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1. Introduction

Throughout this note X will denote a Banach space with topological dual X∗. For
(x, x∗) ∈ X×X∗, 〈x, x∗〉 (or 〈x∗, x〉) will denote the natural evaluation map. The unit ball
in X∗ is denoted B∗. If T : X→→X∗ is a multifunction then G(T ) = {(x, x∗) ∈ X ×X∗ :
x∗ ∈ T (x)} is called its graph, while DT = {x ∈ X : T (x) 6= ∅} is called its domain. The
multifunction T is called monotone if 〈x∗−y∗, x−y〉 ≥ 0 for all (x, x∗), (y, y∗) ∈ G(T ); T
is called maximal monotone if there exists no monotone multifunction S : X→→X∗ such
that G(S) strictly contains G(T ). The theory of maximal monotone multifunctions in
reflexive spaces is now more or less complete, due to Rockafellar’s results from the 1960s
and 1970s. However, in general Banach spaces, the theory is much more complicated.
In order to extend Rockafellar’s results to general Banach spaces, different authors have
introduced several classes of maximal monotone operators and proved some of his results
in these particular cases (see [9], [10] for a detailed description of these classes and results
and also [13], [14] and [15] for properties of regular maximal monotone multifunctions).

In this note we use recent results concerning the sum theorem for maximal monotone mul-
tifunctions in general Banach spaces to find new characterizations for regular maximal
monotone multifunctions (Theorem 1.2, Corollary 1.3, Theorem 1.4). We also prove that
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the sum of a regular maximal monotone multifunction and a bounded maximal mono-
tone multifunction is maximal. In the last part we characterize a type of enlargements
(Theorem 1.7), give a characterization of regularity in terms of certain enlargements
(Theorem 1.8), and show that the domain of another type of enlargements is contained
in the closure of the domain of the initial multifunction (Theorem 1.9).

It is worth mentioning that if a sum theorem for maximal monotone multifunction in
general Banach spaces was proved then any maximal monotone multifunction would be
regular and therefore all our results in this note would be true for any maximal monotone
multifunction.

Regular maximal monotone multifunctions

In [13] we introduced the following number

L(x, x∗, T ) = 0 ∨ sup

{

〈x∗ − y∗, y − x〉

‖x− y‖
: y 6= x, (y, y∗) ∈ G(T )

}

(here a ∨ b = max{a, b}) and proved that L(x, x∗, T ) ≤ inf{‖y∗ − x∗‖ : y∗ ∈ T (x)} =
d(x∗, T (x)). (When T is the subdifferential of a proper, convex, lower semicontinuous
function this number was considered by Simons [11].) The maximal monotone multi-
function T is called regular if L(x, x∗, T ) = inf{‖y∗ − x∗‖ : y∗ ∈ T (x)} = d(x∗, T (x)) for
any (x, x∗) ∈ X × X∗. Here is a list with some relevant facts about regular maximal
monotone multifunctions:

– If T is a regular maximal monotone multifunction thenDT is convex [13, Theorem 2].

– Any maximal monotone multifunction in a reflexive Banach space is regular [13,
Corollary 1(2)].

– The subdifferential of any proper convex lower semicontinuous function is regular
[13, Theorem 6].

– If T is a regular maximal monotone multifunction and x ∈ DT then T is locally
bounded at x if and only if x ∈ intDT [13, Corollary 3].

– If T is a linear (possibly discontinuous) and maximal monotone multifunction then
T is regular [14, Proposition 3.2].

– If T is a strongly-representable maximal monotone multifunction then T is regular
(see Remark 7 in [17]). Since any maximal monotone multifunction of type (NI) is
strongly-representable (Proposition 26 in [17]) it follows that any maximal monotone
multifunction of type (NI) is regular (recently it was proved [5, Theorem 1.2] that the
class of strongly-representable monotone multifunctions coincides with the class of
maximal monotone multifunction of type (NI)). In particular any maximal monotone
multifunction of type (D) is regular (since any maximal monotone multifunction of
type (D) is of type (NI), [10, Theorem 36.3(a)]).

We shall prove in this note that:

– If T is a maximal monotone multifunction and DT is either closed and convex or
has non-empty interior then T is regular (Corollary 1.3).

– If T is a maximal monotone multifunction then T is regular if and only if it is dually
strongly maximal (Theorem 1.4).
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Theorem 1.1. Let T : X→→X∗ be a regular maximal monotone multifunction and

S : X→→X∗ be a bounded maximal monotone multifunction. Then T + S is maximal

monotone.

