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Let f be an analytic function with nonnegative coefficients. We derive the Legendre-Fenchel trans-
form of the composition Inof o exp as a function depending on coefficients of f. We apply it to
obtain the variational principle for the spectral exponent of operators that can be written as analytic
functions of the weighted composition operators.
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1. Introduction

In operator algebras functions of operators are considered. It is interesting to re-
late properties of a given operator and functions of it. One of the most important
characteristics of bounded operator is the spectral radius, one that for many classes
of operator may be a question of independent interest. It turns out that the loga-
rithm of the spectral radius (the spectral exponent) of weighted composition opera-
tors convexly depends on the logarithms of their weights (see [3]). We investigate the
Legendre-Fenchel transform of the spectral exponent of analytic functions of weighted
composition operators acting in LP-spaces.

We recall a general result obtained for the spectral radius of weighted composition
operators. Let X be a Hausdorff compact space with Borel measure y, o : X — X a
continuous mapping preserving p (i.e. poa™' = u) and a be a continuous function on
X. Antonevich, Bakhtin and Lebedev constructed a functional 7, called T-entropy,
on the set of probability and a-invariant measures M such that for the spectral radius
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of the weighted composition operator (a7 )u(z) = a(z)u(a(z)) acting in LP-spaces
the following variational principle holds

Inr(aT,) = max {/Xln|aldy _ TQTEV)} | (1)

veM}

The above result was announced in [1, 2] and its proof is inserted in [3]. Therein one
can find more detailed history of the spectral radius of weighted composition operator
investigations.

For positive a € C(X) let ¢ = Ina then a functional \(p) = Inr(e¥T,) possesses
several properties among others continuity and convexity on C'(X) (see [3]). The
formula (1) states that A is the Legendre-Fenchel transform of the function %‘, ie.

Ae) = max { [ =309 | @)

where

Ta (V) 1
M) = = veM o
—+00, otherwise.

It means that the effective domain D(\*) is contained in M_}.

In this paper we will study the variational principle for operators that can be written
as analytic functions of the weighted composition operators > > a,(e?T,)". We
derive a relationship between the convex conjugate of Inr (>~ a,(e?T,)") and T-
entropy. This result is the generalization of the variational principle, obtained by
authors in [7], for the spectral exponent of polynomials of weighted composition
operators.

2. Spectral exponent of analytic functions of weighted composition op-
erators

In the paper [8] we proved that for the polynomials w with nonnegative coefficients
the spectral radius of w(e?T,) is equal to polynomials of the spectral radius of e?T,,
ie. r(w(e?Ty,)) = w(r(e?T,)) (see therein Remark 2.7). Generalization of this fact
on analytic functions with nonnegative coefficients will be a beginning point of our
considerations.

Let f(z) = > 7 ,a,z" be an analytic function with nonnegative coefficients a,, for
which the radius of convergence is greater than r(e*T,,). For this reason the operator

f(e?Ty) =07 yan(e?T,)"™ is a well defined bounded operator.

Theorem 2.1. For any analytic function f(z) =Y~ a,z" with nonnegative coef-
ficients a,, which radius of convergence is greater than r(e¥T,) the following equality

holds
f(r(e?Ty)) = r(f(e”Ty)).



U. Ostaszewska, K. Zajkowski / Legendre-Fenchel Transform of the Spectral ... 369

Proof. By the relation r(w(e*T,)) = w(r(e?T,)) that is satisfied for any polynomial
w with nonnegative coefficients we have

ian (eT,) (ZaneT )

n=

Tending with N to infinity we obtain the following equality

D an(r(e?T)" = f(r(e?Ty)) = dim 7 (Z an(em)n> .

n=0

Upper semicontinuity of the spectral radius on the algebra of linear and bounded
operators implies the following inequality

fr(efTy)) < r (NEIEmZan(e@TQ)">

n=0

—r (Z an<e@Ta>"> = r(f(e*T)). (3)

n=0

Let now Ry denote the sum ZZO:NH a,(e?T,)™. Notice that for any n each a,(e?T,)"
commutes with Ry. For this reason

N
r(f(e?Ty,)) =r ( an(e?Ty)" + RN>

n=

IN

Z anr(e?T,)" +r(RN). (4)

n=0

Continuity of the spectral radius at zero implies that limy_. 7(Ry) = 0 and in
consequence we obtain as well the opposite inequality

r(f(e¥Ta)) < f(r(eT5)).
O

By Theorem 2.1 the spectral exponent of the operator f(e?T,) we can rewrite in the
following way

Inr(f(e*T,)) = In f(r(e*Ty))

= mZan r(e?Ty) anan

Let f(z) = > . ,anz" be given analytic function with nonnegative coefficients a,,
and the convergence radius R € (0, +oc]. Additionally we assume that f(R) = +oc.
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Let D denote the set {¢ € C(X) : r(e?T,) < R}. Because the spectral exponent A is
convex and continuous on C'(X) then r(e¥T,) = e*¥) is also convex and continuous
on this space. For these reasons D is an open and convex subset of C'(X). Let us
emphasize that for ¢ belonging to the boundary of D the spectral radius r(e?T,) = R
and f(r(e¥Ty,)) = +oo.

