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In his recent book From Hahn-Banach to monotonicity (Springer, Berlin, 2008), S. Simons has intro-
duced the notion of SSD space to provide an abstract algebraic framework for the study of monotonicity.
Graphs of (maximal) monotone operators appear to be (maximally) g-positive sets in suitably defined
SSD spaces. The richer concept of SSDB space involves also a Banach space structure. In this paper
we prove that the analog of the Fitzpatrick function of a maximally g-positive subset M in a SSD space
(B, |, ]) is the smallest convex representation of M. As a consequence of this result it follows that, in
the case of a SSDB space, the conjugate with respect to the pairing |-,-| of any convex representation
of M provides a convex representation of M, too. We also give a new proof of a characterization of
maximally g-positive subsets of SSDB spaces in terms of such special representations.

1. Introduction and preliminaries

This work is in the setting of symmetrically self-dual spaces, a notion introduced recently
by S. Simons [10, Def. 19.1]. A symetrically self-dual (SSD) space is a pair (B, |-, -])
consisting of a nonzero real vector space B and a symmetric bilinear form |-,-| : B x
B — R which separates the points of B (that is, for every b € B\ {0} there exists
b" € B such that |b,b'] # 0). The bilinear form |-, -] induces the quadratic form on
B defined by ¢ (b) := 1 [b,b]. One says that a nonempty set A C B is g-positive [10,
Def. 19.5] if b,c € A = q(b—c¢) > 0. A set M C B is called maximally g-positive
[10, Def. 20.1] if it is g—positive and not properly contained in any other g—positive set.
The theory of g-positive sets was introduced in [9] as a generalization of the theory of
monotone operators. We next recall the fundamental notions and results of this theory,
as developed in [10] (see also [9] for more details).

Given an arbitrary nonempty set A C B, the function ®4 : B — RU {400} defined by
D4 (b) :=q(b) —infreaq (b —a) = supyes {|b,a] — ¢ (a)} will be called the Fitzpatrick
function of A. The latter expression shows that ®4 is a proper convex function. If M is
maximally g-positive then

Dy (b) >
s (D)

q(b) Vbe B, (1)
q(b) < be M. (2)

*This research has been partially supported by the Ministerio de Ciencia y Tecnologia, Project
MTM2008-06695-C03-03/MTM, the Barcelona GSE Research Network and the Generalitat de Cata-
lunya.

ISSN 0944-6532 / $ 2.50 (© Heldermann Verlag



892 J. E. Martinez-Legaz / On Maximally q-Positive Sets

For any proper convex function f : B — RU{+o0o} satisfying f > ¢, one defines the
set

pos f:={be B: f(b)=q(b)}. (3)

We will say that f : B — RU{+o0} is a convex representation of a nonempty set
ACBif f > qand pos f = A. By (1) and (2), one has:

Proposition 1.1 ([10, (20.2)]). If M C B is a maximally qg-positive set then ®y; is a
convex representation of M.

In view of the following proposition, which characterizes ¢g-positivity in terms of convex-
ity, pos f is g-positive provided that it is nonempty.

Proposition 1.2 (see [10, Lemma 19.8]). Let A C B be nonempty. Then A is q-
positive if and only if there exists a convex function f: B — RU{+o0c0} such that f > q
and A C pos f.

Proof. If A is g-positive, using Zorn’s Lemma we deduce the existence of a maximally
g-positive set M that contains A. By Prop. 1.1, the conditions in the statement hold
with f = ®,;. The converse result is Lemma 19.8 in [10]. O

Thus, by Prop. 1.2, if A admits a convex representation then it is g-positive. However,
not every g-positive set admits a convex representation. A g-positive set having a convex
representation is called S-g-positive [9, Def. 6.2]. By Prop. 1.1, the class of S-g-positive
sets includes all maximally ¢-positive sets

Some of our main results will also require a Banach space structure. One says that
(B, |, -],]-]]) is a symmetrically self-dual Banach (SSDB) space [10, Def. 21.1] if (B, |-, -])
is a SSD space, (B, ||-||) is a Banach space, the dual B* is exactly {|-,b| : b € B} and
the isomorphism i : B — B* defined by i (b) := [-,b] is an isometry (in other terms,
(-,b) = [,37" (b)) and |[b]| = supyy <, [V, 0] for all b € B). In this case, the quadratic
form ¢ is continuous and satisfies |q (b)| < 1 |6]|* for all b € B (see Prop. 1.4 (c) below).
We will denote by (-, -) the duality products between B and B* and between B* and the
bidual space B**, and the norm in B* will be denoted by ||-|| as well.

