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In this paper we compare all existing methods of resolving the homogeneous differential inclusion
problem. We emphasize that there is an elementary approach to construct solutions as limit of
strongly convergent sequences of approximate solutions. We discuss which role plays an universal
functional which measures maximal oscillations produced by admissible for the problem functions
at a given one. We suggest a constructive way to generate stable solutions of the inclusions. Finally
we prove higher regularity of solutions of the inclusions.
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1. PDE and Differential Inclusions

At the International Congress of Mathematicians in Zürich (1994) Šverák suggested
to consider a problem of differential inclusions

Du ∈ K, u ∈ W 1,1(Ω;Rm), u
∣

∣

∂Ω
= f (Ω ⊂ Rn) (1)

as a new direction in PDE theory, [57]. He mentioned that there are at least two
important PDE problems that can be reduced to the situation (1): 2 × 2 elliptic
problems

divL(Du) = 0 (2)

since divergent-free fields are rotated gradients and, therefore, the problem can be
rewritten as a differential inclusion for the case m× n = 4× 2 and m× 2 hyperbolic
problems satisfying the entropy conditions.

Earlier theory of differential inclusions was developed basically for ODE, see [12], [1],
[19, 20], [10].

Certain facts and tools to study (1) were obtained in context of studying variational
models for solid-solid phase transitions, as this was suggested by Ball & James in [6,
7]. Šverák systematically exposed how that work is related to general problems (1)
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and communicated certain nontrivial results already obtained, see also [8]. Parallely
the multi-dimensional case of differential inclusions was considered in Italian School,
see very interesting papers by Cellina [13], Cellina & Perrotta [15], Bressan & Flores
[11], see also a nice introduction to this subject by Cellina [14].

At the next International Congress (Berlin, 1998) an example of a pathological elliptic
problem (2) was addressed, [36]. In this example the equation (2) is the Euler-
Lagrange equation for a multiple integral with strictly quasiconvex integrand in the
sense of Evans [27], however there exists a weak Lipschitz solution with everywhere
oscillating gradients, contrary to the situation with strong local minimizers, [27], [32].
Later the result of Müller and Šverák was improved by Szekelyhidi [58] who showed
that the same situation turned out to be possible for polyconvex L, which is the most
studied case in elliptic nonconvex problems. One more example of similar irregular
solutions was obtained for parabolic problems, [34]. Dacorogna & Marcellini used
(1)-setting to study a.e. solutions of Hamilton-Jacobi equations and systems, [23,
24].

More recently differential inclusions were again involved

1) to study regularity of solutions of planar linear elliptic systems with measurable
coefficients where higher integrability result is valid for gradients of weak solutions, i.e.
of those which already have appropriately high exponent of integrability (though still
below the energetic one), and to study very weak solutions with worse integrability
of the gradients that is given by the exponent. Both the bounds of integrability for
weak and very weak solutions were confirmed by examples, see Astala & Faraco &
Szekelyhidi [3];

2) to construct pathological examples of weak solutions of the Euler equations describ-
ing the motion of an ideal incompressible fluid with pressure and velocity compactly
supported. The examples by De Lellis & Szekelyhidi [22] are sharper than those
earlier obtained by Scheffer [53] and by Shnirelman [54, 55].

Therefore the differential inclusion approach turned out to be enough productive
one for studies PDE, at least in the sense of constructing pathological examples in
various classes of problems. Since so a systematic development of solvability theory
for problems (1) is required.

2. Elementary approach to solvability result. Renormalizations.

There were a number of methods suggested to obtain solvability of (1): an approach
of "convex integration for Lipschitz functions" by Müller & Šverák [36–39], [33], [57],
"martingale convergence" approach [§5, 42], "Baire category approach" by Dacorogna
& Marcellini [23, 24] (originally "Baire category approach" was suggested by Cellina
[12] to study ODE problems and was developed by De Blasi & Pianigiani, see e.g. [19,
20], when in multi-dimensional case it was first applied by Bressan & Flores [11]),
"point of continuity" approach by Kirchheim [29, 30]. However a more elementary
approach to study (1) turned out to be to apply classical theory of weak convergence
developed long time ago in Functional Analysis and in the Calculus of Variations,
as we suggested in [42, 43]. Though we probably were insufficiently explicit with
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exposition of this statement due to the way the theory of differential inclusions are
continued to be commented by the experts, see [17, 18], [26], [30], [31], [§5, 42], and
by those who follow them.

An optimal setting of the problem (1) was elaborated as follows:

Theorem 2.1 (Theorem 1.1 of [44, 45]). Let U and K be bounded and compact
subsets of Rm×n respectively and assume that given A ∈ U there exists a sequence
of piece-wise affine functions ui ∈ lA + W 1,∞

0 (Ω;Rm) (lA is an affine function with
DlA = A) such that

Dui ∈ U a.e., dist(Dui, K) → 0 in L1. (3)

Then for each piece-wise affine admissible function f ∈ W 1,∞(Ω;Rm), i.e. such that
Df ∈ U a.e., and for each ǫ > 0 there exists a solution uǫ ∈ f +W 1,∞

0 (Ω;Rm) of the
problem (1) with ||f − uǫ||L∞ ≤ ǫ.

Here we say that a function f ∈ W 1,1(Ω;Rm) is piece-wise affine provided there
exists a decomposition of Ω (we always assume that Ω is a bounded set with Lipschitz
boundary) into open subsets Ωj with meas(∂Ωj) = 0, j ∈ N, with f is affine in each
of these sets, and a set of zero measure.

The setting (3) of the problem (1) remained unchanged in last decade. An analogous
setting for the nonhomogeneous case, i.e. when K = K(x, u), U = U(x, u), was
suggested in [35]; however there is a case which does not fit this setting, see the
interesting paper by Bertone & Cellina [5].

