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In his recent book From Hahn-Banach to monotonicity (Springer, Berlin, 2008), S. Simons has intro-
duced the notion of SSD space to provide an abstract algebraic framework for the study of monotonicity.
Graphs of (maximal) monotone operators appear to be (maximally) q-positive sets in suitably defined
SSD spaces. The richer concept of SSDB space involves also a Banach space structure. In this paper
we prove that the analog of the Fitzpatrick function of a maximally q-positive subset M in a SSD space
(B, ⌊·, ·⌋) is the smallest convex representation of M . As a consequence of this result it follows that, in
the case of a SSDB space, the conjugate with respect to the pairing ⌊·, ·⌋ of any convex representation
of M provides a convex representation of M, too. We also give a new proof of a characterization of
maximally q-positive subsets of SSDB spaces in terms of such special representations.

1. Introduction and preliminaries

This work is in the setting of symmetrically self-dual spaces, a notion introduced recently
by S. Simons [10, Def. 19.1]. A symetrically self-dual (SSD) space is a pair (B, ⌊·, ·⌋)
consisting of a nonzero real vector space B and a symmetric bilinear form ⌊·, ·⌋ : B ×
B −→ R which separates the points of B (that is, for every b ∈ B \ {0} there exists
b′ ∈ B such that ⌊b, b′⌋ 6= 0). The bilinear form ⌊·, ·⌋ induces the quadratic form on
B defined by q (b) := 1

2
⌊b, b⌋ . One says that a nonempty set A ⊆ B is q-positive [10,

Def. 19.5] if b, c ∈ A =⇒ q (b− c) ≥ 0. A set M ⊆ B is called maximally q-positive
[10, Def. 20.1] if it is q–positive and not properly contained in any other q–positive set.
The theory of q-positive sets was introduced in [9] as a generalization of the theory of
monotone operators. We next recall the fundamental notions and results of this theory,
as developed in [10] (see also [9] for more details).

Given an arbitrary nonempty set A ⊆ B, the function ΦA : B −→ R∪{+∞} defined by
ΦA (b) := q (b) − infb∈A q (b− a) = supb∈A {⌊b, a⌋ − q (a)} will be called the Fitzpatrick
function of A. The latter expression shows that ΦA is a proper convex function. If M is
maximally q-positive then

ΦM (b) ≥ q (b) ∀ b ∈ B, (1)

ΦM (b) = q (b) ⇐⇒ b ∈ M. (2)
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For any proper convex function f : B −→ R∪{+∞} satisfying f ≥ q, one defines the
set

pos f := {b ∈ B : f (b) = q (b)} . (3)

We will say that f : B −→ R∪{+∞} is a convex representation of a nonempty set
A ⊆ B if f ≥ q and pos f = A. By (1) and (2), one has:

Proposition 1.1 ([10, (20.2)]). If M ⊆ B is a maximally q-positive set then ΦM is a

convex representation of M.

In view of the following proposition, which characterizes q-positivity in terms of convex-
ity, pos f is q-positive provided that it is nonempty.

Proposition 1.2 (see [10, Lemma 19.8]). Let A ⊆ B be nonempty. Then A is q-

positive if and only if there exists a convex function f : B → R∪{+∞} such that f ≥ q

and A ⊆ pos f.

Proof. If A is q-positive, using Zorn’s Lemma we deduce the existence of a maximally
q-positive set M that contains A. By Prop. 1.1, the conditions in the statement hold
with f = ΦM . The converse result is Lemma 19.8 in [10].

Thus, by Prop. 1.2, if A admits a convex representation then it is q-positive. However,
not every q-positive set admits a convex representation. A q-positive set having a convex
representation is called S-q-positive [9, Def. 6.2]. By Prop. 1.1, the class of S-q-positive
sets includes all maximally q-positive sets

Some of our main results will also require a Banach space structure. One says that
(B, ⌊·, ·⌋ ,‖.‖) is a symmetrically self-dual Banach (SSDB) space [10, Def. 21.1] if (B, ⌊·, ·⌋)
is a SSD space, (B, ‖·‖) is a Banach space, the dual B∗ is exactly {⌊·, b⌋ : b ∈ B} and
the isomorphism i : B −→ B∗ defined by i (b) := ⌊·, b⌋ is an isometry (in other terms,
〈·, b〉 = ⌊·, i−1 (b)⌋ and ‖b‖ = sup‖b′‖≤1 ⌊b

′, b⌋ for all b ∈ B). In this case, the quadratic

form q is continuous and satisfies |q (b)| ≤ 1
2
‖b‖2 for all b ∈ B (see Prop. 1.4 (c) below).