The next proposition indicates that a SSDB space is reflexive as a Banach space.

Proposition 1.3. If (B, |-,-],|.]|) is a SSDB space then (B, ||-||) is reflexive.

Proof. Let 0™ € B**. For every b* € B* we have
<i71 (b* 01) ,b*> = <z’*1 (b*),b™ o z> = (b*,0™);
therefore b** is noting but the evaluation functional at i~ (b** 0 1). O

We will use some standard concepts and notations from convex analysis and monotone
operator theory (see, e.g., the books [1, 10]). The superscript * will denote the standard
Fenchel conjugate (with respect to the pairing (-,-)), the symbol 9 will mean subdiffer-
ential, and 04 will represent the indicator function of a set A C B (the function that is
identically 0 on A and 400 on B\ A). We recall that the duality mapping J : B = B*
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is J =0 (3 HH2) ; equivalently,
J(b) = {b* € B bl + L I = b*>} (be B).

For a proper convex function f : B — RU {400}, we will consider its Fenchel conjugate
f¢: B — RU{+o0} with respect to the pairing |-, -] :

) :=sup{lc,b] — f(c):c€e B} (b€ B).

Clearly, f© = f*oi. We will also use the function 64 : B — RU{+o0}, associated to a
g-positive set A C B, defined in [9, Lemma 6.1 (a)] as the largest L.s.c. convex function
minorized by ¢ that coincides with ¢ on A.

The following proposition collects some basic results, which we will need.
Proposition 1.4. For any SSDB space (B, |-, -], ||.||), the following statements hold:
(a) [9,(2)] If f: B— RU{+0o0} is a l.s.c. proper convex function then f¢¢ = f.
(b) [10, (19.7)] For every q-positive set A C B, ®§ > ®4.

(¢c) [10, (21.1)] For allb € B, |q(b)] < L ||b]*.
(d) 9,

2|
9, Lemma 6.1 (b)] If A C B is q—positive then 0,4 = ®9.

As mentioned above, the theory of ¢-positive sets was introduced as a generalization of
the theory of monotone operators. This special case arises when the SSD space consists
of B = X x X*, the product of a nonzero Banach space X with its dual X*, and the
bilinear mapping |-, -] : (X x X*) x (X x X*) — R defined by

L@, 2%), (v, y") ) = (2,97) + (g, 27) -

The associated quadratic form ¢ : X x X* — R is then given by
q(z,z") = (z,x%).

It turns out that a nonempty set A C X x X* is g-positive if and only if A = Graph (T")
for some monotone operator 7' : X = X* [10, Examples 19.6]; we use Graph (T") to
denote the graph of T":

Graph (T) == {(z,2") e X x X" : 2" €T (2)}.

In this case the Fitzpatrick function of A C X x X* reduces to the standard Fitzpatrick
function of the operator whose graph is A, a very important tool in the study of mono-
tonicity by convex analytic methods, which was introduced in [4, Def. 3.1]. Maximally
g-positive sets are precisely the graphs of maximal monotone operators, and S-g-positive
sets are the graphs of representable operators in the sense of [6, p. 27]. If X is reflexive

and X x X* is normed by ||(z,z%)|| = \/||z||> + ||z*||> then (X x X*, [-,-],|.||]) is a
SSDB space [10, Example 21.2 (a)].

We will use the following theorem in the proof of our main result.
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Theorem 1.5 ([8, Thm. 10.6]). Let X be reflexive and T : X == X* be monotone.
Then

T is mazimal monotone <= Graph(T') + Graph (—J) = X x X™.

The next section contains the main results of this paper. We prove that the Fitzpatrick
function of a maximally ¢-positive set M is the smallest convex representation of A. As
a consequence of this result it follows that, in the case of SSDB spaces, for any convex
representation f of A the function f* o provides a convex representation of A as well.
We also give a new proof, based on Thm. 1.5, of a result due to S. Simons [9, Thm. 4.3
(b)], which characterizes maximally g-positive sets in SSDB spaces as those sets that
admit a convex representation f such that f© is a convex representation, too.

2. Main results

According to [2, (35) and Cor. 4.1], given a maximal monotone operator T from a
Banach space X into its dual X*, the largest l.s.c. convex function minorized by the
duality product (-,-) on X x X* that coincides with (-,-) on Graph (T") is the ls.c.
convex envelope of (-, -) + daraph(r)- Our first result extends this result to the context of
SSDB spaces.