There was a statement by Dacorogna, see [17, 18], that Theorem 2.1 was first sug-
gested by Dacorogna & Marcellini [24] and then proved in [44]. We find difficult to
agree with this statement since the preprint version [45] of the paper [44] was pub-
lished already in 1998. This preprint was handed to Dacorogna and to Marcellini at
the conference in Pisa held in September 1998 and the results were discussed with
them. In [24] a solvability result was proved with weakly extreme points of K instead
of K, where the set of weakly extreme points could be in general larger than the
original set, see [35, §5] for an example where K is countable and the set of weakly
extreme points of K is continual.

The setting (3) suggests to consider approximate solutions of the problem (1) follow-
ing the scheme

Definition 2.2 ([42, Def. 2.4], [43, Def. 1.1]). We say that a sequence of piece-
wise affine functions ui ∈ W 1,1(Ω;Rm) is obtained by perturbation if for each
element ui of the sequence there exists an at most countable family of disjoint open
subsets Ωi

j of Ω, j ∈ N, such that meas(Ω \ ∪jΩ
i
j) = 0 and for each j ∈ N we have:

meas(∂Ωi
j) = 0, ui is affine in Ωi

j, ui = ui+k on ∂Ωi
j for all k ∈ N.

In fact given a piece-wise affine function ui ∈ W 1,1(Ω;Rm) with Dui ∈ U a.e. we
can decompose Ω into open sets Ωi

j, j ∈ N, and a set of zero measure with ui affine
in each Ωi

j, j ∈ N. Then we want to use (3) to define ui+1 = ui + φi
j in Ωi

j with
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φi
j

∣

∣

∂Ωi
j
= 0, j ∈ N, and with

|| dist(Dui+1(·), K)||L1(Ωi
j)
/measΩi

j ≤ 1/i. (4)

The only point is that (4) holds for Ω but for Ωi
j. However (3) could be applied to

Ωi
j as well since

Proposition 2.3. Assume Ω̃,Ω are open subsets of Rn with meas(∂Ω) = 0 and with
0 ∈ Ω. Assume also u ∈ W 1,p

0 (Ω;Rm), 1 ≤ p ≤ ∞, is a piece-wise affine function.

Given ǫ > 0 consider a decomposition of Ω̃ into subsets xi + ǫiΩ with ǫi < ǫ, i ∈ N,
and a set of zero measure, see e.g. [52, p. 109]. Define ũ ∈ W 1,p

0 (Ω̃;Rm) as follows:

ũ(x) = ǫiu((x− xi)/ǫi) for x ∈ (xi + ǫiΩ), i ∈ N,

ũ(x) = 0 otherwise.

Then ũ ∈ W 1,p
0 (Ω̃;Rm) is a piece-wise affine function and for each continuous and

nonnegative function L : Rm×n → R and each A ∈ Rm×n we have
∫

Ω

L(A+Du(x))dx/measΩ =

∫

Ω̃

L(A+Dũ(x))dx/meas Ω̃,

||ũ||Lp(Ω̃)/meas Ω̃ ≤ ǫ||u||Lp(Ω)/measΩ.

The construction is a standard tool for producing weakly convergence sequences with
prescribed distribution of the gradient and is widely used though we do not know
to whom it should be attributed. However Bogolubov already used a version of this
construction to prove his relaxation theorem, [9]. Recall that the relaxation theorem
says that the formal lower semicontinuous envelope J̃ of an integral functional J ,
which is defined as

J̃(u) := inf
{

lim inf
k→∞

J(uk) : uk ⇀ u in W 1,1
}

,

is itself an integral functional with the integrand Lc obtained as convexification of
the original integrand with respect to the gradient variable (this was proved in the
one-dimensional case under the condition of superlinear growth with respect to the
gradient variable).

Note that the paper of Bogolubov was a serious event at that time and it was even
awarded by a premium of the Bologna Academy of Sciences by recommendation of
Tonelli. In our days the relaxation result is sometimes attributed to other authors,
see [17, 18], though without indicating a reference.

Therefore (3) implies via (4) the existence of a sequence obtained by perturbation
which satisfies (3).

The advantage is that sequences obtained by perturbation always converge strongly
and, therefore, if in addition (3) holds then the limit function is a solution of the
problem (1) and this proves Theorem 2.1. The fact of strong convergence of sequences
obtained by perturbation relies on classical facts of Functional Analysis and of the
Calculus of Variations.
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Fact 2.4. Let Lp(Ω;Rm) be a space of measurable functions g : Ω → Rm with J(g) :=
∫

Ω
|g(x)|pdx < ∞, 1 < p < ∞. Let gk be a sequence bounded in Lp-norm, where

||g||Lp := J(g)1/p. Then there exists a subsequence (not relabeled) which converge
weakly to g∞. In this case lim infk→∞ ||gk||Lp ≥ ||g∞||Lp. In case ||gk||Lp → ||g∞||Lp

we also have ||gk − g||Lp → 0, k → ∞.

As usual the weak convergence means convergence of the values of linear continuous
functionals, where each such functional has a representation l(g) =

∫

Ω
g(x)f(x)dx,

with f ∈ Lp′ , 1
p
+ 1

p′
= 1. See e.g. the book [56] of S. L. Sobolev.

An extended version of this fact in context of Calculus of Variations is

Fact 2.5. Let L : Rm×n → R be a strictly convex function (called integrand). Let
gk ⇀ g in L1 ("⇀" means the weak convergence and we assume J(g) := ∞ if
L(g) /∈ L1). Then

lim inf
k→∞

J(gk) ≥ J(g).

In case J(gk) → J(g) < ∞ we also have

gk → g, L(gk) → L(g) in L1.

This result was proved first by Bogolubov [9] in the one-dimensional case; at those
times Functional Analysis and Calculus of Variations were developing parallely. For
the multi-dimensional version of this result (at the time when the theory of Sobolev
spaces was established) see e.g. the paper [40] of Reshetnyak and see [46] for a char-
acterization of this property at a given function.

