dv = Dw|l o R D)

< c( /B (m)\V(Dw)—V(Dv)Fdx)%

' (/ | Dwl[? + | Dvl? d$>$R”(1_”*_1(q+l)) 47
Br(zo)

IA

c( / |V (Dw) —V(Dv)ﬁdxf
Br(o)
' (/ H(Dw) + H(Dv) dx) 2 pn(1-p*~H(g+1))
Br(zo)

Since v is a minimizer of (P2) we get

/ H(Dv)dx
Br(zo)

= / H(Dv) + g(x,v) — g(z,v)dx < / H(Du) + g(z,u) — g(z,v)dx
Br(zo) Br(zo)

(48)
< / H(Du)dz + ¢||Dv — Du”LP(BR)RH(I—p*—l((H-I))
Br(o)

1
< / H(DU)d:L’ + C</ H(Du) + H(Dv)dm) P Rn(lfp*—l(qul)).
BR(xO) BR(CE())

Using Young’s inequality we obtain

/ H(Dv)dx
Br(zo)

(49)
< (I+¢) / H(Du)dz + e/ H(Dv)dz + ¢ R 77" @ DGED,
Br(zo) Br(zo)

Therefore

/ H(Dv)dz < ¢ / H(Du)dz + cR"7P" @G5, (50)
Br(zo)

Br(zo)

Now inserting the above estimate in (47) and using the minimality of w we obtain

/ |V (Dw) — V(Dv)|*dx
Br(zo)

2—-p
P

R2n(1-p*"H(g+1)) (51)

IN

([ s e )
Br(zo)

< eR2O—p T @t )RR L pn(1l-pt T (a4 ) (527 ) (352 ) +2n(1-p* (g+1)
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where we used Lemma 3.1. Let us remark that, 2n(1—p*~*(¢+1)) _|_1/2%P > n. In fact this
inequality is equivalent to 2("_1’)2(%

assumption g + 1 < % implies that

< v, which is satisfied for some v < n, since the

2(n—p)(g+1)—np

5p < n. The same assumption ¢ + 1 < p?j

implies also that n(1 — p*~1(q+ 1)) (#) <%> +2n(1 — p*~ (g + 1)) is strictly greater

than n. Then we choose W < v < n in order to have that the exponent of the

radius R in the last line is strictly greater than n. Then, inequality (51) can be written
as follows

/ V(Dw) — V(Do)[2dz < cR™* (52)
Br(zo)
for some o > 0.

Step 2. The comparison between v and u

Since v is a minimizer of problem (P2), v solves the corresponding Euler Lagrange equation
and then

/B - DH (Dv)(Du — Dv) + Dg(x,v)(u —v)dx =0

Lemma 2.6 and the minimality of v imply that

/ |V (Du) — V(Dv)*dzx
Br(zo)

< / [H(Du) — H(Dv) — DH(Dv)(Du — Dv)l|dx

Br(zo)
< / [H(Du) — H(Dv) + Dg(x,v)(u — v)]dx

Br(zo)
< L;()uuDu»—fum>+fumo—quwkm

x,v) — g(x,u)|dx Dg(xz,v)(u —v)|dx
w law) —ge it [ Dyt oo 53)

SiéﬂmM@ﬂﬁ—ﬂ%WW$+/‘ Dg(, v)(u - v)]da

Br(zo)
1—8)D?*H((1 — t)& + tDu) — D*f((1 — t)& + tDu
+A%WA< HDRH((1 = 1) + tDu) — D*F((1 — 1) + tDu)
(& — Du)(& — Du)
1 —t)D?>H((1 — t)€ + tDv) — D*f((1 — t)& + tDv
*ngl( DD2H((1~ 1) + tDv) — D*f((1 — )€y + D)

- (&0 = Dv)(& — Dw),

where in the last inequality we have used the fact that v = w on dBg(z). Let us choose
&o.r such that V(§ r) = (V(Du))y.r and set

2= o+ eonP)F V(D) = (V(DU))ay (54)

Br(xo)
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Since 7[ |V (Du)—(V(Du))go.r|*dx = 7[ |V (Du)|?dx—|V (& .r)|?, it follows that,
Br(zo) Br(zo)
for every € > 0, if

(W + rso,RP)%p][ V(Du)? dz > 6%(), (55)
Br(zo)

then
|£o,1:g|2 + 22> 62(5).

