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Abstract. Based on E. STUDY’s dual line coordinates, the instantaneous invari-
ants of the relative motion between two dual unit spheres are used for deriving
expressions for the velocity and the acceleration of point trajectories (dual curve).
The expressions of the curvature and torsion of this curve are related to these in-
variants. From which the well known inflection, torsion curves and Ball’s points of
spherical kinematics are calculated in dual space. Then by using E. Study’s map
two line congruences are introduced and their spatial equivalents are examined in
detail. In two ways the invariants of the relative motion are used for deriving a
new proof of Disteli’s formulae and concise explicit expressions of the inflection
line congruence are directly obtained. The obtained explicit equations degenerate
into a quadratic form, which can easily give a clear insight into the geometric
properties of the inflection line congruence.
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1. Introduction

The study of the curvature theory of rigid body motions in spatial kinematics, which is the
study of intrinsic properties of path trajectories, has been a subject of extensive research
interest in the past years. The development of curvature theory is important in synthesizing
path-generation mechanisms, i.e., a mechanism such that a point or a line in one of its
members of that mechanism generates a path having the same intrinsic properties as those of
a prescribed path. There exists a vast literature on the subject including several monographs,
for example: O. BOTTEMA and B. RorH [10], F.M. DIMENTBERG [12|, J.A. SCHAAF
[19, 21], G.R. VELDKAMP [26], H. STACHEL [22, 23|, J.A. SCHAAF and A.T. YANG [20].
In spatial kinematics, the trajectories of oriented lines embedded in a moving rigid body
are generally ruled surfaces. The curvature theory of line trajectories seeks to characterize
the shape of the trajectory ruled surface and relates it to the motion of a body carrying
the line that generates it. Important contributions to the curvature theory can be found for
instance in [18] — [21]. The geometry of ruled surfaces has been widely applied in the design
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and manufacturing of products and many other areas such as motion analysis and simulation
of rigid bodies and model-based object recognition systems [19, 20, 27, 28]. The study of line
trajectories of general rigid body motions consists of two parts: the orientation and location
of the moving line. The orientation of the moving line defines a cone. The intersection of the
cone with a unit sphere, centered at the apex of the cone, defines a spherical curve known as
the spherical image or indicatrix of the line trajectory. The location of the moving line, with
respect to a reference point, is defined by a space curve known as the directrix of the line
trajectory.

In this paper, we use the dual vector calculus which was introduced by E. STUDY [24] as a
tool in geometrical investigations. The curvature properties of line trajectories are calculated
in terms of the coordinates of lines and the invariants that describe kinematics of the relative
motions of two rigid bodies. Analogous to kinematic theory of planar and spherical motions
the well known inflection curves, torsion curves and Ball’s points are calculated on dual unit
sphere. Then by using E. Study’s map two line congruences, which are generated by a fixed
line in the moving body, are introduced and the spatial equivalent of Ball’s points are named
Ball’s lines. In addition, the invariants of the relative motions are used for deriving a new
proof of Disteli’s formulae. As well as by using the Disteli’s formulae, explicit equations for the
inflection line congruence are obtained. The obtained equations degenerate into a quadratic
form, which can easily give a clear insight into the geometric properties of the inflection line

congruence.
An oriented line in Euclidean 3-space E® may be given by a point x and a unit vector a
on it, i.e., ||al]| = 1. A parametric equation of the line is

y=x+pa, peR (1.1)
Then we define the moment of the vector a with respect to a fixed origin point in E? as
a*=yxa=xxa. (1.2)

This means that a* is the same for all choices of the points on the line, and the pair (a,a*) €
E3 x B3 satisfy the following relations:

(a,a) =1, (a,a") =0. (1.3)

The six components a;, a;, (i =1,2,3) of a and a* are called the normed Pliicker coordinates
of the line.