We use Fact 2.4 to prove

Theorem 2.6. Assume that a sequence of piece-wise affine functions ui : Ω → Rm

is obtained by perturbation. Assume also that {ui, i ∈ N} is bounded in W 1,p(Ω;Rm),
1 < p < ∞. Then the sequence ui converges strongly in W 1,p(Ω;Rm), i.e. ui → u∞

in W 1,p(Ω;Rm) as i → ∞.

Proof. There exists a subsequence ui (not relabeled) which converges weakly inW 1,p

to u∞ ∈ W 1,p (since weak convergence of the gradients in Lp holds due to the Fact
2.4). This is again a sequence obtained by perturbation. Note that the Lp-norm of
the gradients Dui increases. In fact given i ∈ N there exists a decomposition of Ω
into disjoint open sets Ωi

j, j ∈ N, and a set of zero measure, where ui : Ω
i
j → Rm is

an affine function, j ∈ N, and ui+k = uk on ∂Ωi
j, j, k ∈ N. Therefore by the Jensen

inequality we have J(ui+k) ≥ J(ui), k ∈ N, where J(u) =
∫

Ω
|Du(x)|pdx, as well as

J(u∞) ≥ J(ui) since this holds in each particular set Ωi
j, j ∈ N. Because of the lower

semicontinuity result we also have J(ui) → J(u∞) and then ||Dui − Du∞||Lp → 0
(cf. Fact 2.4) and ||ui − u∞||W 1,p → 0.

Since arbitrary subsequence of the original sequence contains a subsequence converg-
ing in W 1,p the sequence itself converges in this norm.

Remark. The same arguments show that sequence ui converges in W 1,1 provided it
is weakly precompact in W 1,1 (use Fact 2.5 with appropriate L which has superlinear
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growth). In [42, Theorem 2.5] ([43, Theorem 1.2]) we proved this by contradiction
showing that for any integral functional J with strictly convex integrand L such that
J(ui), i ∈ N, are equa-bounded lack of the strong convergence leads to J(ui) → ∞,
i → ∞, which is a contradiction.

In case the sequence ui is only bounded in W 1,1 convergence of the gradients in
measure still holds, see [47].

The idea of the method of "convex integration for Lipschitz functions" by Müller
& Šverák was: given a sequence obtained by perturbation we renormalize it via
Proposition 2.3 in order to obtain strong convergence of gradients via control of L∞-
norm of the perturbations by modulus of continuity of Dui, see [37], [44, 45] for two
different ways to do this. This could be formalized in the following way.

A function ξ : Ω → Rl is called piece-wise constant if Ω can be decomposed into
measurable subsets Ωi, i ∈ N, in each of which the function is constant, and a set of
zero measure.

Definition 2.7. Let Ω, Ω̃ be bounded measurable subsets of Rn. Let the sequences
ξi : Ω → Rl, ξ̃i : Ω̃ → Rl consist of piece-wise constant functions. Then we say that
ξ̃i is a renormalization of ξi if for each finite collection of indexes i1, . . . , ik ∈ N and
each collection of vectors ai1 , . . . , aik ∈ Rl of the same length we have

1

measΩ
{{ξi1 = ai1} ∩ · · · ∩ {ξik = aik}}

=
1

meas Ω̃
{{ξ̃i1 = ai1} ∩ · · · ∩ {ξ̃ik = aik}}.

The result of [37], [44, 45] reads as

Theorem 2.8. Let ui ∈ W 1,∞(Ω;Rm) be a sequence obtained by perturbations which
is bounded in W 1,∞(Ω;Rm). Then there exists a sequence ũi gradients of which is
renormalization of Dui and which converges in W 1,1.

It is easy to see that

Lemma 2.9. Let ξi : Ω → Rl be a sequence bounded in L1. Let ξ̃i be its renormal-
ization. Then ξi converges in L1 if and only if ξ̃i converges in L1.

Therefore Theorem 2.6 could be derived as a corollary of Theorem 2.8. This was over-
looked by the authors of [36–39] who considered their constructions as a development
of a geometrical theory by Gromov of constructing nontrivial immersions, [28], to the
case of Lipschitz functions. As we see a more general fact, which is Theorem 2.6,
could be obtained on basis of standard facts of Functional Analysis and of Calculus
of Variations.

There was another suggestion [42, §5] to apply theory of martingales, see [62, §7.3],
in order to derive Theorem 2.6. Facts 2.4, 2.5 are of more elementary nature in order
to replace them in this fashion.
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3. Sequences obtained by almost maximal perturbations. Universal func-
tional

In this section we also observe that sequences obtained by perturbation can be used to
derive various further nontrivial facts on problems (1), (3). For this we use sequences
obtained by almost maximal perturbations.

Let L : Rm×n → R be a strictly convex C1-regular function. Let u : Ω → Rm be
an admissible for the problem (1), (3) piece-wise affine function. Then Ω can be
decomposed into open sets Ωi with meas(∂Ωi) = 0, i ∈ N, and a set of zero measure,
moreover the restriction of u to each Ωi is an affine function lAi

(with the gradient
equal to Ai).

We define the functional u → oscL(u) as follows

oscL(u) :=
1

measΩ
sup{J(u+ φ)− J(u) : u+ φ is a piece-wise affine admissible

for the problem (1), (3) function with φ ∈ W 1,∞
0 (Ωi;R

m), i ∈ N}.

Proposition 2.3 implies that oscL(u) does not depend on decomposition of Ω into sets
Ωi.

Definition 3.1. A sequence of admissible for the problem (1), (3) piece-wise affine
functions ui is called obtained by almost maximal perturbations provided ui is ob-
tained by perturbations and oscL(ui) → 0 as i → ∞.

It could be shown that oscL(ui) → 0 for any strictly convex L provided this holds for
a particular one.

Sequences obtained by almost maximal perturbations converges inW 1,1, see Theorem
2.6. It could be proved that the limit function solves problem (1), (3), where K is
any compact set satisfying the property (3).

Proposition 3.2. Let U be a bounded set and let ui, i ∈ N, be a sequence obtained
by almost maximal perturbations. Then ui → u∞ in W 1,1 and Du∞ ∈ K a.e. in Ω,
where K is any set satisfying (3).