Define the functional X on C(X) as follows

(5)

~ InY>>  a,e™®), peD
~+00, otherwise.

Before we proceed to the variational principle for A=Ino foexpo first we derive the
formula on the Legendre-Fenchel transform of the function Inof oexp of real variable
A. Convexity of Inof o exp is proved below.

Lemma 2.2. Let f(z) = Y .7 a,2" be given analytic function with nonnegative
coefficients a,, and the convergence radius R € (0,400]|. Then the composition Inof o
exp is strictly convez function on (—oo,In R).

Proof. Let A\, \y € (—oo,InR) and s € (0,1) then

[Inof oexpl(sA; + (1 —s)A\y) = IHZ a,, e (SP1+(1=92)

n=0

= lnz [ane")‘l]s [anen/\z]l_s. (6)
n=0

Applying to the series Y o (a,e"?V))%(a,,e" ¥2))1=s Hilder inequality for exponents
pz%andq: ﬁ we get that

(e.) o e.)
lnz [ane")‘l}s [anen/\z]l_s < slnz ane™ + (1 — s) lnz ane™2.
n=0 n=0 n=0

In the above the equality holds when A\; = \;. It means that the function Inof oexp
is strictly convex on (—oo,In R). O

To obtain the Legendre-Fenchel transform of Inof o exp we will need also a formula
on the logarithm of series.

Proposition 2.3. For the sequence b = (b,)5>, such that b, >0 and Y, b, < 0o
the following holds

00 N
In Z b, = max limsup Z to(Inb, —Int,).
n=0

tn >0, Z th=1 N_ooo
n=0

This mazximum is attained for t, = Zog" -
n=0""
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Proof. Concavity of the logarithm function implies

N N
In (Z pnxn> > palna,
n=0 n=0

for any sequence (p,)_, of probability weights and x,, > 0. Substituting p,, =

Y neo tn

bn

and z,, = 7 in the above inequality we obtain the following

N

1an —1nZt Z ln—
n=0 n

0

and, equivalently,

N N N N
<lnz by, — antn> D tn = (talnb, —t,Int,).
n=0 n=0 n=0

n=0

Observe that under assumption that > ° ¢, = 1 the limit of the left-hand side, by
N tending to +oo, exists and is equal to In) >, b,. For this reason we get that

anb >hmsup2t Inb, —t,Int,).

n—=0 N—oo

by

== in the above, the equality holds then the proof is complete.

]

Because for ¢,

Let S denote the set {(t,,)02y : t, >0, > t, = 1} and I be some subset of N.
Writing (tx)rer € S we understand that the sequence (t;)xes is equivalent to this one
(tn)sy € S in which ¢, = ¢, for n € I and t,, = 0 otherwise. Let now b = (b,)3%, be
a sequence of nonnegative numbers and I = {n € N: b, > 0}. Under the assumption
> ker bk < 00 we can rewrite Proposition 2.1 as follows

In b max limsu trInb, —teInty). 7
kz: ke (tk)ker€S N—oo P Z ( F b b k) ( )
eI kel, k<N

Remark 2.4. Taking I = {1,2,...,n} and substituting e” instead of by, for k € I,
we get the variational principle for the log-exponential function

ane k= ?;?e}é{;thk _;tklntk}a

see for instance Example 11.12 in [9].

The below theorem presents the formula on [Inof o exp]* as a function depending on
coefficients of f.
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Theorem 2.5. Let f(z) = >, ., axz” be an analytic function with a > 0 and | =
min I. Let R denote the convergent radius of f, if lim, q, g~ f(r) = +oo then the
Legendre-Fenchel transform of Inof exp is given by the following formula

min liminf telnte >,
. (tk)eSc N—oo kGI,ZkSN k Ak
(Inof oexpl(c) = { —1ng, c=1, (8)