Proposition 2.1. Let M be a mazimally q-positive set in a SSDB space B. Then 0y is
the l.s.c. convex envelope of q + dy.

Proof. Let us denote by @0 (¢ + dys) the Ls.c. convex envelope of g+d,;. Since, according
to Prop. 1.1, ®,, is a convex representation of M, we have ¢ < ®; < ¢ + dr; hence, as
®,/ is convex and l.s.c.,

q< &y <c(q+dm) <q+om. (4)

If z € B satisfies ¢o (¢ + 0ar) (x) = ¢ (x) then, by (4), ®as () = g (x), which, as &, rep-
resents M, implies that x € M. Conversely, if x € M then ¢ (z) = ¢ (z) + dp () , which,
in view of (4), yields @0 (¢ + dar) (x) = ¢ (x) . We have thus proved that ¢o (¢ + dyr) > ¢
and that (3) holds with f = @o(q + dp); therefore @ (g + dps) represents M. On the
other hand, as 6, coincides with ¢ on M, one has 0,; < g + d,, so that the inequality
Oy < ¢0(q+ dp) is an immediate consequence of the fact that 6y, is convex and l.s.c..
Since 6, is the largest 1.s.c. convex function minorized by ¢ that coincides with ¢ on M,
we must also have the opposite inequality 6y, > @0 (¢ + dps) . This finishes the proof. [

In the context of monotone operator theory it is well know that the Fitzpatrick function
of a maximal monotone operator is its smallest convex representation [4, Thm. 3.10].
The next theorem has as an immediate corollary an extension of this result to the more
general setting of maximally ¢-positive sets. Its direct proof is simpler, and of a different
nature, than those provided in [4] and [2] for the particular case of maximal monotone
operators.

Theorem 2.2. Let A be a q-positive set in a SSD space B and f be a convex function
such that f > q and f =q on A. Then &4 < f.
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Proof. Let x € B,y € Aand A € [0,1). Then

Q=N q@)+A1=N)|zyl+ V) = qa(1-Nz+Ay)
F((1=XN)z+ A\y)
(1= f(2)+Af(y)

(T=A) f(x) + A (v);

IA A

on subtracting A\g (y) we obtain

(1=A q(@) + A1 =A) [2,y] A1 =Na(y) < A=) f(2),

and after dividing both sides of this inequality by 1 — A we get

(=N gx)+ Az, y] = A (y) < f ().

Setting A — 17, we deduce that

Lz, y) —a(y) < f(2),
which, by taking the supremum over y € A in the left hand side, yields
Da(z) < fla).
O

Since, by Prop. 1.1, every maximally g-positive set is represented by its Fitzpatrick
function, from the preceding theorem one obtains the announced generalization of [4,
Thm. 3.10]:

Corollary 2.3. Let M be a maximally q-positive set in a SSD space B. Then ®y; is the
smallest convex representation of M.

Following [2, Corollaries 4.1 and 4.2], given a maximal monotone operator 7 on X, a L.s.c.
convex function h : X x X* — RU{+o0} represents T if and only if it lies between the
Fitzpatrick function of T and the largest l.s.c. convex function minorized by the duality
product (-,-) on X x X* that coincides with (-,-) on Graph (T"). An easy consequence
of Cor. 2.3 is the following extension of this result to the SSDB framework.

Corollary 2.4. Let M be a mazximally q-positive set in a SSDB space B, and let f :
B — RU {400} be convex and l.s.c.. Then f represents M if and only if

Oy < f <O (5)

Proof. The only if statement follows immediately from Cor. 2.3 and the definition of
0yr. Conversely, since ®); > ¢, from (5) we deduce that f > ¢ and that every x €
pos f satisfies @, (x) = ¢ (x), which implies € M; on the other hand, for every x € M
one has 0y () = ¢(x), hence by (5) and ®,; > ¢ we obtain f (z) = ¢(z), that is,
x € pos f. This shows that pos f = M; therefore f is a convex representation of M. [J

Our next result generalizes [6, (9)].
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Proposition 2.5. Let M be a mazimally g-positive set in a SSDB space B. Then
03, = Oy
Proof. For every x € B, by Prop. 2.1 we have

Oy () = (03,04) (2) =03 (i (2) = (¢+6um)" (i (x)) = ((q+ 6m)" 0 i) (2)
= (q+0m)° () = sup {ly.z] —q(y) — o (v)}

= ysgjg{ty,xj —q(y)} =Pum(z).

