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Let f be an analytic function with nonnegative coefficients. We derive the Legendre-Fenchel trans-
form of the composition ln ◦f ◦ exp as a function depending on coefficients of f . We apply it to
obtain the variational principle for the spectral exponent of operators that can be written as analytic
functions of the weighted composition operators.
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1. Introduction

In operator algebras functions of operators are considered. It is interesting to re-
late properties of a given operator and functions of it. One of the most important
characteristics of bounded operator is the spectral radius, one that for many classes
of operator may be a question of independent interest. It turns out that the loga-
rithm of the spectral radius (the spectral exponent) of weighted composition opera-
tors convexly depends on the logarithms of their weights (see [3]). We investigate the
Legendre-Fenchel transform of the spectral exponent of analytic functions of weighted
composition operators acting in Lp-spaces.

We recall a general result obtained for the spectral radius of weighted composition
operators. Let X be a Hausdorff compact space with Borel measure µ, α : X 7→ X a
continuous mapping preserving µ (i.e. µ◦α−1 = µ) and a be a continuous function on
X. Antonevich, Bakhtin and Lebedev constructed a functional τα, called T -entropy,
on the set of probability and α-invariant measuresM1

α such that for the spectral radius
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of the weighted composition operator (aTα)u(x) = a(x)u(α(x)) acting in Lp-spaces
the following variational principle holds

ln r(aTα) = max
ν∈M1

α

{∫

X

ln |a|dν −
τα(ν)

p

}
. (1)

The above result was announced in [1, 2] and its proof is inserted in [3]. Therein one
can find more detailed history of the spectral radius of weighted composition operator
investigations.

For positive a ∈ C(X) let ϕ = ln a then a functional λ(ϕ) = ln r(eϕTα) possesses
several properties among others continuity and convexity on C(X) (see [3]). The
formula (1) states that λ is the Legendre-Fenchel transform of the function τα

p
, i.e.

λ(ϕ) = max
ν∈M1

α

{∫

X

ϕdν − λ∗(ν)

}
, (2)

where

λ∗(ν) =

{
τα(ν)

p
, ν ∈ M1

α

+∞, otherwise.

It means that the effective domain D(λ∗) is contained in M1
α.

In this paper we will study the variational principle for operators that can be written
as analytic functions of the weighted composition operators

∑∞
n=0 an(e

ϕTα)
n. We

derive a relationship between the convex conjugate of ln r(
∑∞

n=0 an(e
ϕTα)

n) and T -
entropy. This result is the generalization of the variational principle, obtained by
authors in [7], for the spectral exponent of polynomials of weighted composition
operators.

2. Spectral exponent of analytic functions of weighted composition op-

erators

In the paper [8] we proved that for the polynomials w with nonnegative coefficients
the spectral radius of w(eϕTα) is equal to polynomials of the spectral radius of eϕTα,
i.e. r(w(eϕTα)) = w(r(eϕTα)) (see therein Remark 2.7). Generalization of this fact
on analytic functions with nonnegative coefficients will be a beginning point of our
considerations.

Let f(z) =
∑∞

n=0 anz
n be an analytic function with nonnegative coefficients an for

which the radius of convergence is greater than r(eϕTα). For this reason the operator
f(eϕTα) =

∑∞
n=0 an(e

ϕTα)
n is a well defined bounded operator.

Theorem 2.1. For any analytic function f(z) =
∑∞

n=0 anz
n with nonnegative coef-

ficients an which radius of convergence is greater than r(eϕTα) the following equality

holds

f(r(eϕTα)) = r(f(eϕTα)).
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Proof. By the relation r(w(eϕTα)) = w(r(eϕTα)) that is satisfied for any polynomial
w with nonnegative coefficients we have

N∑

n=0

an(r(e
ϕTα))

n = r

(
N∑

n=0

an(e
ϕTα)

n

)
.

Tending with N to infinity we obtain the following equality

∞∑

n=0

an(r(e
ϕTα))

n = f(r(eϕTα)) = lim
N→∞

r

(
N∑

n=0

an(e
ϕTα)

n

)
.