An important analytical tool in the study of line trajectories are the dual numbers which
were first introduced by CLIFFORD [10]. After him STUDY [24] and BLASCHKE [8] used them
as a tool for their research on differential line geometry. Dual numbers are the set of all pairs

of real numbers written as
A=a+e¢ea*, a,a" €R. (1.4)

The symbol € designates the dual unit and is subject to the rules
e£0, 2=0, el=1le=¢. (1.5)

Given the dual numbers A = a + ea* and B = b+ b*, the rules for their composition can be

defined as
equality: A=B <= a=0, a* =b*,
addition: A+ B = (a +b) 4+ e(a* + b*), (1.6)
multiplication: AB = ab + e(a*b + ab®).
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The set D = {A = a + ca*; a,a* € R} of dual numbers form a commutative group under
addition. The associative law holds for multiplication and dual numbers are distributive. As
a result, the set of dual numbers form a ring over R. Division of dual numbers is defined as

A a a*  ab*

B b

A dual number is called purely dual if
A =cea. (1.8)

The division by a pure dual number is not defined. A dual number A = a + a* is called
proper if a # 0. An example of a dual number is the dual angle subtended by two skew lines
in the 3-dimensional Euclidean space E? and defined as © = ¥ + ¢9* in which 9 and 9¥* are,
respectively, the projected angle and the minimal distance between the two lines.

The set of dual numbers can be extended to vector spaces [15]. The set

D}*=DxDxD :{AIA:<A1,A2,A3);Ai:ai+8a;,i:1,2,3}} (19>

={A=a+ca*: a, a* € E3}

is a module, called dual space. The elements of D3 are called dual vectors. It is clear that any
dual vector A in D?—space, consists of any two real vectors a, a* € E? which are expressed in
the natural right-handed orthonormal frame {o; i, j, k} in the 3-dimensional Euclidean space
F3 such that

a=aqit+ajt+ak, a"=ajit+asj+aik, (1.10)

and
i=(1,0,0), j=(0,1,0), k=1(0,0,1). (1.11)

The standard operations for vectors in the 3-dimensional Euclidean space E?3 can also be
defined for vectors in D3. For given two dual vectors, A = a +ca* and B = b + cb* we have

equality: A=B <= a=Db and a* = b*,
scalar product: (A, B) = (a,b) +<[(a*,b) + (a,b*)], (1.12)
vector product: A x B = (ax b)+e[(a* x b) + (a x b*)].

If a # 0, the norm ||A|| of A is defined by

Al = fa] + 22 (113
la]
A dual vector A with norm ||A|| =1 is called a dual unit vector. It is clear that
|Al| =1 <= (a,a) =1, (a,a")=0. (1.14)

It flows that relations (1.3) and (1.14) are corresponding. Via this we have the following
map ( E. Study’s map): The set of all oriented lines in Euclidean space E® is in one-to-one
correspondence with the set of points of the dual unit sphere in the D>-space [13, 17].
The set
K={A: |A|=1, AcD% (1.15)

is called the dual unit sphere in the D3-space. A ruled surface is then a spherical curve on
this dual unit sphere.
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E. Study’s map allows a complete generalization of mathematical expression from spherical
point geometry to spatial line geometry by means of dual numbers extension, i.e., by replacing
all ordinary quantities by the corresponding dual numbers quantities. This means that all rules
of vector algebra for the kinematics of a rigid body with a fixed point (spherical kinematics)
also hold for dual algebra of a free rigid body (spatial kinematics). As a result, a general rigid
body motion can be described by only three dual equations rather than six real ones.