]

In the context of monotone operator theory, it is well known that the transpose f*7
(defined by f*T (z,2*) = f* (2*, 1)) of the conjugate f* of a convex representation f of a
maximal monotone operator also represents it [2, Thm. 5.3]. This result extends to the
context of g-positive sets, as shown next.

Theorem 2.6. Let M be a maximally q-positive set in a SSDB space B and f : B —
RU {400} be a Ls.c. proper convex function. Then f is a convex representation of M if
and only if f¢ is a convex representation of M.

Proof. Assume first that f is a convex representation of M. By Cor. 2.4, ®,; < f < 0),.
Using Prop. 2.5, Cor. 2.4 and Prop. 1.4 (d) we get

Dy =03 < fO<OF =0y

Hence, in view of Cor. 2.4, f© is a convex representation of M. The converse statement
follows on combining the direct statement with Prop. 1.4 (a). O

The next theorem recalls a characterization, due to S. Simons [9, Thm. 4.3 (b)], of
maximally g-positive sets in SSDB spaces. Implication 3) = 1) was proved in [9, p.
305] using Fenchel-Rockafellar duality theorem; in contrast, the direct proof we give here
is based on Thm. 1.5, which is actually a special case of anolther result [10, Thm. 21.7]
whose proof is based on Fenchel-Rockafellar duality theorem, too. Our proof also uses
the maximal monotonicity of subdifferential operators, which, in the case of reflexive

spaces, can also be easily derived from Fenchel-Rockafellar duality theorem (see [5, p.
347] and [10, Remark 18.9]).

Theorem 2.7 (see [9, Thm. 4.3 (b)]). For every set A in a SSDB space B, the fol-
lowing statements are equivalent:

1) A is maximally q-positive.
2) A is S-q-positive, and every convex representation f of A satisfies f€ > q.
3)  There exists a l.s.c. convex representation f of A such that f¢ > q.

Proof. 1) = 2). Since every maximally g-positive set is represented by its Fitzpatrick
function (Prop. 1.1), A is S-¢g-positive. The second part of assertion 2) follows from
Thm. 2.6.
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2) = 3). This implication is obvious, given that the set of l.s.c. convex representations
of A is nonempty as A is S-g-positive.

3) = 1). Let zy € B be such that q(xg —a) > 0 for every a € A. We must show
that xqg € A. Since, by Prop. 1.3, B is reflexive, and subdifferentials of l.s.c. proper
convex functions are maximal monotone [7, Thm. A], in view of Thm. 1.5 we have
(20,1 (z9)) € Graph (0f) + Graph (—.J). Thus there exist x € B and z* € —J (z) such
that i (zo) — 2* € Of (vo — x) . We have

0 < f(zo—7)—q(zo—1)
= (xo—x,i(xg) — ") — f* (i (xg) — %) — q(xo — )
= (mo— i () — ) — [ (w0 — i (z%)) — q (w0 — )

< (wo— i (z0) — %) — q (o — i7" (2%)) — ¢ (x0 — @)

X 1 . Ty, o2 1
= (o) (7 @) — @) < @)+ 5 [ @)+ el
1 1
= (=) 5=+ el = 0

tle last inequality follows from Prop. 1.4 (d), whereas the last two equalities use the fact
that 7 is an isometry and the definition of J. We thus deduce that f (zg — z) = ¢ (x¢ — x)
and, since —q (i7" (z*)) < 1! (z9)]|* and —q (z) < : |z||”, also —q (z) = 3 l|||*. This
first equality means that zop — 2 € A; hence g (z) = q(zo — (zo — x)) > 0, which, as
—q(z) =3 |z||?, yields # = 0. Therefore z € A. O
It is worth noticing that implication 3) = 1) holds true even without the lower semi-
continuity assumption. In fact, if A has a convex representation f then it also has a
l.s.c. convex representation, namely, the l.s.c. hull of f. This is an easy consequence of

Cor. 2.4 and the fact that the Fitzpatrick function is l.s.c..

In the special situation when g-positivity corresponds to monotonicity (see Section 1),
Thm. 2.7 yields the following result of R. S. Burachik and B.-F. Svaiter.

Corollary 2.8 (see [3, Thm. 3.1]). Suppose that X is a reflezive Banach space. For
every operator A : X == X*, the following statements are equivalent:

1) A is mazimal monotone.
2) A is representable, and every convex representation f of A satisfies

ffa*x) > (x,2%) ¥V (r,2") € X x X*. (6)

3)  There exists a convez representation f of A such that (6) holds.
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