400 c <,

where Se = {(ty)rer € S0 Y _pes Kt = ¢}

Proof. Substituting in (7) by = aze™ we obtain that for the function [lnof o
exp](A) =1In Y, are™ the following formula holds

t
[lnof oexpl( lnz are®™ = max limsup Z (k‘tk)\ —trIn —k> . (9

(tr)€S a
kel )€ N—oo T Ten k

By Proposition 2.3 the above maximum is attained for the sequence (‘}’ii;) )
kel

Notice that for such sequence the series

Z kty, = Z kape™ = [Inof o expl'(N),

kel ke[

i.e. it is convergent to the value of derivation of Inof o exp at A\. For this reason
we can search for the maximum in (9) over a subset of S defined by the restricted
condition ), ; kt, < oo. It follows that we can rewrite (9) in the form

[Inof oexp](\) = max {(Zktk)A—lﬁigf Z tkInZ—Z}. (10)

ZkEI ktp<oo

Observe now that ), -, kt; can take any value from the interval [/, +-00); the value [
is attained for ({x)rer = (d1%)rer- Let Sc denote the set {(tp)per € S 1 D 4oy Fli = ¢}
for ¢ € [I,4+00). Hence we can divide the maximum over the set {(ty)re; € S :
> ker Kt < +oo} on two maximums over the set S, and the interval [I, +o00)

1 A) = kt —1i f tpIn —
Inof oexpl(h) = max. tgggsm{(Z k> iminf ) #n }

kel kel, k<N
T Uk
= max ¢cA— min liminf tpln — (11)
c€[l,+00) (tg)E€Se, N—o0 kel hEN ag

It means that Inof o exp is the convex conjugate of the expression

min liminf tpIn —
t Se, N—oo a
(tk)€Se kel, k<N k
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as the function depending on ¢. So, immediate we obtain that

1 *(¢) < min liminf tiIn = 12
[nof oexp] (C)_(g)uegc imin el (12)
kel, k<N

since [Inof o exp]* is the largest convex and lower semicontinuous minorant of

t S. N—oo a
(tr)€se kel, k<N k

apelA

fler
exp|*(c). We have seen that the condition ), kt; = ¢, for this sequence, is equiva-
lent to

Now we show that this expression at the sequence < ) is equal to [Inof o
kel

[Inof oexpl’(N\) =c. (13)
Notice that
k kX
lim [Inof oexp)(\) = lim M =1,
A——00 A——oo Yoy agekt

where [ = min I. For R < 400 and \g < A < In R, by Mean Value Theorem, we have

lnof o expl(A) — [Inof o expl(A) = [lnof o expl/(E2)(A — Ao),

for some &, € (Ao, A). Since f(R) = +oo the above left-hand side tends to +oo by
A tending to In R. Tt follows that also [Inof o exp](§,) — +o00 by A — In R and, in
consequence,

lim [l '(\) = +oo.
\im [Inof oexpf(A) = +oo

Consider now the case R = +o0o. For any N € I let

N
fN(GA) = Z are = Z ane™,
kel k<N n=0

where a,, = a; if n € I and a,, = 0 otherwise. We show that
[lnofy oexpl’(A) < [Inof oexpl'(N), (14)
for any A € R; that is we show that

In(eNf(e?) < f(e*) fule?).

Using Cauchy product of series we get that for n > N the n-th coefficient of the
left-hand side equals Zfil 1a;a,_;+1 and corresponding one on the right-hand side
is greater and is equal SN (n — i 4+ 1)a;a,_i1. For this reason inequality (14) is
satisfied. Because the limit of the left-hand side of (14), by A — 400, is equal to N,
then, if [ is infinite subset of N, the right-hand side must tends to +o0o0 by A — —+o00.
Thus we obtained that the equation (13) possesses the unique solution for any ¢ > I.
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age

For the sequence ( f(ei;) , ¢ > 1 and X satisfying (13), the following expression
kel

.. k
lim inf tpIn —
kel, k<N

is equal to

Z LA fe = Alnof oexp](A) — [Inof oexp|(N)
= cA — [Inof oexp|(N)
and it gives the classical Legendre transform of the function Inof o exp at the point

c. It means that the minimum in (12) is attained and is equal to [Inof o exp|*(c).
For ¢ = [, by the definition of the Legendre-Fenchel transform, we get

lnofoexpl(l)=  sup {l)\ anake }

AE(—o0,ln R) kel
= — mf {ln E ape*= l)’\} = —Ina.
—o0,ln R)
kel

]

If I is a finite subset of N with [ = min [ and N = max [ then f is a polynomial of
degree N and the Legendre-Fenchel transform of Inof o exp takes the form

1 ‘(&)= min 3 tplnE
[lnof o exp]*(c) (tglegcg el

for ¢ € [I, N] and +oo otherwise.

The convex conjugate of N is presented below.