2. One-parameter dual spherical motion

Consider two dual unit spheres K, and K. Let O be the common center and two orthonormal
dual coordinate frames {O; Ly, Lo, L3} and {O; Fy, Fy, F3} be rigidly linked to the dual
unit spheres K, and K, respectively. We suppose that {O; Fy, Fy, F3} is fixed, whereas
the elements of the set {O; Ly, Lo, L3} are functions of a real parameter ¢ (the time). Then
we say that the dual unit sphere K,, moves with respect to the fixed dual unit sphere Kj.
The interpretation of this is as follows: the dual unit sphere K,, rigidly connected with
{O; Ly, Ly, L3} moves over the dual unit sphere K rigidly connected with {O; F;, Fy, F3}.
This motion is called a one-parameter dual spherical motion and will be denoted by K,/ K.
If the dual unit spheres K,, and K correspond to the line space H,, and Hy, respectively, then
K.,/ Ky corresponds to the one-parameter spatial motion H,,/H;. Then H,, is the moving
space with respect to the fixed space Hy.

Theorem 1 The Euclidean motions in E* are represented in D? (the dual space) by dual
orthogonal 3 x 3 matrices A = (A;;), where AA" = I; A;; are dual numbers, and I is the
3 X 3 unit matrix.

According to Theorem 1 the 3 x 3 dual matrix A(¢) of the motion K,,/K represents the
one-parameter spatial motion H,,/H; with the same parameter ¢ € R.

During the motion K, /K the differential velocity vector of a fixed dual point X on K,
analogous to the real spherical motion [10, 17] is

X

= Qx X, (2.1)
where 2 = w + e w* is called the instantaneous Pfaffian vector of the motion K,,/K;. The
Pfaffian dual vector € at the instant ¢ of the one-parameter dual spherical motion K,,/Ky
is analogues to the Darbouz vector in the differential geometry of space curves. In this case
w and w* corresponding to the instantaneous rotational differential velocity vector and the
instantaneous translational differential velocity vector of the corresponding spatial motion
H,,/Hy, respectively. The direction of €2 passes through the dual poles (the instantaneous
dual spherical centers of rotation) R,, on K,, and Ry on K;. Then the dual unit vector

Q

RZ:Rm:Rf:m,

(2.2)
with the same orientation as € is the instantaneous screw azis (ISA for short) of the motion
K,,/K;. The dual number Q@ = w + ew* = ||| is called dual angular speed of the dual
spherical motion K,,/K}.

During the motion K,,/Ky, the dual unit vector R is a function of t. It represents the
locus of the ISA on K; and K,,. This locus is a dual curve R,, () on K, and is called the
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mowving polode. This curve corresponds to a ruled surface in H,, which is called moving axode.
The moving axode is the locus of the ISA as viewed from the moving space H,,. The ISA on
K is also a dual curve R¢(t) and is called the fized polode. This polode like-wise corresponds
to a ruled surface in Hy and is called the fized azode. This fixed axode is made up of those
lines in the fixed space Hy which at some instant coincide with a line in the moving space
having zero dual velocity. Moreover, the moving polode contacts the fixed polode along the
ISA in the first order at any instant ¢ [1, 22].

Let K, be the dual unit sphere generated by the right-handed dual system {O; R =
R,, Rs, R3}. By the first order instantaneous invariants of the motion K, /K we can define
the orthonormal dual moving frame of K, as follows:

Ry (t) =r(t) + eri(t), (2.3)

is the ISA of the motion, and

e (82

is the common normal of two separated screw axes. A third dual unit vector is defined as

Rg = R1 X RQ. (25)

This frame is called the Blaschke frame, and the corresponding lines intersect at the striction
point of the axodes. The central point is the common point of the moving and fixed axodes
(ruled surfaces) formed by the ISA. R3 and Ry are known as the central tangent and the
central normal of the axodes, respectively.