We will denote by 〈·, ·〉 the duality products between B and B∗ and between B∗ and the
bidual space B∗∗, and the norm in B∗ will be denoted by ‖·‖ as well.

The next proposition indicates that a SSDB space is reflexive as a Banach space.

Proposition 1.3. If (B, ⌊·, ·⌋ , ‖.‖) is a SSDB space then (B, ‖·‖) is reflexive.

Proof. Let b∗∗ ∈ B∗∗. For every b∗ ∈ B∗ we have

〈

i−1 (b∗∗ ◦ i) , b∗
〉

=
〈

i−1 (b∗) , b∗∗ ◦ i
〉

= 〈b∗, b∗∗〉 ;

therefore b∗∗ is noting but the evaluation functional at i−1 (b∗∗ ◦ i) .

We will use some standard concepts and notations from convex analysis and monotone
operator theory (see, e.g., the books [1, 10]). The superscript ∗ will denote the standard
Fenchel conjugate (with respect to the pairing 〈·, ·〉), the symbol ∂ will mean subdiffer-
ential, and δA will represent the indicator function of a set A ⊆ B (the function that is
identically 0 on A and +∞ on B \ A). We recall that the duality mapping J : B ⇉ B∗
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is J := ∂
(

1
2
‖·‖2

)

; equivalently,

J (b) =

{

b∗ ∈ B∗ :
1

2
‖b‖2 +

1

2
‖b∗‖2 = 〈b, b∗〉

}

(b ∈ B) .

For a proper convex function f : B −→ R∪{+∞} , we will consider its Fenchel conjugate
f@ : B −→ R∪{+∞} with respect to the pairing ⌊·, ·⌋ :

f@ (b) := sup {⌊c, b⌋ − f (c) : c ∈ B} (b ∈ B) .

Clearly, f@ = f ∗ ◦ i. We will also use the function θA : B −→ R∪{+∞} , associated to a
q-positive set A ⊆ B, defined in [9, Lemma 6.1 (a)] as the largest l.s.c. convex function
minorized by q that coincides with q on A.

The following proposition collects some basic results, which we will need.

Proposition 1.4. For any SSDB space (B, ⌊·, ·⌋ , ‖.‖), the following statements hold:

(a) [9, (2)] If f : B −→ R∪{+∞} is a l.s.c. proper convex function then f@@ = f.

(b) [10, (19.7)] For every q-positive set A ⊆ B, Φ@
A ≥ ΦA.

(c) [10, (21.1)] For all b ∈ B, |q (b)| ≤ 1
2
‖b‖2 .

(d) [9, Lemma 6.1 (b)] If A ⊆ B is q–positive then θA = Φ@
A.

As mentioned above, the theory of q-positive sets was introduced as a generalization of
the theory of monotone operators. This special case arises when the SSD space consists
of B = X × X∗, the product of a nonzero Banach space X with its dual X∗, and the
bilinear mapping ⌊·, ·⌋ : (X ×X∗)× (X ×X∗) −→ R defined by

⌊(x, x∗) , (y, y∗)⌋ = 〈x, y∗〉+ 〈y, x∗〉 .

The associated quadratic form q : X ×X∗ −→ R is then given by

q (x, x∗) = 〈x, x∗〉 .

It turns out that a nonempty set A ⊆ X ×X∗ is q-positive if and only if A = Graph (T )
for some monotone operator T : X ⇉ X∗ [10, Examples 19.6]; we use Graph (T ) to
denote the graph of T :

Graph (T ) := {(x, x∗) ∈ X ×X∗ : x∗ ∈ T (x)} .