Upper semicontinuity of the spectral radius on the algebra of linear and bounded
operators implies the following inequality

f(r(eϕTα)) ≤ r

(
lim

N→+∞

N∑

n=0

an(e
ϕTα)

n

)

= r

(
∞∑

n=0

an(e
ϕTα)

n

)
= r(f(eϕTα)). (3)

Let now RN denote the sum
∑∞

n=N+1 an(e
ϕTα)

n. Notice that for any n each an(e
ϕTα)

n

commutes with RN . For this reason

r(f(eϕTα)) = r

(
N∑

n=0

an(e
ϕTα)

n +RN

)

≤
N∑

n=0

anr(e
ϕTα)

n + r(RN). (4)

Continuity of the spectral radius at zero implies that limN→∞ r(RN) = 0 and in
consequence we obtain as well the opposite inequality

r(f(eϕTα)) ≤ f(r(eϕTα)).

By Theorem 2.1 the spectral exponent of the operator f(eϕTα) we can rewrite in the
following way

ln r(f(eϕTα)) = ln f(r(eϕTα))

= ln
∞∑

n=0

an(r(e
ϕTα))

n = ln
∞∑

n=0

ane
nλ(ϕ).

Let f(z) =
∑∞

n=0 anz
n be given analytic function with nonnegative coefficients an

and the convergence radius R ∈ (0,+∞]. Additionally we assume that f(R) = +∞.
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Let D denote the set {ϕ ∈ C(X) : r(eϕTα) < R}. Because the spectral exponent λ is
convex and continuous on C(X) then r(eϕTα) = eλ(ϕ) is also convex and continuous
on this space. For these reasons D is an open and convex subset of C(X). Let us
emphasize that for ϕ belonging to the boundary of D the spectral radius r(eϕTα) = R

and f(r(eϕTα)) = +∞.

Define the functional λ̃ on C(X) as follows

λ̃(ϕ) =

{
ln
∑∞

n=0 ane
nλ(ϕ), ϕ ∈ D

+∞, otherwise.
(5)

Before we proceed to the variational principle for λ̃ = ln ◦f ◦exp ◦λ first we derive the
formula on the Legendre-Fenchel transform of the function ln ◦f ◦ exp of real variable
λ. Convexity of ln ◦f ◦ exp is proved below.

Lemma 2.2. Let f(z) =
∑∞

n=0 anz
n be given analytic function with nonnegative

coefficients an and the convergence radius R ∈ (0,+∞]. Then the composition ln ◦f ◦
exp is strictly convex function on (−∞, lnR).

Proof. Let λ1, λ2 ∈ (−∞, lnR) and s ∈ (0, 1) then

[ln ◦f ◦ exp](sλ1 + (1− s)λ2) = ln
∞∑

n=0

ane
n(sλ1+(1−s)λ2)

= ln
∞∑

n=0

[
ane

nλ1
]s [

ane
nλ2
]1−s

. (6)

Applying to the series
∑∞

n=0(ane
nλ(ϕ1))s(ane

nλ(ϕ2))1−s Hölder inequality for exponents
p = 1

s
and q = 1

1−s
we get that

ln
∞∑

n=0

[
ane

nλ1
]s [

ane
nλ2
]1−s

≤ s ln
∞∑

n=0

ane
nλ1 + (1− s) ln

∞∑

n=0

ane
nλ2 .

In the above the equality holds when λ1 = λ2. It means that the function ln ◦f ◦ exp
is strictly convex on (−∞, lnR).

To obtain the Legendre-Fenchel transform of ln ◦f ◦ exp we will need also a formula
on the logarithm of series.

Proposition 2.3. For the sequence b = (bn)
∞
n=0 such that bn > 0 and

∑∞
n=0 bn < ∞

the following holds

ln
∞∑

n=0

bn = max
tn≥0,

∑
tn=1

lim sup
N→∞

N∑

n=0

tn(ln bn − ln tn).

