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We consider the following Generalized Aerodynamic Problem: Find a convex body of the given length
and of the given maximal section, which has the minimal resistance when moving in the rarefied
medium. We prove the existence of a solution for this problem.
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1. Introduction

In his book “Philosophiae Naturalis Principia Mathematica�, in the part entitled “On
moving of fluids and on resistance of thrown bodies�, Newton studied the problem of
resistance of various bodies moving in a “rarefied� medium. Among the other, he wrote
the following:

Quod si figura DNFG ejusmodi sit ut, si ab ejus puncto quovis N ad axem AB demittatur

perpendiculum NM , et dicatur recta GP quae parallela sit rectae figuram tangenti in N ,

et axem productam sicet in P , fuerit MN ad GP ut GP cub ad 4BP ×GBq, solidum quod

figurae hujus revolutione circa axem AB describitur resistetur minime omnium ejusdem

longitudinis & latitudinis.

The translation to English of this Latin text is the following one:

If the curve DNFG satisfies the condition: if, from an arbitrary point N , we construct

the orthogonal line to the axis AB and construct the line GP parallel to the tangent of

the curve at the point N , which intersects the axis at the point P , then MN : GP =
GP 3 : (4BP × GB2); then the body obtained by the rotation of this curve around the

axis AB will be submitted to the minimum resistance in the rarefied medium, compared

to other bodies of the same length and width.

Suppose that the rotating body is obtained by the rotation around the axis x of the
graph of the function x(y), y ∈ [0, a], and suppose that the body is moving in the sense
opposite to the sense of axis x. If the space is filled with a rarefied fluid, then the
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resistance that the body encounters when moving is given by the formula

(R) F = 4πρv2
∫ a

0

dt

1 + �x(t)2
,

where ρ is the density of the fluid and v is the body’s speed. The above formula can be
derived by assuming that the fluid consists of identical balls, uniformly distributed in
the space, and which are reflected from the body according to the law of reflection for
the elastic bodies.

From the formula above one could get the impression that Newton’s problem can be
formalized as the problem of the calculus of variations in the following way:

(P )

∫ a

0

dt

1 + �x(t)2
→ inf ; x(0) = 0, x(a) = b.

It is not difficult to see that the value of this problem is equal to zero. If we put a
saw-like function in the functional above, then its value will be positive and small, and it
becomes smaller as the saw’s teeth become sharper. This fact made some mathematicians
to believe that the great scientist has made a mistake. For example, L. C. Young [4]
thought that Newton’s resistance law is physically absurd. V. M. Tihomirov [2] noted
that the formalization (P) of the Aerodynamic Problem was not given by Newton, but
by his successors. In the derivation of the law (R) it is assumed that every molecule of
the fluid hits the body only once; therefore it is necessary to introduce the constraint
that the function x, whose graph generates the rotating body, is monotone increasing.
In this way Tihomirov obtained a new formalization of the Aerodynamic Problem (see
[1], 1.2.3):

(T )

∫ a

0

tdt

1 + �x(t)2
→ inf ; x(0) = 0, x(a) = b, �x(t) ≥ 0.

This is an optimal control problem. The solution of this problem is the function given
by the following parametric equations (see [1], 1.6.2):

t(u) =
τ

4
(u3 + 2u+ 1/u),

x(u) =
τ

16
(3u4 + 4u2 − 4 lnu− 7),

u ≥ 1.

It is interesting, but not surprising, that this curve coincides with the one described by
Newton.

2. Generalized Aerodynamic Problem

By careful analyzing, one can see that it is not sufficient to assume that the function x,
whose graph generates the rotating body, is monotone increasing, but it is necessary to
impose the convexity condition as well. Only the convexity condition guarantees that
every molecule of the fluid will hit the body at most once. The solution of the problem
(T) is a convex function, and the same function will be the solution of the problem
obtained from the problem (T) by adding the condition of convexity of the function x.
This is why it is not easy to notice that it is necessary to impose the convexity condition
too.
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Newton’s problem can be generalized to the bodies which are not rotating. It makes
sense to study the problem to determine a convex body of the given length and of the
given maximal cross section, which is submitted to the minimal resistance when moving
in the rarefied medium. Mathematical formalization of this problem is the following one:
Given a bounded open convex set D ⊆ R2, find a convex function z(x, y) : D → R,
0 ≤ z(x, y) ≤ b, for which the body given by

{(x, y, z) | (x, y) ∈ D, z(x, y) ≤ z ≤ b},

is submitted to the minimal resistance when moving in the rarefied fluid in the sense
opposite to the sense of the axis z. One can prove by a standard procedure that the
resistance force is given by the formula

~F = 2ρv2
∫∫

D

zx(x, y)~i+ zy(x, y)~j − ~k

1 + zx(x, y)2 + zy(x, y)2
dxdy.