In this case the Fitzpatrick function of A ⊆ X ×X∗ reduces to the standard Fitzpatrick
function of the operator whose graph is A, a very important tool in the study of mono-
tonicity by convex analytic methods, which was introduced in [4, Def. 3.1]. Maximally
q-positive sets are precisely the graphs of maximal monotone operators, and S-q-positive
sets are the graphs of representable operators in the sense of [6, p. 27]. If X is reflexive

and X × X∗ is normed by ‖(x, x∗)‖ :=
√

‖x‖2 + ‖x∗‖2 then (X ×X∗, ⌊·, ·⌋ , ‖.‖) is a

SSDB space [10, Example 21.2 (a)].

We will use the following theorem in the proof of our main result.
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Theorem 1.5 ([8, Thm. 10.6]). Let X be reflexive and T : X ⇉ X∗ be monotone.

Then

T is maximal monotone ⇐⇒ Graph(T ) + Graph (−J) = X ×X∗.

The next section contains the main results of this paper. We prove that the Fitzpatrick
function of a maximally q-positive set M is the smallest convex representation of A. As
a consequence of this result it follows that, in the case of SSDB spaces, for any convex
representation f of A the function f ∗ ◦ i provides a convex representation of A as well.
We also give a new proof, based on Thm. 1.5, of a result due to S. Simons [9, Thm. 4.3
(b)], which characterizes maximally q-positive sets in SSDB spaces as those sets that
admit a convex representation f such that f@ is a convex representation, too.

2. Main results

According to [2, (35) and Cor. 4.1], given a maximal monotone operator T from a
Banach space X into its dual X∗, the largest l.s.c. convex function minorized by the
duality product 〈·, ·〉 on X × X∗ that coincides with 〈·, ·〉 on Graph (T ) is the l.s.c.
convex envelope of 〈·, ·〉+ δGraph(T ). Our first result extends this result to the context of
SSDB spaces.

Proposition 2.1. Let M be a maximally q-positive set in a SSDB space B. Then θM is

the l.s.c. convex envelope of q + δM .

Proof. Let us denote by co (q + δM) the l.s.c. convex envelope of q+δM . Since, according
to Prop. 1.1, ΦM is a convex representation of M, we have q ≤ ΦM ≤ q + δM ; hence, as
ΦM is convex and l.s.c.,

q ≤ ΦM ≤ co (q + δM) ≤ q + δM . (4)

If x ∈ B satisfies co (q + δM) (x) = q (x) then, by (4), ΦM (x) = q (x) , which, as ΦM rep-
resents M, implies that x ∈ M. Conversely, if x ∈ M then q (x) = q (x) + δM (x) , which,
in view of (4), yields co (q + δM) (x) = q (x) . We have thus proved that co (q + δM) ≥ q

and that (3) holds with f = co (q + δM) ; therefore co (q + δM) represents M. On the
other hand, as θM coincides with q on M, one has θM ≤ q + δM , so that the inequality
θM ≤ co (q + δM) is an immediate consequence of the fact that θM is convex and l.s.c..
Since θM is the largest l.s.c. convex function minorized by q that coincides with q on M,

we must also have the opposite inequality θM ≥ co (q + δM) . This finishes the proof.

In the context of monotone operator theory it is well know that the Fitzpatrick function
of a maximal monotone operator is its smallest convex representation [4, Thm. 3.10].
The next theorem has as an immediate corollary an extension of this result to the more
general setting of maximally q-positive sets. Its direct proof is simpler, and of a different
nature, than those provided in [4] and [2] for the particular case of maximal monotone
operators.

Theorem 2.2. Let A be a q-positive set in a SSD space B and f be a convex function

such that f ≥ q and f = q on A. Then ΦA ≤ f.
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Proof. Let x ∈ B, y ∈ A and λ ∈ [0, 1) . Then

(1− λ)2 q (x) + λ (1− λ) ⌊x, y⌋+ λ2q (y) = q ((1− λ)x+ λy)

≤ f ((1− λ)x+ λy)

≤ (1− λ) f (x) + λf (y)

= (1− λ) f (x) + λq (y) ;

on subtracting λq (y) we obtain

(1− λ)2 q (x) + λ (1− λ) ⌊x, y⌋ − λ (1− λ) q (y) ≤ (1− λ) f (x) ,

and after dividing both sides of this inequality by 1− λ we get

(1− λ) q (x) + λ ⌊x, y⌋ − λq (y) ≤ f (x) .