Theorem 2.6. For the functional X, defined by (5), the following variational prin-
ciple holds

)\(QO) = sup {< m,yo > _’X*(m)}a
meM},
where Ml = {m € C(X)*:m € M, and m(X) € [I,+0)},
~y 1 m ) .. ty,
A*(m) = —m(X)T, (—) + min liminf tkln— for m(X)#0
ay

tr)ES, N—o00
(tk) ESm(x) kel k<N

and Spmxy = {(te)rer € S 1 Doy bty < 400 and m(X) = >, . ki) if m(X) =0
then A*(0) = —Inay.
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Proof. Because A is convex and continuous on C(X) then by Lemma 2.2 the func-

tional X, as the composition Inof oexp o), is also convex and continuous on C'(X) in
the extended system of real numbers. By virtue of Theorem 2.5 we have

N o 23
AMp) = max ¢ cA(e)— min liminf tpln— 5. 15
(©) c€[l,4o0] { (©) (tk)€Se, N—oo kel hEN * ak} (15)
Substituting (2) into (15) we obtain that
- 1 o tk
A(p) = max 4 cmax odv — —7(v) p — min liminf trIn —
c€[l,+o0] veM} X p (tk)€Se, N—o0 ag
kel, k<N
(16)
c o 12
= max max {/ ed[ev] — —7(v) — min liminf ty ln—} :
cell,+oojveMt | Jx p (te)€Se, N=oo ) T e N Ak

If m denote the measure cv then ¢ = m(X) and v = % Let M! denote the set

of a-invariant measures m such that m(X) > [. Now we can change the above two
maximums on one over the set M!

~ m(X) ( m ) . o bk
M) = max dm — Ta — min liminf tpIln— 3. (17
(%) meM, {/X v D m(X) (te)€Sm(x) N—00 F ay (17)

kel, k<N

Notice now that

t
min  liminf tIn =% = [Inof o exp]*(m(X))
() €5mex) N0 el N O

is lower semicontinuous and convex on M!. Moreover by convexity of 7,, for s € [0, 1],
we get

I

< s (X)Ta (Dl(X)) + (1 = 8)m(X)7a <pj§()) '

. . . . X .
Because 7, is lower semicontinuous on M then the functional %Ta (m—X)> is lower

semicontinuous on M!. Thus for m € M,

~ 1 t
At (m) = —m(X)7, <L) + min liminf trIn =
p m(X) (tk)ESm(x) N—o0 kel hEN ay
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In this case the effective domain D(\*) is contained in the set M! of all nonnegative,
a-invariant measures m such that m(X) > [.

To calculate the value of \* at m = 0 we use the Legendre-Fenchel transform, i.e.

X(0) = sup {0—Inr(f(e?Tu))}.
p€eC(X)

Notice that m(X) may be 0 when [ = 0 that is when 0 € I (ap > 0). By virtue of
Theorem 2.1 we obtain

Because the spectral radius r(e¥T,)) can be arbitrary small positive number then
the expression » ; ;5 ap(r(e?T,))* may take also arbitrary small value. Thus we
obtain that B

A*(0) = — In ay.

]

If I is a finite subset of N and N = max 7, that is f is a polynomial of degree N,
then the Legendre-Fenchel transform of A takes the form

~ 1 m tk
A'(m)=-m(X)7o | —— | + min tiIn —,
(m) D (X) (m(X)) (tk)€5m<X>kz€; T an

for a-invariant measure m such that m(X) € [I, N] (see [7, Th. 3.3]).

When the evident form of analytic function f is known then we can sometimes present
the convex conjugate of the spectral exponent of f(e¥T,) as a function depending on
7, and the form of [Inof o exp|*.

Example 2.7. Take the function f(z) = e*. Notice that In f(e*) = e and e}¥) =
r(e?T,). In this case we obtain the variational principle for the spectral radius of
e?T, as it is. Recall that

clnc—c, ¢>0
exp*(c) =10, c=0
400, c<0.

By the above

r(e?Ty) = max { /X pdm — m;X ) (m}“XQ — m(X)Inm(X) — m(X)};

meMg,

in other words

oA*(m :m(X>7'
expoAl"(m) = 07, (

for m € M,; [expoA]*(0) = —In1 = 0.
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Remark 2.8. For finite set I, for instance I = {1,2,...,n}, the functional \ s
the composition of the log-exponential function g(x) = In)",_, e”™ with functionals

zr(A) = ¢+ kA, where ¢ = Inay. It is possible to derive 2 applying the general rules
of convex conjugate calculus obtained in [4, 5] to the composition with the function
g (see [6, Cor. 4 of Th. 2]). Let us stress that these rules do not range considered by
us the case of infinite number of variables x}.
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