Thus, thanks to Lemma 2.5, (53) implies
/ V(Du) = V/(Dv)Pde
Br(zo)

< cw@{ [ 1Du=GonP(u? + Dl + gon) T d
B

r(z0)

+A? / (1% + [Duf* + |€o p|?) "= da
Br(zo
+/ |Dv — 507}{’2(/,62 + | Dv|? + \fovR|2)%dm
Br(=o)

+)\2/ (1 + | Do) + |50,R\2)”2;2da;} + cR™.
Br(zo)

where to estimate the integrals involving g we argued as in (47),...,(52). Since (u? +
Dul? + [&0.a1)" 7, (1 + |Dvl? + &0.)" 7 < (4% + |€o.r]*) 7, we have by the definition
of \* at (54)

z2 / (42 + | Duf? + |éo.n2) 7 do < / V(Du) — (V(Du))sy rde,
Br(zo) Br(

z0)

)\2/3 ( (u2+\Dv\2+y§0,R\2)”szxg/B [V (Du) — (V(Du)) go.r|*de.
R\Z0

r(z0)

Then, by (16)(iv) we have
/ |V (Du) — V(Dv)|*dx
Br(zo)

< cw(a){ /BR(m) \V(Du) — V(&.r)|*dx —i—/B |V (Du) — V(Dv)|2dx} + R

r(z0)

Hence, since w(g) — 0 as € — 0, there exists gy such that for every e < &g, we get

/ V(Du) — V(Do) 2dz < co(e) / V(Du) — V(€on)Pde + R, (56)
Br(zo) Br(zo)
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Now observe that

/ |V (Du) — V(Du)z07p|2dx
BP(IO)

IA

/ V(Du) — V(D) 2dz + / V(Dv) — V(Dw)|2da
Bﬂ(afo)

BP(JfO)

[ VoW VDt [ V(D) VDU P 60
By (z0)

By (o)

IA

c/ |V (Du) — V(Dv)|*dz + c/ |V (Dv) — V(Dw)|*dx
Br(zo) Br(zo)
te / V(Dw) = V(Dw)ay, Pda
Bp(xo)

for every p < R. Then inserting (52) and (56) in (57) and using the second estimate in
Proposition 2.4 we get

/B VW)~ (VD)

< cow(e)/ |V (Du) — (V(Du)) gy r|*dx + cgR™ (58)
Br(z0)
+(ﬁ)"+2a/ V(Dw) = V(Dw),, n*da
R Br(zo) >

for every 0 < p < R and for a constant ¢ = co(L,p,n, N, ) > 1. On the other hand we
also have

/B V(W) = (VD)

< c/ |V (Dw) — V(Dv)|*dx + c/ |V (Dv) — V(Du)|*dz (59)
BR(I()) BR(xO)
+c/ |V (Du) — V(Du) . r|*dx
Br(zo)

which allows us to conclude that

[ (D0~ (VD) P
By(z0) (60)

<o ((f) @) [ W0 - (VD) o

for every 0 < p < R and for a constant ¢y = co(L, p,n, N, u) > 1.

Step 3. Conclusion

We conclude as in [18], using a standard iteration argument.



146 A. Passarelli di Napoli, A. Verde /' A Regularity Result for Asymptotically ...

Choose 0 < 7 < 1, g1 < gg and 0 < v < « such that

207" = 7 w(ey) < TP

Recall that the choice of &; is possible since the function w(e) tends to 0 as € goes to 0.

Then for every R < Ry = dist(zg, 02) we have

(12 + l6o.nl?) 7[ V(Du)P dz < (1)

Br(zo)

or

O(TR) < 7"T®(R) + cR"°
where we set

B(R) = /B VD) = (V (D))

Fix xg such that
lim |V (Du) — (V(Du))(x0)|* dz = 0,

r—0 B'r (5130)

and set
0< Ry =inf{l0 < R< Ry: (61) holds for R or R = Ry}.

If Ry =0, then (61) holds for a sequence R; — 0, from which we deduce that

p—2

[V (Du)(zo)| < d(e)p =

If0<R1 < RQ let, fOI']{?GW,
Tk‘:Tk:Rh

which is less than or equal to Ry. From (62), iterating, we get

f WDw - (VD) s
Bry, 1y (20)

IN

7 7[ V(D) — (V(D))ag |2 + coker™™ " RT
Br, (z0)

IN

™ ][ |V (Du)Pdx + cokm*" " RY.
Br, (z0)

Since

’(V(Du))xoﬂ"kﬂ - (V(Du))m’rlJ = C(T) (7{9

T (x())

we get

V(Du)(zo)l < Y I(V(Du))agreyr = (V(DU))agyri| + [(V (D) g,

k=2

c 7[ V(Du)[2dz | +ec.
B, (%0)

N

IA

[V (Du) — (V(DU))zo,rdefE)

I

Y

(61)

(62)
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If Ry < Ry one obtains by (61)

D=

(]{3 ( )|V(Du)]2dx> < 17 5(e1). (64)

It is worth pointing out that this positive constant depends also on A(g),i. e. the speed
of convergence in the limit (21), through the constant §%(e;). If Ry = Ry

1

IV (Du)(o)| < c<7[ Duffdz)” + .

Br, (z0)

with ¢ = ¢(n, N, L, p). In conclusion, we proved that

|Du(zo)| < c(l + <][ |Du‘de>p>’
Bpr (o)

where ¢ depends on p, L,n, N, and on A(eq). [
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