Setting λ −→ 1−, we deduce that

⌊x, y⌋ − q (y) ≤ f (x) ,

which, by taking the supremum over y ∈ A in the left hand side, yields

ΦA (x) ≤ f (x) .

Since, by Prop. 1.1, every maximally q-positive set is represented by its Fitzpatrick
function, from the preceding theorem one obtains the announced generalization of [4,
Thm. 3.10]:

Corollary 2.3. Let M be a maximally q-positive set in a SSD space B. Then ΦM is the

smallest convex representation of M.

Following [2, Corollaries 4.1 and 4.2], given a maximal monotone operator T on X, a l.s.c.
convex function h : X ×X∗ −→ R∪{+∞} represents T if and only if it lies between the
Fitzpatrick function of T and the largest l.s.c. convex function minorized by the duality
product 〈·, ·〉 on X × X∗ that coincides with 〈·, ·〉 on Graph (T ) . An easy consequence
of Cor. 2.3 is the following extension of this result to the SSDB framework.

Corollary 2.4. Let M be a maximally q-positive set in a SSDB space B, and let f :
B −→ R∪{+∞} be convex and l.s.c.. Then f represents M if and only if

ΦM ≤ f ≤ θM . (5)

Proof. The only if statement follows immediately from Cor. 2.3 and the definition of
θM . Conversely, since ΦM ≥ q, from (5) we deduce that f ≥ q and that every x ∈
pos f satisfies ΦM (x) = q (x) , which implies x ∈ M ; on the other hand, for every x ∈ M

one has θM (x) = q (x) , hence by (5) and ΦM ≥ q we obtain f (x) = q (x) , that is,
x ∈ pos f. This shows that pos f = M ; therefore f is a convex representation of M.

Our next result generalizes [6, (9)].



896 J. E. Mart́ınez-Legaz / On Maximally q-Positive Sets

Proposition 2.5. Let M be a maximally q-positive set in a SSDB space B. Then

θ@M = ΦM .

Proof. For every x ∈ B, by Prop. 2.1 we have

θ@M (x) = (θ∗M ◦ i) (x) = θ∗M (i (x)) = (q + δM)∗ (i (x)) = ((q + δM)∗ ◦ i) (x)

= (q + δM)@ (x) = sup
y∈B

{⌊y, x⌋ − q (y)− δM (y)}

= sup
y∈M

{⌊y, x⌋ − q (y)} = ΦM (x) .

In the context of monotone operator theory, it is well known that the transpose f ∗T

(defined by f ∗T (x, x∗) = f ∗ (x∗, x)) of the conjugate f ∗ of a convex representation f of a
maximal monotone operator also represents it [2, Thm. 5.3]. This result extends to the
context of q-positive sets, as shown next.

Theorem 2.6. Let M be a maximally q-positive set in a SSDB space B and f : B −→
R∪{+∞} be a l.s.c. proper convex function. Then f is a convex representation of M if

and only if f@ is a convex representation of M.

Proof. Assume first that f is a convex representation of M. By Cor. 2.4, ΦM ≤ f ≤ θM .

Using Prop. 2.5, Cor. 2.4 and Prop. 1.4 (d) we get

ΦM = θ@M ≤ f@ ≤ Φ@
M = θM .

Hence, in view of Cor. 2.4, f@ is a convex representation of M. The converse statement
follows on combining the direct statement with Prop. 1.4 (a).