Proof. Theorem 2.6 allows to state that ui → u∞ in W 1,p. Let K be such a compact
set that (3) holds. Assume that Du∞ /∈ K in a set of positive measure. Then there
exists ǫ > 0 such that

meas{x ∈ Ω : dist(Dui(x), K) ≥ ǫ} ≥ ǫ (5)

for sufficiently large i ∈ N.

Since ui is piece-wise affine the set Ωi of x ∈ Ω in (5) is a union of open sets Ωi
j,

j ∈ N, in each of which ui is affine, i.e. Dui = Ai
j in Ωi

j.

By definition of oscL(ui)

oscL(ui) ≥
1

measΩ

∑

j

∫

Ωi
j

{L(Ai
j +Dφi

j(x))− L(Ai
j)}dx, (6)
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where φi
j ∈ W 1,∞

0 (Ωi
j;R

m) are such that u+φ is a piece-wise affine admissible for the
problem (1), (3) function.

Then

oscL(ui) ≥
1

measΩ

∑

j

∫

Ωi
j

{L(Ai
j +Dφi

j)− L(Ai
j)− 〈DL(Ai

j), Dφi
j(x)〉}dx

≥
1

measΩ

∑

j

∫

Ωi
j

θ(|Dφi
j(x)|)dx, (7)

where

θ(ǫ) := inf{L(B)− L(A)− 〈DL(A), B − A〉 : B,A ∈ U, |B − A| ≥ ǫ}

is a nondecreasing positive function.

We can take φi
j : Ω

i
j → Rm in such a way that

dist(Dφi
j(x), K) ≤ ǫ/2 a.e. in Ωi

j, j ∈ N.

Then the right-hand side in (7) can be estimated from below by

1

measΩ
θ(ǫ/2)measΩi ≥

1

measΩ
θ(ǫ/2)ǫ.

This contradicts to the requirement oscL(ui) → 0 as i → ∞.

This proves that Du∞ ∈ K a.e. in Ω.

An immediate consequence of Proposition 3.2 is

Theorem 3.3. Let U be a bounded set. There exists a set S for which each problem

u ∈ lA +W 1,∞
0 (Ω;Rm), A ∈ U, Du(·) ∈ S a.e.,

is solvable and moreover S ⊂ K for each compact set K that satisfies (3).

Proof. Given A ∈ U we define a sequence ui ∈ lA +W 1,∞
0 (Ω;Rm), i ∈ N, obtained

by almost maximal perturbations. Then ui → u∞ in W 1,1 by Theorem 2.6. Let
SA := {Du∞(x) : x ∈ Ω is a Lebesque point of Du∞}. Define S := ∪A∈USA. In case
K is a compact set which satisfies (3) we have by Proposition 3.2 that Du∞ ∈ K a.e.
In particular S ⊂ K.

The set S itself could be nonclosed. In fact in the scalar case the problem (1), (3)
could be solved with extreme points of U , which we define as extrU , see [13], [11].
Here an advantage is that in addition to the fact that this set is minimal for which the
inclusions are solvable all the solutions are stable, i.e. in case u is such a solution
and ui is a sequence of admissible for the problem piece-wise affine functions with
ui ⇀ u in W 1,1 we have ui → u in W 1,1, see [2], [4], [41], [59]; in context of the
Calculus of Variations this property was studies parallely in [16], [46], [60], [61].
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In the vector-valued case we also can identify explicitly a minimal set S for which
the inclusions (1), (3) are solvable provided U ⊂ Rm×n is convex, bounded and open.
This set was considered in [35] and is defined as the of all extreme points of U and
those faces of ∂U that do not contain rank-one connections, i.e. there are no A, B
with rank(A − B) = 1; the set was denoted as gr extrU . The only possibility for a
solution u ∈ W 1,∞ of the problem (1), (3) to be stable is Du ∈ gr extrU a.e. in Ω, see
Theorem 3.22 of [30]. The same is true for nonhomogeneous differential inclusions
(x, u) → U(x, u) with convex equa-bounded sets U(x, u) which depends continuously
on (x, u) in the Hausdorff metric, see Theorem 3.34 of [30]. Therefore to resolve the
inclusions with the gradient extreme points one has to construct a solution which is
stable.

The issue of minimal subset of U which we can approximate modifying gradients of
the functions whose gradients approach U was discussed in [63, 64] for general U .
However the question of generating a solution of the inclusion with this subset was
not addressed.

In case we want to generate stable solutions explicitly we can not use arbitrary
sequences obtained by perturbation, but we have to involve sequences obtained by
almost maximal perturbations. We will discuss this issue in §4.

Kirchheim was first to arise and simultaneously to prove existence of stable solutions
to the problem (1), (3), see [29], since his method of Baire-1 functions immediately
allows to derive density of the points of continuity in the completion of the set of
admissible piece-wise affine functions in the weak topology. Let (V, L∞) be the closure
in L∞-norm of the set of piece-wise affine admissible functions. The map

u ∈ (V, L∞) → Du ∈ (V, L1)

is Baire-1 one since u → Duǫ, where uǫ is the ǫ-mollification of u, is a continuous
map and Duǫ → Du in L1 as ǫ → 0 for each u ∈ (V, L∞). Then the set of points
of continuity of this map is residual. These points of continuity are automatically
stable solutions of the problem (1), (3). In fact if wi is a sequence for which (3) does
not hold and if wi → u in W 1,1 as i → ∞ then we can take associated oscillations
w̃i around wi, see Proposition 2.3. And since ||D(w̃i − wi)||L1 ≥ ǫ > 0 we have
Dwi → Du, but Dw̃i 6→ Du in L1 as i → ∞, when we can achieve Dw̃i ⇀ Du,
i → ∞ – a contradiction to the fact that u is a point of continuity.

This is, of course, a very powerful method and it could be applied to show that in each
weakly compact subset of L1 points of continuity are dense. To apply weak conver-
gence methods we suggested a straightforward idea to measure maximal oscillations
produced by admissible functions at a given one, [42, 43].