Proof. In view of the Debrunner-Flor Extension Theorem (see [7, Lemma 1.7]), DS =
X. Let M be such that ‖u∗‖ ≤ M for any (y, u∗) ∈ G(S). Let (x, x∗) ∈ X × X∗ be
monotonically related to G(T + S), that is

〈y∗ + u∗ − x∗, y − x〉 ≥ 0 for any (y, y∗) ∈ G(T ), (y, u∗) ∈ G(S).

Then
〈y∗ − x∗, x− y〉 ≤ 〈u∗, y − x〉 ≤ ‖u∗‖ ‖y − x‖ ≤ M‖y − x‖

from which it follows that L(x, x∗, T ) ≤ M . Since T is regular, this implies that
d(x∗, T (x)) ≤ M < ∞ and therefore T (x) 6= ∅. Thus x ∈ D(T ). Our assertion fol-
lows now from Theorem 24.1(c) in [10].

For any x ∈ X and λ > 0 consider the following convex lower semicontinuous function:
gλ,x(z) = λ‖z − x‖, z ∈ X. It is known that

∂gλ,x(z) = {z∗ ∈ X∗ : ‖z∗‖ ≤ λ and 〈z∗, z − x〉 = λ‖z − x‖} 6= ∅

and in particular
∂gλ,x(x) = λB∗.

Theorem 1.2. A maximal monotone multifunction T : X→→X∗ is regular if and only

if T + ∂gλ,x is maximal monotone for any x ∈ X and λ > 0.

Proof. The “only if� part follows from the previous theorem. The “if� part was essen-
tially proved in [13]. Since it is quite short, we shall repeat it here. To this end, let
(x, x∗) ∈ X ×X∗. We have to show that L(x, x∗, T ) = d(x∗, T (x)). If L(x, x∗, T ) = ∞
there is nothing to prove since, as mentioned earlier, L(x, x∗, T ) ≤ d(x∗, T (x)). So,
assume that L(x, x∗, T ) = λ < ∞. A direct computation (see also Lemma 4 in [13])
shows that L(x, x∗, T + ∂gλ,x) = 0 which means that (x, x∗) is monotonically related to
T+∂gλ,x. Since, by hypothesis, T+∂gλ,x is maximal, it follows that x∗ ∈ (T+∂gλ,x)(x) =
T (x) + λB∗ and therefore d(x∗, T (x)) ≤ λ = L(x, x∗, T ). This completes the proof.

Corollary 1.3. If T : X→→X∗ is a maximal monotone multifunction and DT is either

closed and convex or has non-empty interior then T is regular.

Proof. If DT is closed and convex this follows immediately from Theorem 1.2 and Voi-
sei’s result (the sum of two maximal monotone multifunctions with closed convex do-
mains that satisfy the usual constraint qualification is maximal, see [16]). If DT has
non-empty interior our assertion follows from our Theorem 1.2 and Theorem 9(i) in [1].

Strongly maximal monotone multifunctions

We begin this section by recalling the following definition, due to Simons (see [9], [10]):
a monotone multifunction T : X→→X∗ is called strongly maximal if the following two
conditions are satisfied
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(SM1) “whenever C ⊂ X is nonempty, convex and w(X,X∗)-compact, x∗
0
∈ X∗, and

(y, y∗) ∈ G(T ) there exists x = xy,y∗ ∈ C such that 〈y∗ − x∗
0
, y − x〉 ≥ 0� then

there exists x0 ∈ C such that x∗
0
∈ T (x0);

(SM2) “whenever C ⊂ X∗ is nonempty, convex and w(X∗, X)-compact, x0 ∈ X, and
(y, y∗) ∈ G(T ) there exists x∗ = x∗

y,y∗ ∈ C such that 〈y∗ − x∗, y − x0〉 ≥ 0� then
there exists x∗

0
∈ C such that x∗

0
∈ T (x0).

Theorem 1.4. A maximal monotone multifunction T : X→→X∗ is regular if and only

if it satisfies condition (SM2).

Proof. It was proved in [13] (Proposition 1) that if T satisfies condition (SM2) then
it is regular. Conversely, assumes that T is regular. We shall adapt a proof of Simons
of this assertion in the case when T is a subdifferential (see for example [10]). Let
x0 ∈ X and C ⊂ X∗ be nonempty, convex and w(X∗, X)-compact that satisfy the
assumption in (SM2). Define a convex, lower semicontinuous function f : X → R by
f(x) = max〈x0 − x,C〉 = max〈x− x0,−C〉. It is known and not difficult to see that

(∗) u∗ ∈ ∂f(x) if and only if u∗ ∈ −C and 〈u∗, x− x0〉 = f(x).