The next theorem recalls a characterization, due to S. Simons [9, Thm. 4.3 (b)], of
maximally q-positive sets in SSDB spaces. Implication 3) =⇒ 1) was proved in [9, p.
305] using Fenchel-Rockafellar duality theorem; in contrast, the direct proof we give here
is based on Thm. 1.5, which is actually a special case of anolther result [10, Thm. 21.7]
whose proof is based on Fenchel-Rockafellar duality theorem, too. Our proof also uses
the maximal monotonicity of subdifferential operators, which, in the case of reflexive
spaces, can also be easily derived from Fenchel-Rockafellar duality theorem (see [5, p.
347] and [10, Remark 18.9]).

Theorem 2.7 (see [9, Thm. 4.3 (b)]). For every set A in a SSDB space B, the fol-

lowing statements are equivalent:

1) A is maximally q-positive.

2) A is S-q-positive, and every convex representation f of A satisfies f@ ≥ q.

3) There exists a l.s.c. convex representation f of A such that f@ ≥ q.

Proof. 1 ) =⇒ 2 ). Since every maximally q-positive set is represented by its Fitzpatrick
function (Prop. 1.1), A is S-q-positive. The second part of assertion 2 ) follows from
Thm. 2.6.
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2 ) =⇒ 3 ). This implication is obvious, given that the set of l.s.c. convex representations
of A is nonempty as A is S-q-positive.

3 ) =⇒ 1 ). Let x0 ∈ B be such that q (x0 − a) ≥ 0 for every a ∈ A. We must show
that x0 ∈ A. Since, by Prop. 1.3, B is reflexive, and subdifferentials of l.s.c. proper
convex functions are maximal monotone [7, Thm. A], in view of Thm. 1.5 we have
(x0, i (x0)) ∈ Graph (∂f) + Graph (−J) . Thus there exist x ∈ B and x∗ ∈ −J (x) such
that i (x0)− x∗ ∈ ∂f (x0 − x) . We have

0 ≤ f (x0 − x)− q (x0 − x)

= 〈x0 − x, i (x0)− x∗〉 − f ∗ (i (x0)− x∗)− q (x0 − x)

= 〈x0 − x, i (x0)− x∗〉 − f@
(

x0 − i−1 (x∗)
)

− q (x0 − x)

≤ 〈x0 − x, i (x0)− x∗〉 − q
(

x0 − i−1 (x∗)
)

− q (x0 − x)

= 〈x, x∗〉 − q
(

i−1 (x∗)
)

− q (x) ≤ 〈x, x∗〉+
1

2

∥

∥i−1 (x∗)
∥

∥

2
+

1

2
‖x‖2

= −〈x,−x∗〉+
1

2
‖−x∗‖2 +

1

2
‖x‖2 = 0;

tle last inequality follows from Prop. 1.4 (d), whereas the last two equalities use the fact
that i is an isometry and the definition of J. We thus deduce that f (x0 − x) = q (x0 − x)
and, since −q (i−1 (x∗)) ≤ 1

2
‖i−1 (x∗)‖

2
and −q (x) ≤ 1

2
‖x‖2 , also −q (x) = 1

2
‖x‖2 . This

first equality means that x0 − x ∈ A; hence q (x) = q (x0 − (x0 − x)) ≥ 0, which, as
−q (x) = 1

2
‖x‖2, yields x = 0. Therefore x0 ∈ A.

It is worth noticing that implication 3 ) =⇒ 1 ) holds true even without the lower semi-
continuity assumption. In fact, if A has a convex representation f then it also has a
l.s.c. convex representation, namely, the l.s.c. hull of f. This is an easy consequence of
Cor. 2.4 and the fact that the Fitzpatrick function is l.s.c..

In the special situation when q-positivity corresponds to monotonicity (see Section 1),
Thm. 2.7 yields the following result of R. S. Burachik and B.-F. Svaiter.

Corollary 2.8 (see [3, Thm. 3.1]). Suppose that X is a reflexive Banach space. For

every operator A : X ⇉ X∗, the following statements are equivalent:

1) A is maximal monotone.

2) A is representable, and every convex representation f of A satisfies

f ∗ (x∗, x) ≥ 〈x, x∗〉 ∀ (x, x∗) ∈ X ×X∗. (6)

3) There exists a convex representation f of A such that (6) holds.
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