Let X be a straight line with dual representation

X1 R,
X=X'R, X=| X2 |, R=[ R, |. (2.6)
X; R,

Based on the results of [1], the dual velocity vector of X fixed in K, is given by

X
E:QXX, Q:QR]_, Q:w+€w*:Qf—Qm (27)

The real part w and the dual part w* correspond, respectively, to the rotation motions and
the translation motions of the corresponding one-parameter spatial motion H,,/H;. Hence,
the one-parameter spatial motion H,,/H; can be represented by the rotation w about and
translation w* along the ISA. The ratio w*/w is known as the pitch of the motion. From
equations (5.15) of [1] and (2.7), it follows that the acceleration of X is:

42X
—7 = XaPOR1 — (00 + X30)R + (X2 — X, PQ — 0P X3)Rs, (2.8)

where P, Q)f, and @, are the invariants of the dual spherical motion K,,/K (see [1]). Here
the derivative with respect to ¢ is denoted by a dash.
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3. Lines with special kinematics

According to E. Study’s map four independent parameters define an oriented line (line com-
plex). So it is possible to intersect any two of line complexes and obtain a finite number of
lines (line congruence) with associated properties. We are interested to research the geomet-
rical properties of the line X which is adjoint with the moving axode. For this purpose, the
dual curvature, the dual torsion, and the dual spherical curvature of X = X(¢) are expressed
in terms of the invariants of the axodes which characterize the rigid body motion. Thus, we
can define an orthonormal moving frame along X = X(t) as follows:

E, = X(t), E,=X|X|"!, E;=E; xE,. (3.1)

This frame like-wise is called the Blaschke frame, and the corresponding lines intersect at the
striction point on the ruling of X = X(¢). Then, combining equations (2.7), and (3.1), we

have

X X X
]5)1 01 2 3 R1

X3 Xo
E;, | = ViI-xz o /1-x2 R, |. (3.2)
/1 v2 _ XiXo _ X1 X3
Es L= X5 V1I-X2 \/1-X? Ry
It is seen from (3.2) that the dual unit vector Ey intersects the ISA orthogonally. Hence the
central (striction) point of the adjoint ruled surface of the moving axode lies on the common

normal line between the generating line and the ISA of the motion. By construction, the
Blaschke formula is

E} 0 P, 0 E;
Eg‘) 0 _Q:Jc 0 E3
where
det[X, X/, X" PX 3.4
Qv = qu +eq; = | H’X,H; | :QX1+1_—;12, 34

are called the Blaschke invariants of the dual curve X(¢). The dual arc length of the ruled
surface X(t) is

dS = ds + ds* = P,dt. (3.5)
In view of equation (3.5) we reparametrize X(¢) to obtain X = X(¢(.5)), such that
dE,
Ey=——. 3.6
s (30

Thus, as in the case of real spherical curves, the dual arc length parameter normalizes the
representation of the ruled surface X = X(#) such that its dual tangent vector E, has unit
magnitude. Hence, we can rewrite the Blaschke formula of X = X(¢) as

4 { Ex 0 1 0 E,
S| B = -1 0 A E, |, (3.7)
E; 0 —A, 0 E;

where A, is the dual spherical curvature of X = X(t). It is clear that the axis of curvature of
the ruled surface X = X(¢) is

U =cosO,E; +sin9,E;, (3.8)
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where ©, = 19, + v} is a dual angle between the lines X and U. Then the following relation
exists:
Qz

t0, = —. 3.9
co P, (3.9)
As in the case of a real spherical curve we may write for the dual curve X = X(t) the following
relations:

1 do
e — — __LL‘ — 2
Ko=grg To=—pg Ke=V1+AL (3.10)

where K, is the dual curvature, and T, is the dual torsion of the dual curve X = X(¢).

3.1. Inflection line congruence

Generally, as the motion proceeds, the lines in the moving space H,, trace ruled surfaces in
the fixed space Hy. As a result of the instantaneous motion, lines adjoint with the ISA trace
trajectories which are ruled surfaces. Under certain conditions the trajectories are referred to
as the inflection lines at an instant of the motion. Now, we show that the spatial equivalent of
the inflection circle of planar kinematics is a line congruence which we consider as inflection
line congruence. Therefore, we deduce that the set of lines with zero dual geodesic curvature
is the spatial equivalent of the inflection circle of planar kinematics. Then, from equations
(3.4), and (3.9), we have

OX1(1 — X2) + PX;