Let V be a weakly compacts subset in L1(Ω;Rm). Then we can find a strictly
convex nonnegative C1-regular integrand L such that the family {L(ξ) : ξ ∈ V } is
equiintegrable. We define

indL(ξ) := sup
ξi→ξ,ξi∈V

lim sup
i→∞

1

measΩ

∫

Ω

[L(ξi)− L(ξ)]dx.
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Any sequence ξi ∈ V , i ∈ N, with ξi ⇀ ξ in L1 and with

∫

Ω

L(ξ(x))dx →

∫

Ω

L(ξ(x))dx+ indL(ξ)measΩ, i → ∞,

is called a sequence generating maximal oscillations (associated with ξ).

Then we have

Theorem 3.4 (Theorem 1.2 of [42], Theorems 1.6, 1.7 of [43]). Let S be a
weakly compact subset of L1 and let ρ be a metric equivalent to the weak convergence
in S. Then:

1. The functional ξ ∈ (S, ρ) → indL(ξ) is upper semicontinuous. In particular
indL(ξi) → 0, i → ∞, for each sequence ξi ∈ S that generates maximal oscilla-
tions associated with a ξ ∈ S.

2. Given ǫ > 0 there exists δ > 0 such that lim supi→∞ ||ξi − ξ||L1 ≤ ǫ provided
ξ, ξi ∈ S, indL(ξ) ≤ δ, ξi ⇀ ξ in L1 as i → ∞. In particular indL(ξ) = 0
implies ξi → ξ in L1 provided ξi ⇀ ξ in L1 and ξi ∈ S, i ∈ N.

We can use properties 1. to prove density of stable functions (i.e. with indL(ξ) = 0,
cf. Fact 2.5 in §1) following Marcellini-Dacorogna suggestion to use Baire lemma,
[23, 24]. Alternatively we can use 2. to extract strongly converging sequence ξi with
ind(ξi) → 0, i → ∞, and with control of ρ(ξi′ , ξi), i

′ ≥ i, to infer ind(ξ∞) = 0 where
ξ∞ is a limit of ξi as i → ∞. To do this we take δi > 0 such that δi+1 ≤ δi/2, i ∈ N,
and we select ξi iteratively in such a way that indL(ξ) ≤ indL(ξi) + 1/2i provided
ρ(ξ, ξi) ≤ δi with ρ(ξi+1, ξi) ≤ δi/2, indL(ξi) ≤ 1/2i. Then the limit function ξ∞
satisfies all the estimates indL(ξ∞) ≤ indL(ξi) + 1/2i ≤ 1/2i−1, i ∈ N, i.e. ξ∞ is a
stable element. Therefore the functional ξ → indL(ξ) presents the link between two
methods to use Baire category lemma for an appropriate functional and to construct
strongly convergent sequences of approximate solutions. This resolve the issue of
competition of the methods raised in [25]: they are equivalent. Moreover the result
of Kirchheim [29] is recovered this way.

In fact Marcellini & Dacorogna used a weak convergence approach to apply Baire
category lemma to appropriate functionals and this was an approach very close to
ours in its methodology. However they were keen to use quasiconvexity to construct
appropriate functionals as integral functionals, see [23]. Later they switch to an
abstract functional, see [24]. However they tried to obtain all solutions as a result of
application of Baire lemma to the functional, i.e. they wished that all solutions would
stay in level sets of a nonnegative upper semicontinuous with respect to the weak
convergence functional. At the same time existence of unstable solutions immediately
requires to consider larger target sets K than is required in (3), we discussed this in
all our papers [42, 43], [44, 45], [35]. Very likely that this approach would finally
develop to the same results as ours. In fact all necessary hints already existed in
the paper by Bressan & Flores [11], where the authors proved in the scalar case the
density result for continuity points in the set of admissible functions, see also [21],
simply showing that this result is valid for the class of functions with the gradients
staying in extreme points of U (i.e. K in (3) is equal to extrU). The next natural
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step was to deal with abstract continuity points in the situation when K can not be
associated with extreme points of the set U in (1), (3), as Kirchheim did in [29].

To conclude we emphasize that the idea originated in the theory of differential inclu-
sions is to control maximal oscillations on neighbour functions via this oscillation on
an original one and the difference in the weak metric since maximal oscillations is an
upper semicontinuous functional in this space. This idea turned out to be fruitful and
we applied it back to Calculus of Variations, see [48]. For general integral functionals
(without any requirements of growth) we showed that the set of points where both
lower semicontinuity and convergence with the functional properties hold in a set
dense in the weak topology. The functional which presents the formal lower semicon-
tinuous envelope also has the property of convergence with the functional at these
points. Moreover the values the integral functional assumes at this set completely
determine the lower semicontinuous envelope. Under various additional assumptions
on integrands these properties can be characterized for a given function in terms of
properties of the integrand (lower semicontinuity corresponds to quasiconvexity at
Du(·) a.e., the convergence with the functional property is associated with exposed
points of the integrand), see [49–51].

4. Generating stable solutions of differential inclusions

We finished previous section by the remark that a natural expectation to generate
stable solutions by explicit construction is to use sequences obtained by almost max-
imal perturbations. However we did not succeed to clarify whether all the associated
solutions are stable. To do this we renormalize the sequences.

Theorem 4.1. Let U be a bounded, convex and open set and let f be a piece-wise
affine admissible function. Let also ui ∈ f +W 1,∞

0 (Ω;Rm) be a sequence obtained by
almost maximal perturbations. Then there exists a sequence ũi gradients of which is
the renormalization of Dui and which converges to a stable solution u∞ of the problem
(1), (3).

Theorem 3.22 of [30] mentioned in the previous section implies that Du∞(·) ∈
gr extrU a.e. in Ω.

We prove first two auxiliary propositions.