This maximum is attained for tn = bn∑
∞

n=0 bn
.
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Proof. Concavity of the logarithm function implies

ln

(
N∑

n=0

pnxn

)
≥

N∑

n=0

pn lnxn,

for any sequence (pn)
N
n=0 of probability weights and xn > 0. Substituting pn = tn∑

N

n=0 tn

and xn = bn
tn

in the above inequality we obtain the following

ln
N∑

n=0

bn − ln
N∑

n=0

tn ≥
N∑

n=0

tn∑N

n=0 tn
ln

bn

tn

and, equivalently,

(
ln

N∑

n=0

bn − ln
N∑

n=0

tn

)
N∑

n=0

tn ≥
N∑

n=0

(tn ln bn − tn ln tn).

Observe that under assumption that
∑∞

n=0 tn = 1 the limit of the left-hand side, by
N tending to +∞, exists and is equal to ln

∑∞
n=0 bn. For this reason we get that

ln
∞∑

n=0

bn ≥ lim sup
N→∞

N∑

n=0

(tn ln bn − tn ln tn).

Because for tn = bn∑
∞

n=0 bn
, in the above, the equality holds then the proof is complete.

Let S denote the set {(tn)
∞
n=0 : tn ≥ 0,

∑∞
n=0 tn = 1} and I be some subset of N.

Writing (tk)k∈I ∈ S we understand that the sequence (tk)k∈I is equivalent to this one
(tn)

∞
n=0 ∈ S in which tn = tk for n ∈ I and tn = 0 otherwise. Let now b = (bn)

∞
n=0 be

a sequence of nonnegative numbers and I = {n ∈ N : bn > 0}. Under the assumption∑
k∈I bk < ∞ we can rewrite Proposition 2.1 as follows

ln
∑

k∈I

bk = max
(tk)k∈I∈S

lim sup
N→∞

∑

k∈I, k≤N

(tk ln bk − tk ln tk). (7)

Remark 2.4. Taking I = {1, 2, ..., n} and substituting exk instead of bk, for k ∈ I,
we get the variational principle for the log-exponential function

ln
n∑

k=1

exk = max
(tk)∈S

{
n∑

k=1

tkxk −
n∑

k=1

tk ln tk

}
,

see for instance Example 11.12 in [9].

The below theorem presents the formula on [ln ◦f ◦ exp]∗ as a function depending on
coefficients of f .
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Theorem 2.5. Let f(z) =
∑

k∈I akz
k be an analytic function with ak > 0 and l =

min I. Let R denote the convergent radius of f , if limr→(lnR)− f(r) = +∞ then the

Legendre-Fenchel transform of ln ◦f exp is given by the following formula

[ln ◦f ◦ exp]∗(c) =





min
(tk)∈Sc

lim inf
N→∞

∑
k∈I, k≤N

tk ln
tk
ak

c > l,

− ln al c = l,

+∞ c < l,

(8)

where Sc = {(tk)k∈I ∈ S :
∑

k∈I ktk = c}.

Proof. Substituting in (7) bk = ake
kλ we obtain that for the function [ln ◦f ◦

exp](λ) = ln
∑

k∈I ake
kλ the following formula holds

[ln ◦f ◦ exp](λ) = ln
∑

k∈I

ake
kλ = max

(tk)∈S
lim sup
N→∞

∑

k∈I, k≤N

(
ktkλ− tk ln

tk

ak

)
. (9)

By Proposition 2.3 the above maximum is attained for the sequence
(

ake
kλ

f(eλ)

)
k∈I

.