A, =cotO, = ; (3.11)
Q1 — X?2)2

Equation (3.11) can be easily rewritten in the following form:

X 1 X Q *
Apm i A= e e =2 31y
VX3 XZ A(XZ+X3): P p+ep*

From egs. (3.10) and (3.12) we have
A, =0 <<= K,=1. (3.13)

This equation is considered as the case for the inflection path. Since the osculating circle
of this path is a great circle on the sphere Ky and intersects the path in three consecutive
points. It can be shown that the axis of curvature U can only be as an inflection axis when
T, = 0, which does not hold in the general case. It follows from equation (3.11) that for all
points with A, = 0 their trajectories lie on a dual great circle up to third order. Also, from
equation (3.11), we can see that

Ay =0 < cot©, =0 < ﬁng, 9% = 0. (3.14)
In this instant, the lines X, E, and U constitute the Blaschke frame and are intersected at
the striction point of the ruled surface X = X(¢). Furthermore, we notice that the lines U
and E3 are coincident, which means that the line X moves about U with constant pitch equal
to the distribution parameter of the ruled surface E; = Es(¢), and the ruled surface X = X(t)
is a right helicoid [4]. According to equation (3.12), points with A, = 0 obey the equation

Co: AXi(X2+ X2)+ X3 =0, (3.15)
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which is the dual spherical equivalent of the inflection circle of planar kinematics. As we see
from equation (3.15) this spherical equivalent of the inflection circle is a dual spherical curve
of third degree. The real part of equation (3.15) identifies the inflection cone for the spherical
part of the motion H,,/H; and is given by

Cy: Oxy(x;+23) + a3 =0. (3.16)

The intersection of the inflection cone with a real unit sphere centered at the apex of the cone
defines a spherical curve. There is a plane for each line, associated with each direction of a
line of the inflection cone, defined by the following dual part of equation (3.15):

Tyt (254 23)(0x] + 6*21) + 2210 (w325 + T97h) + 25 = 0, (3.17)
where 1, x5, and z3 are the direction cosines of the line X and z7, 3, and z7 are given by

T = (paxs — p3T2), T3 = (P31 — p1x3), Ty = (p1a — po1), (3.18)

where p1, p2, and ps are the components of the position vector from the origin in Hy to a line
belong to the associated plane of lines. Since the equation (3.15) is of third degree, this line
congruence consists of all common lines of two cubic line complexes (egs. (3.16) and (3.17)).
Hence the Pliicker coordinates of the lines X € Cg satisfy the equations (3.16), (3.17) and
the relations (1.3), and in general represent a ruled surface in the fixed space H.

3.2. Torsion line congruence

On the dual unit sphere the locus of points with T, = 0 is the spatial equivalent of the
cubic of stationary curvature of spherical kinematics [10]. If a dot denotes the derivation with
respect to the dual arc length of X = X(¢), then from equations (3.9) and (3.10) we get

—A,

T, =
14+ A2

(3.19)

in view of equation (3.10). It is clear that for all points with 7}, = 0 the trajectories lie on a
dual great circle up to third order. Furthermore, one can easily find

T,=0 < A, =C, C=c+ec*€D. (3.20)
Using equation (3.12) we can obtain the trajectories of all points with 7, = 0 as follows:
Cr: A[Xy(1—X2) —C(1— X2)2] + X3 =0, (3.21)

The equation (3.21) is a line congruence of degree six. The spatial equivalent of all lines
which satisfy eq. (3.21) can be called torsion line congruence. The real part of equation
(3.21) identifies the torsion cone for the spherical part of the motion H,,/Hy and is given by

Cyp: 6[an(1—a3) —c(1—a?)3] + 25 = 0. (3.22)

The intersection of the torsion cone with a real unit sphere centered at the apex of the cone
defines a spherical curve. As in above discussion, there are associated planes of lines with
each direction of the torsion cone, defined by

T (5 — 222 + 4eda /1 — x%) ]+ ay — (0" + ) (1 — 22)2 = 0. (3.23)
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3.3. Ball’s lines

At every instant of the motion K,,/K there are some points having A, = 0 and 7, = 0.
These points yield the dual spherical analogs of the Ball’s points of planar and spherical
motion. The common lines C; N Cr of the moving space H,,, with direction lying at C; N C}
and which are located at 7, N 7, will satisfy both equations (3.16) and (3.23). These lines
can be called the Ball’s lines (ruled surface) and have trajectories on great circle up to third
order.