Proposition 4.2. Let U be a bounded subset of Rm×n and let L : Rm×n → R be
a strictly convex C1-regular function. Let ui : Ω → Rm be a sequence of admis-
sible (i.e. with Dui ∈ U a.e.) piece-wise affine functions and let ũi : Ω → Rm

be another sequence of admissible piece-wise affine functions gradients Dũi of which
present renormalization of Dui. Then

oscL(ui) = oscL(ũi), i ∈ N. (8)

Proof. For each i ∈ N the set Ω can be decomposed into open sets Ωi
j, j ∈ N, and a

set of zero measure in such a way that ui : Ω
i
j → Rm is an affine function lAi

j
, j ∈ N.

Then
oscL(ui) =

∑

j

oscL(lAi
j
)measΩi

j, i ∈ N.
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oscL(ũi) is equal to the same value since the sequence Dũi is the renormalization of
Dui.

Therefore (8) holds.

Lemma 4.3. Let U be an open, bounded and convex set and let L : Rm×n → R
be strictly convex C1-regular function. Assume that u : Ω → Rm is an admissible
piece-wise affine function. Then

oscL(u) = indL(Du). (9)

Proof. Ω can be decomposed into open sets Ωi, i ∈ N, and a set of zero measure in
such a way that u : Ωi → Rm is an affine function lAi

, i ∈ N.

Let φ ∈ W 1,∞(Ω;Rm) be such a piece-wise affine function that u + φ is admissible
and φ ∈ W 1,∞

0 (Ωi;R
m), i ∈ N. Then we can apply Proposition 2.3 in each Ωi to

generate a sequence u + φj of piece-wise affine admissible functions with φj ⇀
∗ 0 in

W 1,∞(Ω;Rm) and with

∫

Ω

L(Du(x) +Dφj(x))dx =

∫

Ω

L(Du(x) +Dφ(x))dx, j ∈ N. (10)

Then

indL(Du) ≥
1

measΩ
lim
j→∞

{J(u+ φj)− J(u)} =
1

measΩ
{J(u+ φ)− J(u)}. (11)

Since u+φ in (11) is an arbitrary admissible piece-wise functionwith φ∈W 1,∞
0 (Ωi;R

m),
i ∈ N, we obtain

indL(Du) ≥ oscL(u). (12)

To prove the inverse inequality we consider a sequence of admissible (not mandatory
piece-wise affine) functions uj with uj ⇀

∗ u in W 1,∞(Ω;Rm) as j → ∞.

We have to prove that

1

measΩ
lim sup
j→∞

{J(uj)− J(u)} ≤ oscL(u). (13)

We prove first (13) for the case when u is an affine admissible function, i.e. u = lA,
A ∈ U . For λ ∈]0, 1[ consider another sequence

uλ
j := lA + λ(uj − lA), j ∈ N. (14)

The range of the gradients of uλ
j belongs to A+λ(U−A) and is compactly supported

in U . Then we can modify uλ
j as ũλ

j to meet the requirements

ũλ
j

∣

∣

∂Ω
= lA, j ∈ N, ||Dũλ

j −Duλ
j ||L1 → 0, j → ∞, (15)

and keeping ũλ
j to be admissible functions. In fact consider φk ∈ C∞

0 (Ω) with 0 ≤
φk ≤ 1, φk = 1 in Ωk, where meas(Ω \ Ωk) ≤ 1/k, and define

ũλ
j = lA + φk(j)λ(uj − lA). (16)
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Then
Dũλ

j = A+ φk(j)λ(Duj − A) +Dφk(j)λ(uj − lA) (17)

and for an appropriately selected sequence k(j) → ∞ as j → ∞ we have

||Dũλ
j −Duλ

j ||L1 → 0, j → ∞, Dũλ
j ⊂ A+

λ

2
(U − A), j ∈ N. (18)

Then (15) also holds due to (17), (18). We can further consider appropriate mol-
lifications of ũλ

j and then piece-wise affine functions ūλ
j associated with appropriate

triangulations of Ω such that

||Dūλ
j −Dũλ

j ||L1 → 0, Dūλ
j ∈ U a.e. in Ω. (19)

Then for appropriately selected sequence λ(j) → 1− 0 as j → ∞ we have

||Dū
λ(j)
j −Duj||L1 → 0, Dū

λ(j)
j ∈ U a.e. in Ω, ū

λ(j)
j

∣

∣

∂Ω
= lA. (20)

However by definition of the functional u → osc(u) we have

osc(lA) ≥
1

measΩ

{

J
(

ū
λ(j)
j

)

− J(lA)
}

, j ∈ N. (21)

Therefore (20), (21) result in (13) for u = lA.

We now switch to the case of arbitrary piece-wise affine admissible function u ∈
W 1,∞(Ω;Rm). Ω can be decomposed into open sets Ωi, i ∈ N, and a set of zero
measure with u : Ωi → Rm affine, i.e. u

∣

∣

Ωi
= lAi

, i ∈ N. For each particular Ωi we
already proved

1

measΩi

lim sup
j→∞

{J(uj; Ωi)− J(u; Ωi)} ≤ oscL(lAi
). (22)

Then (13) follows since

oscL(ui) =
∑

i

oscL(lAi
)measΩi.

Therefore we established the inequality

indL(Du) ≤ osc(u). (23)

Together with (12) this proves the lemma.

Now we are prepared to prove Theorem 3.1.

Proof of Theorem 3.1. Let ui : Ω → Rm be a sequence obtained by almost max-
imal perturbations. We can renormalize it as ũi iteratively via Proposition 2.3 in
order to meet the requirements

ρ(Dũi+1, Dũi) ≤ δi/2, (24)
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where ρ is a metric equivalent to the weak convergence in the completion of admissible
functions (e.g. ρ = || · ||L∞). Here δi+1 ≤ δi/2 and

indL(Dū) ≤ indLDũi + 1/2i (25)

provided ρ(Dū,Dũi) ≤ δi, i ∈ N.