Notice that for such sequence the series

∑

k∈I

ktk =
1

f(eλ)

∑

k∈I

kake
kλ = [ln ◦f ◦ exp]′(λ),

i.e. it is convergent to the value of derivation of ln ◦f ◦ exp at λ. For this reason
we can search for the maximum in (9) over a subset of S defined by the restricted
condition

∑
k∈I ktk < ∞. It follows that we can rewrite (9) in the form

[ln ◦f ◦ exp](λ) = max
(tk)∈S∑

k∈I
ktk<∞

{(
∑

k∈I

ktk

)
λ− lim inf

N→∞

∑

k∈I, k≤N

tk ln
tk

ak

}
. (10)

Observe now that
∑

k∈I ktk can take any value from the interval [l,+∞); the value l
is attained for (tk)k∈I = (δl,k)k∈I . Let Sc denote the set {(tk)k∈I ∈ S :

∑
k∈I ktk = c}

for c ∈ [l,+∞). Hence we can divide the maximum over the set {(tk)k∈I ∈ S :∑
k∈I ktk < +∞} on two maximums over the set Sc and the interval [l,+∞)

[ln ◦f ◦ exp](λ) = max
c∈[l,+∞)

max
(tk)∈Sc,

{(
∑

k∈I

ktk

)
λ− lim inf

N→∞

∑

k∈I, k≤N

tk ln
tk

ak

}

= max
c∈[l,+∞)

{
cλ− min

(tk)∈Sc,
lim inf
N→∞

∑

k∈I, k≤N

tk ln
tk

ak

}
. (11)

It means that ln ◦f ◦ exp is the convex conjugate of the expression

min
(tk)∈Sc,

lim inf
N→∞

∑

k∈I, k≤N

tk ln
tk

ak
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as the function depending on c. So, immediate we obtain that

[ln ◦f ◦ exp]∗(c) ≤ min
(tk)∈Sc

lim inf
N→∞

∑

k∈I, k≤N

tk ln
tk

ak
, (12)

since [ln ◦f ◦ exp]∗ is the largest convex and lower semicontinuous minorant of

min
(tk)∈Sc

lim inf
N→∞

∑

k∈I, k≤N

tk ln
tk

ak
.

Now we show that this expression at the sequence
(

ake
kλ

f(eλ)

)
k∈I

is equal to [ln ◦f ◦

exp]∗(c). We have seen that the condition
∑

k∈I ktk = c, for this sequence, is equiva-
lent to

[ln ◦f ◦ exp]′(λ) = c. (13)

Notice that

lim
λ→−∞

[ln ◦f ◦ exp]′(λ) = lim
λ→−∞

∑
k∈I kake

kλ

∑
k∈I ake

kλ
= l,

where l = min I. For R < +∞ and λ0 < λ < lnR, by Mean Value Theorem, we have

[ln ◦f ◦ exp](λ)− [ln ◦f ◦ exp](λ0) = [ln ◦f ◦ exp]′(ξλ)(λ− λ0),

for some ξλ ∈ (λ0, λ). Since f(R) = +∞ the above left-hand side tends to +∞ by
λ tending to lnR. It follows that also [ln ◦f ◦ exp]′(ξλ) → +∞ by λ → lnR and, in
consequence,

lim
λ→(lnR)−

[ln ◦f ◦ exp]′(λ) = +∞.

Consider now the case R = +∞. For any N ∈ I let

fN(e
λ) =

∑

k∈I,k≤N

ake
kλ =

N∑

n=0

ane
nλ,

where an = ak if n ∈ I and an = 0 otherwise. We show that

[ln ◦fN ◦ exp]′(λ) < [ln ◦f ◦ exp]′(λ), (14)

for any λ ∈ R; that is we show that

f ′
N(e

λ)f(eλ) < f ′(eλ)fN(e
λ).