4. Disteli formulae of spatial kinematics

In 1914 M. DiSTELI [9] succeeded in determining a curvature axis for the generating line
of a ruled surface and extended the famous planar construction of Euler-Savary to spatial
kinematics. The Disteli formula may be obtained directly by computing the dual spherical
curvature of X(t) in terms of spherical coordinates. Since X is a dual unit vector, we can
write out the components of X in the following form:

X =cos © R; + sin © cos ® Ry + sin © sin ® R;. (4.1)

This choice of coordinates is such that ® = ¢ + ep* is the dual angle between the central
normal of X(¢) and Ry measured about the ISA — this means a screw motion of angle ¢
about the ISA and distance ¢* along it carries Ry to the central normal E; of X(¢). The dual
angle © = 6 + 6* defines the position of X relative to the ISA of the motion H,,/Hj.

A similar set of coordinates may be used to identify the axis of curvature U. Since the
central normal E, is also normal to U, it is identified by the same dual angle ® about the
ISA of the motion H,,/H; (see Fig. 1 below). Denoting its dual angle with the ISA by
O, = 6. + 0 we have

U =cosO.R; +sin O, cos ® Ry + sin O, sin ¢ Rs;. (4.2)

The dual spherical radius of curvature ©, can be given by

0,=0-0, <= 0,=0-0., 0, =0"—-0". (4.3)
Then, we have the identity
A, =cot O, = cot(0 — 0,). (4.4)
Substituting equations (4.4) and (4.1) into (3.12), we obtain the following relation:
sin @
A(cot(© —0,) —cot O) = —5—, (4.5)
sin“ ©
which can be easily reduced to
A
t0, — cot® = . 4,
cot ©, — cot © s (4.6)

Equation (4.6) is the dual spherical Euler-Savary equation (compare with [22], Theorem 6).
By separating the real and the dual parts, respectively, we get

(cot 0. — cot @) sinp = 6, (4.7)
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(_IS-'\) I‘ U

Figure 1: The moved line X and its Disteli-axis U

and
o o*

sin?f, sin’@

©*(cot ., — cot f) cos ¢ — ( )singp:é*,

(4.8)

The spherical Euler-Savary equation (4.7) together with (4.8) are called the Disteli formulae

of spatial kinematics (compare [10]).

On the other hand, we can derive a second dual version of the Euler-Savary equation as

follows: From equations (3.4), (3.5), and (4.1) one finds easily
dS = Qsin Odt.
The combination of egs. (3.2) and (4.1) gives
Ri=cosOE; +sin© E;.
Then, by equations (3.7), the first derivative of R; with respect to dS is

dRy

ds ds

On the other hand, a simple calculation shows that

dR, _dt iR
ds — dS dt
It follows that
dR, P

dS ~ Qsin® Ro.

d
=(—sinOE; + COS@Eg)—@ + (cos © — A, sin O)E,.