On the other hand, if y∗ ∈ T (y) and x∗ = x∗
y,y∗ ∈ C is as in the assumption of (SM2),

then 〈y∗ − x∗, y − x0〉 ≥ 0. It follows that

(∗∗) 〈y∗, x0 − y〉 ≤ 〈x∗, x0 − y〉 ≤ f(y).

From (∗) and (∗∗) we get that for any y∗ ∈ T (y) and u∗ ∈ ∂f(y) we have

〈y∗ + u∗, y − x0〉 = 〈y∗, y − x0〉 − 〈u∗, x0 − y〉 = 〈y∗, y − x0〉+ f(y) ≥ 0

which means that the pair (x0, 0) is monotonically related to T + ∂f . Since T is regular
and ∂f is bounded, the maximality of T + ∂f implies that 0 = x∗

0
+ u∗ with x∗

0
∈ T (x0)

and u∗ ∈ ∂f(x0) = −C. Thus x∗
0
∈ T (x0) ∩ C and the theorem is proved.

Corollary 1.5. Any strongly maximal monotone multifunction is regular. In particular,

any maximal monotone multifunction whose graph is convex is regular.

Proof. The first assertion is obvious while the second one follows from the previous
theorem and Theorem 46.1 in [10].

Enlargements of regular maximal monotone multifunctions

Let T : X→→X∗ be a monotone multifunction. Recall that an enlargement of T is a
multifunction E : [0,∞) ×X→→X∗ such that T (x) ⊆ E(ε, x) for any x and any ε ≥ 0.
An enlargement E : [0,∞)×X→→X∗ is called a full enlargement of T if for any x ∈ DT

and for any ε > 0 there exists δ = δ(x, ε) > 0 such that T (x)+ δB∗ ⊆ T ε. Enlargements
were first considereded in [4] (especially in the case of subdifferentials) and [6] and later
systematically studied in [2], [3] (these papers contain further references); see also [8].

Basically, there are two types of enlargements that are considered. The first one is
defined as follows:

E(ε, x) = T ε(x) = {x∗ ∈ X∗ : 〈x∗ − y∗, x− y〉 ≥ −ε‖x− y‖, (y, y∗) ∈ G(T )}.
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Lemma 1.6. With the above notation: T (x) + εB∗ ⊆ T ε(x), for any x ∈ DT . In

particular, {T ε}ε≥0 is a full enlargement of T .

Proof. Let (x, x∗) ∈ G(T ) and u∗ ∈ εB∗. Then, for any (y, y∗) ∈ G(T ) we have

〈x∗ + u∗ − y∗, x− y〉 = 〈x∗ − y∗, x− y〉+ 〈u∗, x− y〉 ≥ −ε‖x− y‖

which shows that x∗ + u∗ ∈ T ε(x).

Theorem 1.7. Let T : X→→X∗ be a regular maximal monotone multifunction, x ∈ X,

ε ≥ 0, and x∗ ∈ T ε(x). Then

(a) x ∈ DT .

(b) T ε(x) = T (x) + εB∗.

(c) The enlargement {T ε}ε≥0 satisfies the following monotonicity property:

〈x∗ − y∗, x− y〉 ≥ −(ε+ δ)‖x− y‖, x∗ ∈ T ε(x), y∗ ∈ T δ(y).

(d) The enlargement {T ε}ε≥0 is maximal in the following sense: if (x, x∗) ∈ X × X∗

and

〈x∗ − y∗, x− y〉 ≥ −(ε+ δ)‖x− y‖ for any δ ≥ 0 and y∗ ∈ T δ(y)

then x∗ ∈ T ε(x).

Proof. It is easily seen that

x∗ ∈ T ε(x) if and only if L(x, x∗, T ) ≤ ε

Thus, since T is regular, if x∗ ∈ T ε(x) it follows that d(x∗, T (x)) = L(x, x∗, T ) ≤ ε and
therefore x ∈ DT and x∗ ∈ T (x) + εB∗ (since T (x) is weak∗ closed and εB∗ is weak∗

compact). This proves (a) and in view of Lemma 1.6, also (b).