Then we have by Propositions 3.2, 3.3

indL(Dũi) = oscL(ũi) = oscL(ui) → ∞, i → ∞, (26)

Since ũi → u∞ in W 1,1 (cf. Theorem 2.6) and since

ρ(Dui, Du∞) ≤ δi, i ∈ N, (27)

we infer via (25), (26) that

indL(Du∞) ≤ indL(Dũi) + 1/2i ≤ osc(ui) + 1/2i, i ∈ N,

i.e. indL(Du∞) = 0. Then u∞ is a stable solution of the differential inclusion (1),
(3).

Remark. We would prove that the original sequence ui converge to a stable solution
u0 of the problem (1), (3) provided we prove that Dui(x), Dũi(x) consist of the same
sequences for a.a. x ∈ Ω (in this case Du0 ∈ gr extrU a.e. since Du∞ ∈ gr extrU
a.e.). Definition 2.5 of renormalization seems suggest this. However we were unable
to prove this rigorously. Therefore this is an open problem.

5. Nonhomogeneous Differential Inclusions and Higher Regularity of So-
lutions

In this section we stop at nonhomogeneous version of problems (1), (3). We observe
that for each Lipschitz piece-wise affine admissible boundary data f and for each
ǫ > 0 there exists a solution uǫ of the differential inclusion such that ||f − uǫ||L∞ ≤ ǫ
and uǫ ∈ C0,α for any α ∈]0, 1[. This means that solutions of differential inclusions
could be almost as regular as Lipschitz functions in spite integrability of the gradi-
ent is determined by the inclusion and can not be improved. The latter observation
was made for a particular α in the paper [3] for special homogeneous inclusions (1),
(3) with unbounded U , K. There the authors noticed that when taking sequences
obtained by perturbation (see Definition 2.2) and applying Proposition 2.3, i.e. when
renormalizing the gradients, we can fit an arbitrary bound on C0,α-norm of the per-
turbation since it is Lipschitz and decompositions in renormalization could be taken
as fine as necessary. A more careful application of this observation leads to bounds in
all C0,α-norms simultaneously, in particular the results of [3] could be improved both
in the case of lower and upper bounds. This is an essential feature of solutions of
general differential inclusions and it is obtained on basis of the explicit construction
suggested by Definition 2.2. It is unclear, and seems impossible, how to derive this
result via other approaches since they are insufficiently explicit.

Let us state the result.
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Let U : Ω → 2R
m×n

be a multi-valued function with bounded values for a.e. x ∈ Ω
and let

|U(·)| ≤ g(·), where g ∈ L1(Ω) (28)

and where |U | := sup{|v| : v ∈ U}. Let K : Ω → 2R
m×n

be a closed-valued lower
semicontinuous multi-function, i.e. for each x ∈ Ω the set K(x) is closed and given
x0 ∈ Ω, v ∈ K(x0) we have dist(v,K(x)) → 0 as x → x0.

Theorem 5.1. Let the multi-valued functions U , K satisfy the above made assump-
tions. Assume also that for a.e. x0 ∈ Ω and for each ǫ > 0 and each A ∈ U(x0) there
exists a piece-wise affine function φ ∈ W 1,∞

0 (Ω;Rm) with

(A+Dφ(·)) ∈ U(x0) a.e., || dist(A+Dφ(·);K(x0))||L1(Ω) ≤ ǫmeasΩ (29)

and with

(A+Dφ(·)) ∈ U(x) a.e. in Ω for a.e. x ∈ B(x0, δ), (30)

where δ > 0.

Then given a Lipschitz piece-wise affine function f which is admissible (i.e. with
Df(x) ∈ U(x) a.e.) and given η > 0 there exists a function uη ∈ f +W 1,1

0 (Ω;Rm)
such that

uη

∣

∣

∂Ω
= f

∣

∣

∂Ω
, ||uη − f ||L∞ ≤ η, Duη(·) ∈ K(·) a.e., uη ∈ C0,α ∀α ∈]0, 1[. (31)

Proof. Of course we will exploit the fact that a solution to the problem (31) could
be constructed as a limit of a sequence ui obtained by perturbation (see Definition
2.2) with

∫

Ω

dist(Dui(x), K(x))dx → 0, i → ∞.

Assumptions (29), (30) and the assumption of lower semicontinuity of the multi-
valued mapping x → K(x) allow to do this. In addition we can select such a sequence
to be bounded in C0,α for all α ∈]0, 1[ and with ||ui+1 − ui||L∞ ≤ η/2i, i ∈ N.
Therefore the limit function u∞ ∈ C0,α, ∀α ∈]0, 1[, Du∞(x) ∈ K(x) a.e. and the
inequality ||u∞ − f ||L∞ ≤ η holds.

Enough to consider the case f = lA.

Assume that given k ∈ N we have constructed first k iterations and then uk ∈
lA +W 1,∞

0 (Ω;Rm) is piece-wise affine Lipschitz and satisfies

Duk(·) ∈ U(·) a.e. in Ω, (32)
∫

Ω

dist(Duk(x), K(x))dx ≤ measΩ/k. (33)

We want to construct uk+1 ∈ lA+W 1,∞
0 (Ω;Rm) which is piece-wise affine, meets both

(32) and (33) with 1/(k + 1) instead 1/k and the estimates

||uk+1 − uk||C0,1−1/i ≤ 1/2k, i ∈ {1, . . . , k}, ||uk+1 − uk||L∞ ≤ η/2k. (34)
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Given an open subset Ω̃ ⊂ Ω with Duk = Ã in Ω̃ and given a point x0 ∈ Ω̃ which fits
(29), (30) with ǫ > 0 and δ = δ(ǫ) > 0 and with φ ∈ W 1,∞

0 (Ω;Rm), B(x0, δ) ⊂ Ω̃, we
can renormalize φ via Proposition 2.3 as φ̃ ∈ W 1,∞

0 (B(x0, δ);R
m) in such a way that

∫

B(x0,ǫ)

dist((Ã+Dφ̃(x)), K(x0))dx ≤ ǫmeasB(x0, δ)

and (Ã+Dφ̃(·)) ∈ U(x0) a.e., (Ã+Dφ̃(·)) ∈ U(x) a.e. for a.e. x ∈ B(x0, δ).