Using Cauchy product of series we get that for n ≥ N the n-th coefficient of the
left-hand side equals

∑N

i=1 iaian−i+1 and corresponding one on the right-hand side

is greater and is equal
∑N

i=0(n − i + 1)aian−i+1. For this reason inequality (14) is
satisfied. Because the limit of the left-hand side of (14), by λ → +∞, is equal to N ,
then, if I is infinite subset of N, the right-hand side must tends to +∞ by λ → +∞.
Thus we obtained that the equation (13) possesses the unique solution for any c > l.
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For the sequence
(

ake
kλ

f(eλ)

)
k∈I

, c > l and λ satisfying (13), the following expression

lim inf
N→∞

∑

k∈I, k≤N

tk ln
tk

ak

is equal to

∑

k∈I

ake
kλ

f(eλ)
ln

ekλ

f(eλ)
= λ[ln ◦f ◦ exp]′(λ)− [ln ◦f ◦ exp](λ)

= cλ− [ln ◦f ◦ exp](λ)

and it gives the classical Legendre transform of the function ln ◦f ◦ exp at the point
c. It means that the minimum in (12) is attained and is equal to [ln◦f ◦ exp]∗(c).
For c = l, by the definition of the Legendre-Fenchel transform, we get

[ln ◦f ◦ exp]∗(l) = sup
λ∈(−∞,lnR)

{
lλ− ln

∑

k∈I

ake
kλ

}

= − inf
λ∈(−∞,lnR)

{
ln
∑

k∈I

ake
(k−l)λ

}
= − ln al.

If I is a finite subset of N with l = min I and N = max I then f is a polynomial of
degree N and the Legendre-Fenchel transform of ln ◦f ◦ exp takes the form

[ln ◦f ◦ exp]∗(c) = min
(tk)∈Sc

∑

k∈I

tk ln
tk

ak
,

for c ∈ [l, N ] and +∞ otherwise.

The convex conjugate of λ̃ is presented below.

Theorem 2.6. For the functional λ̃, defined by (5), the following variational prin-

ciple holds

λ̃(ϕ) = sup
m∈M l

α

{< m,ϕ > −λ̃∗(m)},

where M l
α = {m ∈ C(X)∗ : m ∈ Mα and m(X) ∈ [l,+∞)},

λ̃∗(m) =
1

p
m(X)τα

(
m

m(X)

)
+ min

(tk)∈Sm(X)

lim inf
N→∞

∑

k∈I, k≤N

tk ln
tk

ak
for m(X) 6= 0

and Sm(X) = {(tk)k∈I ∈ S :
∑

k∈I ktk < +∞ and m(X) =
∑

k∈I ktk}; if m(X) = 0

then λ̃∗(0) = − ln a0.
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Proof. Because λ is convex and continuous on C(X) then by Lemma 2.2 the func-

tional λ̃, as the composition ln ◦f ◦ exp ◦λ, is also convex and continuous on C(X) in
the extended system of real numbers. By virtue of Theorem 2.5 we have

λ̃(ϕ) = max
c∈[l,+∞]

{
cλ(ϕ)− min

(tk)∈Sc,
lim inf
N→∞

∑

k∈I, k≤N

tk ln
tk

ak

}
. (15)

Substituting (2) into (15) we obtain that

λ̃(ϕ) = max
c∈[l,+∞]

{
c max
ν∈M1

α

{∫

X

ϕdν −
1

p
τ(ν)

}
− min

(tk)∈Sc,
lim inf
N→∞

∑

k∈I, k≤N

tk ln
tk

ak

}

= max
c∈[l,+∞]

max
ν∈M1

α

{∫

X

ϕd[cν]−
c

p
τ(ν)− min

(tk)∈Sc,
lim inf
N→∞

∑

k∈I, k≤N

tk ln
tk

ak

}
.

(16)

If m denote the measure cν then c = m(X) and ν = m
m(X)

. Let M l
α denote the set

of α-invariant measures m such that m(X) ≥ l. Now we can change the above two
maximums on one over the set M l

α

λ̃(ϕ)= max
m∈M l

α

{∫

X

ϕdm−
m(X)

p
τα

(
m

m(X)

)
− min

(tk)∈Sm(X)

lim inf
N→∞

∑

k∈I, k≤N

tk ln
tk

ak

}
. (17)