(4.9)

(4.10)

(4.11)

(4.12)

(4.13)
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The validity of equation (4.13) is proved in [1]. The combination of egs. (3.2) and (4.1) leads
to

dR P ) . :
dSl = 056 (sin©cos PE; —sin® Ey — cosOsin ® E3). (4.14)
We have found, by equating the coefficients of E1, E5, E3 in equations (4.11) and (4.14), that
de P
5 sin © + q cos® =0 (4.15)
and
Psin®

cos© — A, sin® = — (4.16)

Qsin®
For the dual spherical curvature ©, we have (4.3). Substituting this into the left hand side
of equation (4.16) one finds

1 1
©—A,sin® = . 4.17
o S sin ® cot © — cot O, ( )
The combination of the eqs. (4.17) with (4.16) yields (4.6). Moreover, by substituting
Qf Qm
= cot©; and 5 = cot ©,,
into equation (4.15) one obtains
tO©; — cot O, :
(cot O = ot Om) _ Qo). (4.18)

cos @

This is the second Euler-Savary equation for dual spherical motion. Here, cot © s and cot ©,,
are called the dual spherical curvatures of the fixed and moving axodes, respectively [1].

4.1. Identification of lines of the inflection line congruence

In order to identify the lines of the inflection line congruence, from eqs. (3.14) and (4.3) we
have .
0—0.= BL 0 =0, (4.19)

Substituting the first equation of (4.19) into eq. (4.7), we obtain
sin ¢ tan® @ + 0 tan 6 + sin o = 0, (4.20)

which is a quadratic equation for the parameter tanf. Therefore, the explicit equation of 8

is expressed as

—5+ VA
2sin

tanf = (4.21)

where A = 6% — 4sin? . Then, according to equation (4.7), the explicit equation of 6, is
expressed as
sin f tan

dtanf +sinf’
where tan 6 is obtained from equation (4.21). Eqs. (4.21) and (4.22) not only represent the
concise explicit expressions of the inflection cone for the real spherical part of the motion,
but also provide a convenient tool for investigating the special cases of the inflection line
congruence. According to the value of A in (4.21), the geometric properties of the explicit
equation are discussed as follows:

tanf, = (4.22)
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1. If A > 0, then the two values of 6 can always be determined and the two lines L', and
L~ are defined. Therefore, there exists four solutions for ¢* in eq. (4.8).

2. If A =0, then from egs. (4.8) and (4.21) we have
3m o*

h="" o=~ 4.23
TP Seos s (4.23)

and there is a rang of values of ¢ for which 6* is undefined.
By substituting (4.21) into (4.8), with attention to equation (4.19), we get

P dcosp+ 0" sinp + %\/K = 0. (4.24)

Eq. (4.24) is linear in the position coordinates ¢* and 6* of the line X. Therefore, the lines
in a given fixed direction in the moving space H,, satisfying equation (4.24) lie on a plane.
Therefore, the inflection line congruence consists of a set of planes m, parallel to X, each of
which is associated with a direction of the cubic spherical inflection cone defined in equation
(3.16). The angle ¢ identifies the direction of the central normal E,, thus equation (4.21)
defines two lines L*, and L~ in the plane spanned by E, and the ISA. Note that the lines
LT and L~ are associated with the roots for a given # in eq. (4.21). All the lines L of the
moving space H,, parallel to X and also in the plane spanned by E, and the ISA satisfying
equation (4.19). The cubic spherical inflection cone and the associated plane of lines defines
the inflection line congruence.

If the parameters p, ¢, and §* in (4.24) are given and 0* (the distance along the central
normal E; from the ISA) is chosen as the independent parameter, then equation (4.24) takes

the form
VA 5*

- — 4.2
24 cos 90)9 ) tan g, (425)

It follows that the two lines Lt and L~ intersect the ISA at the distance —% tan . For the
direction ¢ = 0 these lines passing through the origin achieve their minimal slope $%. For
¢ = 7, these lines are parallel and on either side of the ISA at the distance F*/v/02? — 4.
These results provide a simple geometrical means for the geometrical properties of lines
of the inflection line congruence (Fig. 2). Thus, we have arrived into the well-known theorem

" = F(

g

Figure 2: The lines L™ and L~ for a given value of ¢



[10]:

R.A. Abdel-Baky: Inflection and Torsion Line Congruences 13

Any line in the space is intersected orthogonally by three lines of the inflection line

congruence.
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