Moreover we can take δ > 0 sufficiently small to satisfy automatically

∫

B̃

dist(Ã+Dφ̃(x), K(x))dx ≤
1

2(k + 1)
meas B̃,

meas(B(x0, δ) \ B̃) ≤ ǫmeasB(x0, δ), B̃ ⊂ B(x0, δ). (35)

Indeed if
∫

Ω

dist(Ã+Dφ(x), K(x0))dx

is sufficiently small then the set

Ω̄ := {x ∈ Ω : dist(Ã+Dφ(x), K(x0)) ≤ ǫ}

is sufficiently large to guarantee that

meas(Ω \ Ω̄) ≤
ǫ

2
measΩ. (36)

The set Ω̄ can be decomposed as Ω̄ = ∪∞
i=1Ωi ∪ S, where Ωi are open, measS = 0,

and Dφ(·) = Bi in Ωi, i ∈ N. We can take a finite collection of Ωi, i ∈ {1, . . . ,M},
denoted as Ωǫ, such that the inequalities

dist(Ã+Bi, K(x0)) ≤ ǫ, i ∈ {1, . . . ,M}, (37)

hold and for the remaining set we have

meas(Ω̄ \ Ωǫ) ≤
ǫ

2
measΩ. (38)

By lower semicontinuity of the map x → K(x) we can find δ = δ(ǫ) > 0 such that

max
i∈{1,...,M}

dist(Ã+Bi, K(x)) ≤ 2ǫ, x ∈ B(x0, δ). (39)

Then for φ̃ ∈ W 1,∞
0 (B(x0, δ);R

m) associated with φ via Proposition 2.3 and for
2ǫ ≤ 1

2(k+1)
we have (see (36), (38) and (39)) Ã + Dφ̃(·) ∈ U(·) a.e. in B(x0, δ)

and (35) holds. Moreover this holds for any φ̃ ∈ W 1,∞
0 ((B(x0, δ);R

m) obtained via
Proposition 2.3 from φ and we will use this flexibility to fit further requirements on
φ̃.
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We have to fit bounds (31) in B(x0, δ) for what enough to fit them only in the norm
C0,1−1/k. Of course φ̃ can be taken with ||φ̃||L∞ ≤ η/2k. In case we take further
renormalization of φ̃ in B(x0, δ) (not relabeled) the inclusions (29), (30) still hold
and given a set Ωi

j ⊂ B(x0, δ) where φ̃
∣

∣

∂Ωi
j
= 0 we have

|φ̃(x)| ≤ |U(x0)| dist(x, ∂Ω
i
j) ≤ dist(x, ∂Ωi

j)
1−1/k(1/2k), x ∈ Ωi

j,

provided diamΩi
j is sufficiently small. This gives us an estimate on maximal diameter

of decomposition of B(x0, δ) when applying the renormalization.

Finally we can find a finite collection of balls Bj := B(xj, δj), j ∈ {1, . . . ,M1}, such
that

∫

Ω\∪Bj

2g(x)dx ≤ ǫmeasΩ (40)

(see (28)) and φ̃j + W 1,∞
0 (B(xj, δj);R

m) which satisfies (35) with Aj instead of Ã,
where uk

∣

∣

B(xj ,δj)
= lAj

, j ∈ {1, . . . ,M1}.

For each ball B(xj, δj), j ∈ {1, . . . ,M1}, we have due to (35)
∫

B̃j

dist(Aj +Dφ̃j(x), K(x))dx ≤
1

2(k + 1)
meas B̃j,

where meas(Bj \ B̃j) ≤ ǫmeasBj, B̃j ⊂ Bj. (41)

We define uk+1 = uk + φ̃j in Bj, j ∈ {1, . . . ,M1}, uk+1 = uk in Ω \ ∪Bj. Then (40),
(41) result in

∫

Ω

dist(Duk+1(x), K(x))dx

≤

M1
∑

j=1

∫

B̃j

dist(Aj +Dφ̃j(x), K(x))dx

+

M1
∑

j=1

∫

(Bj\B̃j)

dist(Aj +Dφ̃j, K(x))dx+

∫

Ω\∪Bj

2g(x)dx

≤
1

2(k + 1)
meas(∪B̃j) +

∫

∪(Bj\B̃j)

2g(x)dx+ ǫmeasΩ, (42)

where
meas{∪M1

j=1(Bj \ B̃j)} ≤ ǫmeas(∪M1

j=1Bj) ≤ ǫmeasΩ.

Therefore if ǫ is so small that ǫ ≤ 1
4(k+1)

and

∫

Ω̃

2g(x)dx ≤
1

4(k + 1)
measΩ

provided meas Ω̃ ≤ ǫmeasΩ then (42) result in
∫

Ω

dist(Duk+1(x), K(x))dx ≤
1

(k + 1)
measΩ. (43)
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We have constructed uk+1 in such a way that

||uk+1 − uk||C0,1−1/i ≤ 1/2k, i ∈ {1, . . . , k}, ||uk+1 − uk||L∞ ≤ η/2k. (44)

Then the sequence ui is bounded in C0,1−1/k-norm since on the first k − 1 steps this
norm was bounded because all ui are Lipschitz.

Moreover uk converge in W 1,1(Ω;Rm) to u∞ due to Theorem 2.6. The inequality (43)
implies

dist(Duk(·), K(·)) → 0 in L1, k → ∞,

and, therefore,

Du∞(·) ∈ K(·) a.e. in Ω.

In addition (44) guarantees that u∞ is bounded in all C0,α-norms, α ∈]0, 1[, and
||u∞ − f ||L∞ ≤ η. Then all the requirements of (31) are met.
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[37] S. Müller, V. Šverák: Attainment results for the two-well problem by convex integra-
tion, in: Geometric Analysis and the Calculus of Variations, J. Jost (ed.), International
Press, Cambridge (1996) 239–251.
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