Notice now that

min
(tk)∈Sm(X)

lim inf
N→∞

∑

k∈I, k≤N

tk ln
tk

ak
= [ln ◦f ◦ exp]∗(m(X))

is lower semicontinuous and convex onM l
α. Moreover by convexity of τα, for s ∈ [0, 1],

we get

[sν̄1(X) + (1− s)ν̄2(X)]τα

(
sν̄1 + (1− s)ν̄2

sν̄1(X) + (1− s)ν̄2(X)

)

= [sν̄1(X) + (1− s)ν̄2(X)]τα

(
sν̄1(X)

sν̄1(X) + (1− s)ν̄2(X)
·

ν̄1

ν̄1(X)

+
(1− s)ν̄2(X)

sν̄1(X) + (1− s)ν̄2(X)
·

ν̄2

ν̄2(X)

)

≤ sν̄1(X)τα

(
ν̄1

ν̄1(X)

)
+ (1− s)ν̄2(X)τα

(
ν̄2

ν̄2(X)

)
.

Because τα is lower semicontinuous on M1
α then the functional m(X)

p
τα

(
m

m(X)

)
is lower

semicontinuous on M l
α. Thus for m ∈ M l

α

λ̃∗(m) =
1

p
m(X)τα

(
m

m(X)

)
+ min

(tk)∈Sm(X)

lim inf
N→∞

∑

k∈I, k≤N

tk ln
tk

ak
.
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In this case the effective domain D(λ̃∗) is contained in the set M l
α of all nonnegative,

α-invariant measures m such that m(X) ≥ l.

To calculate the value of λ̃∗ at m = 0 we use the Legendre-Fenchel transform, i.e.

λ̃∗(0) = sup
ϕ∈C(X)

{0− ln r(f(eϕTα))}.

Notice that m(X) may be 0 when l = 0 that is when 0 ∈ I (a0 > 0). By virtue of
Theorem 2.1 we obtain

λ̃∗(0) = − inf
ϕ∈C(X)

ln


a0 +

∑

k∈I−{0}

ak(r(e
ϕTα))

k


 .

Because the spectral radius r(eϕTα)) can be arbitrary small positive number then
the expression

∑
k∈I−{0} ak(r(e

ϕTα))
k may take also arbitrary small value. Thus we

obtain that
λ̃∗(0) = − ln a0.

If I is a finite subset of N and N = max I, that is f is a polynomial of degree N ,
then the Legendre-Fenchel transform of λ̃ takes the form

λ̃∗(m) =
1

p
m(X)τα

(
m

m(X)

)
+ min

(tk)∈Sm(X)

∑

k∈I

tk ln
tk

ak
,

for α-invariant measure m such that m(X) ∈ [l, N ] (see [7, Th. 3.3]).

When the evident form of analytic function f is known then we can sometimes present
the convex conjugate of the spectral exponent of f(eϕTα) as a function depending on
τα and the form of [ln ◦f ◦ exp]∗.

Example 2.7. Take the function f(z) = ez. Notice that ln f(eλ) = eλ and eλ(ϕ) =
r(eϕTα). In this case we obtain the variational principle for the spectral radius of
eϕTα as it is. Recall that

exp∗(c) =





c ln c− c, c > 0

0, c = 0

+∞, c < 0.

By the above

r(eϕTα) = max
m∈Mα

{∫

X

ϕdm−
m(X)

p
τα

(
m

m(X)

)
−m(X) lnm(X)−m(X)

}
;

in other words

[exp ◦λ]∗(m) =
m(X)

p
τα

(
m

m(X)

)
+m(X) lnm(X) +m(X),

for m ∈ Mα; [exp ◦λ]
∗(0) = − ln 1 = 0.
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Remark 2.8. For finite set I, for instance I = {1, 2, . . . , n}, the functional λ̃ is
the composition of the log-exponential function g(x) = ln

∑n

k=1 e
xk with functionals

xk(λ) = ck+kλ, where ck = ln ak. It is possible to derive λ̃
∗ applying the general rules

of convex conjugate calculus obtained in [4, 5] to the composition with the function
g (see [6, Cor. 4 of Th. 2]). Let us stress that these rules do not range considered by
us the case of infinite number of variables xk.
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