Partial derivatives zx(x, y) and zy(x, y) exist almost everywhere onD and are measurable
(see [2], 44, Theorems D and E). The integrant is measurable and bounded. Therefore
this integral exists in the Lebesgue sense.

Several interesting questions can be made in connection with the Generalized Aerody-
namic Problem. The first question is whether there exists a solution of this problem.
The existence problem is solved by the following theorem.

Theorem. The Generalized Aerodynamic Problem has a solution.

The proof of this theorem is based on the following two lemmas. Lemma 2.1 is a variant
of Theorem 10.9 of [3]. Lemma 2.2 can be obtained from Theorem 24.5 of [3]. Both
lemmas are interesting in themselves and they both have short proofs, which we present
here for completeness sake.

Lemma 2.1. Let D be an open convex set in Rn, and let (fk) be an uniformly bounded

sequence of convex functions defined on D. There exists a subsequence of (fk) which

converges at each point of D.

Lemma 2.2. Let the sequence of convex functions (fk), defined on the open interval I
of the real line, converges to the function f . If each of the functions fk, k ∈ N , and the

function f are differentiable at the point x ∈ I, then limk→∞ f ′

k(x) = f ′(x).

Proof of Lemma 2.1. Let X be a countable everywhere dense set in D. Using the di-
agonal procedure we can prove that the sequence of functions (fk) contains a subsequence
which converges in every point from X. For the sake of simplicity we can suppose that
actually the sequence (fk) converges in every point of the set X. Let a ∈ D. The point a
has a compact neighborhood U which is contained in D. All functions from the sequence
(fk) satisfy Lipschitz condition on U with the same Lipschitz constant L (see [2], Section
41, Theorem B). Let ǫ > 0. There exists x ∈ X ∩ U , such that d(x, a) < ǫ/3L. Since
(fk(x)) is a convergent sequence, there exists m ∈ N such that d(fk(x), fl(x)) < ǫ/3, for
k, l ≥ m. If k, l ≥ m, we have that

d(fk(a), fl(a)) ≤ d(fk(a), fk(x)) + d(fk(x), fl(x)) + d(fl(x), fl(a))

≤ Ld(a, x) + d(fk(x), fl(x)) + Ld(x, a) ≤ Lǫ/3L+ ǫ/3 + Lǫ/3L = ǫ.
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Therefore (fk(a)) is a Cauchy sequence and hence it is convergent.

Proof of Lemma 2.2. Let all functions fk, k ∈ N , and the function f be differentiable
at the point x ∈ I. Further, let y, z ∈ I, y < x < z. The following inequalities hold

fk(y)− fk(x)

y − x
≤ f ′

k(x) ≤
fk(z)− fk(x)

z − x
.

If k → ∞, then we have

f(y)− f(x)

y − x
≤ lim inf

k→∞

f ′

k(x) ≤ lim sup
k→∞

f ′

k(x) ≤
f(z)− f(x)

z − x
.

If y → x− and z → x+, we obtain

f ′(x) ≤ lim inf
k→∞

f ′

k(x) ≤ lim sup
k→∞

f ′

k(x) ≤ f ′(x).

It follows that
lim
k→∞

f ′

k(x) = f ′(x).

Proof of the Theorem. Let (zk) be a minimizing sequence of functions. According
to Lemma 2.1, this sequence has a convergent subsequence. We can suppose that the
sequence (zk) is convergent on the set D. Denote by z the function which is the limit
of the sequence of functions (zk) on the set D. The function z is also convex on the set
D. Since every convex function on the open convex set is differentiable at almost every
point of this set (see [2], Section 44, Theorem D), then at almost every point of the set
D all functions zk, k ∈ N , and the function z are differentiable. Let (x, y) be such a
point. According to Lemma 2.2 we have that

lim
k→∞

∂zk(x, y)

∂x
=

∂z(x, y)

∂x
, lim

k→∞

∂zk(x, y)

∂y
=

∂z(x, y)

∂y
.

According to Dominated Convergence Theorem we obtain that

lim
k→∞

|~F (zk)| = |~F (z)|.

Therefore the function z is the solution of the Generalized Aerodynamic Problem.
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