To prove (c), let x∗ ∈ T ε(x) and y∗ ∈ T δ(y). In view of part (b), x∗ = x∗
1
+ u∗ and

y∗ = y∗
1
+ v∗ with x∗

1
∈ T (x), y∗

1
∈ T (y), u∗ ∈ εB∗, v∗ ∈ δB∗. Then ‖u∗ − v∗‖ ≤ ε + δ

and

〈x∗ − y∗, x− y〉 = 〈x∗
1
+ u∗ − y∗

1
− v∗, x− y〉

= 〈x∗
1
− y∗

1
, x− y〉+ 〈u∗ − v∗, x− y〉 ≥ −(ε+ δ)‖x− y‖

which proves the assertion. Finally, (d) follows from the definition of T ε(x).

Remark. One can generalize the definition of L(x, x∗, T ) as follows:

L(x, x∗, T ε) = 0 ∨ sup

{

〈x∗ − y∗, y − x〉

‖x− y‖
− ε− δ : δ ≥ 0, y 6= x, y∗ ∈ T δ(y)

}

ε ≥ 0



1008 A. Verona, M. E. Verona / Regular Maximal Monotone Multifunctions and ...

It is not difficult to see that if T is regular then L(x, x∗, T ε) = d(x∗, T ε(x)). Indeed,

L(x, x∗, T ε)

= 0 ∨ sup

{

〈x∗ − y∗, y − x〉

‖x− y‖
− ε− δ : δ ≥ 0, y 6= x, y∗ ∈ T δ(y)

}

= 0 ∨ sup

{

〈x∗ − z∗ − u∗, y − x〉

‖x− y‖
− ε− δ : δ ≥ 0, y 6= x, z∗ ∈ T (y), u∗ ∈ δB∗

}

= 0 ∨ sup

{

〈x∗ − z∗, y − x〉

‖x− y‖
− ε+

〈u∗, x− y〉

‖x− y‖
− δ : δ ≥ 0, y 6= x, z∗ ∈ T (y), u∗ ∈ δB∗

}

= 0 ∨ sup

{

〈x∗ − z∗, y − x〉

‖x− y‖
− ε : y 6= x, z∗ ∈ T (y)

}

= 0 ∨ (L(x, x∗, T )− ε) = 0 ∨ d(x∗, T (x))− ε = d(x∗, T (x) + εB∗) = d(x∗, T ε(x)).

We shall now give a characterization of regularity in terms of the enlargement {T ε}ε≥0.

Theorem 1.8. A maximal monotone multifunction T : X→→X∗ is regular if and only

if DT ε = DT for any ε > 0.

Proof. The “only if� part follows from Theorem 1.7(a). The “if� part will follow from
Theorem 1.2 once we show that T+∂gλ,x is maximal monotone for any x ∈ X and λ > 0.
To this end, let x ∈ X and λ > 0 and assume that (z, z∗) ∈ X × X∗ is monotonically
related to T + ∂gλ,x. Let (y, y

∗) ∈ G(T ) and u∗ ∈ ∂gλ,x(y). We have

〈z∗ − y∗, z − y〉 = 〈z∗ − y∗ − u∗, z − y〉+ 〈u∗, z − y〉 ≥ 0− λ‖z − y‖ = −λ‖z − y‖

which shows that z∗ ∈ T λ(z) and in particular z ∈ DTλ = DT . Theorem 24.1(c) in [10]
proves that T + ∂gλ,x is maximal monotone and this finishes the proof.

We shall now turn our attention to another type of enlargements which were studied in
[3] and [8]. If T : X→→X∗ is a monotone multifunction and x ∈ X define

E(ε, x) = Tε(x) = {x∗ ∈ X∗ : 〈x∗ − y∗, x− y〉 ≥ −ε for any (y, y∗) ∈ G(T )}.

It is worth mentioning that this enlargement belongs to the class IE(T ) introduced in
[12] while the enlargement {T ε} considered earlier does not.

Theorem 1.9. If T : X→→X∗ is a regular maximal monotone multifunction, ε > 0 and

Tε(x) 6= ∅ then x ∈ DT , that is DTε
⊆ DT .

Proof. Assume not. Then there exists δ > 0 such that ‖x− y‖ > δ for any y ∈ DT . Let
x∗ ∈ Tε(x). Then

〈x∗ − y∗, x− y〉 ≥ −ε ≥ −
ε

δ
‖x− y‖ for any (y, y∗) ∈ G(T )

and therefore x∗ ∈ T ε/δ(x). By Theorem 1.7(a), x ∈ DT , which is a contradiction. It
follows that x ∈ DT .

Remark. A particular case of this result (when X is reflexive) was proved in [3].
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