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Abstract. It is well-known that the group of regular projective transforma-
tions of P3(R) is isomorphic to the group of projective automorphisms of Klein’s
quadric M4

2 ⊂ P5(R). We introduce the Clifford algebra Cℓ(3,3) constructed over
the quadratic space R(3,3) and describe how points on Klein’s quadric are em-
bedded as null vectors, i.e., grade-1 elements squaring to zero. Furthermore, we
discuss how geometric entities from Klein’s model can be transferred to this ho-
mogeneous Clifford algebra model. Automorphic collineations of Klein’s quadric
can be described by the action of the so called sandwich operator applied to vec-
tors v ∈ ∧1 V . Vectors correspond to null polarities in P3(R). We introduce a
factorization algorithm. With the help of this algorithm we are able to factorize
an arbitrary versor g ∈ Cℓ(3,3) into a set of non-commuting vectors vi ∈

∧1 V ,
i = 1, . . . , k, 1 ≤ k ≤ 6 corresponding to null polarities with g = v1 . . . vk. Thus,
we present a new method to factorize every collineation in P5(R) that is induced
by a projective transformation acting on P3(R) into a set of at most six involutoric
automorphic collineations of Klein’s quadric corresponding to null polarities re-
spectively skew-symmetric 4× 4 matrices. Moreover, we give an outlook for Lie’s
sphere geometry, i.e., the homogeneous Clifford algebra model constructed with
the quadratic form corresponding to Lie’s quadric Ln+1

1 ⊂ Pn+2(R).
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1. Introduction

Klein’s quadric denoted by M4
2 ⊂ P5(R) and subspace intersections of Klein’s quadric are

well-known (cf. [12] or [14]). The group of regular projective transformations of P3(R) is
isomorphic to the group of automorphic collineations of Klein’s quadric. Moreover, Cayley-
Klein geometries can be represented by Clifford algebras, where the group of Cayley-Klein
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isometries is given by the Pin group of the corresponding Clifford algebra (see [6]). Therefore,
we recall fundamental basics of Clifford algebras and recall the homogeneous Clifford algebra
model corresponding to Klein’s quadric. The relationsship between projective transformations
and elements of the Pin group is given. The full construction can be found in [8].

2. Geometric algebra

General introductions to Clifford algebras can be found for example in [4] and [11].

Definition 1. Let V be a real valued vector space of dimension n. Furthermore, let b : V 7→ R

be a quadratic form on V . The pair (V, b) is called quadratic space.

We denote the matrix corresponding to b by Bij with i ≤ j, j ≤ n. Therefore b(xi, xj) =
Bij for some basis vectors xi and xj .

Definition 2. The Clifford algebra is defined by the relations

xixj + xjxi = 2Bij , 1 ≤ i, j ≤ n. (1)

Usually, the algebra is denoted by Cℓ(V, b). By Silvester’s law of inertia we can always
find a basis {e1, . . . , en} of V such that e2i is either 1,−1 or 0.

Definition 3. The number of basis vectors that square to (1,−1, 0) is called signature (p, q, r).
If r 6= 0 we call the geometric algebra degenerated. We denote a Clifford algebra by Cℓ(p,q,r).
Remark 1. A quadratic real space with signature (p, q, 0) is abbreviated by R(p,q).

With the new basis {e1, . . . , en} the relations (1) become

eiej + ejei = 0, i 6= j.

In the remainder of this paper we shall abbreviate the product of basis elements with lists

e12...k := e1e2 . . . ek with 0 ≤ k ≤ n.

The 2n monomials ei1ei2 . . . eik , 0 ≤ k ≤ n, form the standard basis of the Clifford algebra.

Furthermore, a Clifford algebra is the direct sum
n⊕

i=0

∧iV of all exterior products
∧iV of any

grade 0 ≤ i ≤ n where ek1 . . . eki , k1 < · · · < ki form a basis of
∧iV . Therefore, a Clifford

algebra is a graded algebra, and its dimension is calculated by

dim Cℓ(p,q,r) =
n∑

i=0

dim
∧i

V =

n∑

i=0

(
n

i

)
= 2n.

Moreover, the Clifford algebra Cℓ(p,q,r) can be decomposed in an even and an odd part

Cℓ(p,q,r) = Cℓ+(p,q,r) ⊕ Cℓ−(p,q,r) =
n⊕

i=0
i even

∧i

V ⊕
n⊕

i=0
i odd

∧i

V .

The even part Cℓ+(p,q,r) is a subalgebra, because the product of two even graded monomials

must be even graded since the generators cancel only in pairs. Elements contained in
∧iV

are called i-vectors, and the R-linear combination of i-vectors i ≤ n is called a multi-vector.
A multi-vector A is called homogeneous if [A]i = A, i ≤ n where [ · ]m for m ∈ N denotes the
grade-m part of the multi-vector A. The product of invertible vectors is called a versor and
the product of vectors where at least one vector is not invertible is called a null versor.
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Definition 4. The center of a ring R is the set of all elements that commute with all other
elements

C(R) := {c ∈ R | cx = xc for all x ∈ R} .

We are interested in the center of a Clifford algebra (see [5, p. 95]). The center of a
Clifford algebra Cℓ(p,q,r) is
(1) C(Cℓ(p,q,r)) = {αe0 + βe12...n | α, β ∈ R} if n is odd,

(2) C(Cℓ(p,q,r)) = {αe0 | α ∈ R} if n is even.

For the even part the center is

(3) C(Cℓ+(p,q,r)) = {αe0 | α ∈ R} if n is odd,

(4) C(Cℓ+(p,q,r)) = {αe0 + βe12...n | α, β ∈ R} if n is even.

2.1. Clifford algebra automorphisms

For our purposes two automorphisms that exist on each Clifford algebra are interesting.

A. The conjugation is an anti-involution denoted by an asterisk (see [13]). Its effect on
generators is given by e∗i = −ei. There is no effect on scalars. Extending the conjugation by
using linearity yields

(ei1ei2 . . . eik)
∗ = (−1)keik . . . ei2ei1

with 0 ≤ i1 < i2 < · · · < ik ≤ n. The geometric product of a vector v =
n∑

i=1

xiei ∈
∧1V with

its conjugate results in

vv∗ = −x2
1 − x2

2 − · · · − x2
p + x2

p+1 + · · ·+ x2
p+q = −b(v, v),

where v = (x1, . . . xn)
T ∈ Rn.

Definition 5. The inverse element of a versor v ∈ Cℓ(p,q,r) is defined by v−1 :=
v∗

N(v)
with

N(v) := vv∗.

The map N : Cℓ(p,q,r) → Cℓ(p,q,r) is called the norm of the Clifford algebra. For gen-
eral multi-vectors M ∈ Cℓ(p,q,r) inverse elements exist and are defined through the relation
MM−1 = M−1M = 1, but the determination is more difficult and can be found in [3]. Note
that in general not every element is invertible.

B. The other automorphism we are dealing with is the main involution. It is denoted by α
and defined by

α(ei1ei2 . . . eik) = (−1)kei1ei2 . . . eik

for 0 ≤ i1 < i2 < · · · < ik ≤ n. The main involution has no effect on the even subalgebra and
it commutes with the conjugation, i.e., α(M∗) = α(M)∗ for arbitrary M ∈ Cℓ(p,q,r).

2.2. Clifford algebra products

For vectors a, b ∈
∧1V we can write the inner product in terms of the geometric product

a · b :=
1

2
(ab+ ba). (2)
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A generalization of the inner product to homogeneous multi-vectors can be found in [7]. For
A ∈

∧kV, B ∈
∧lV the generalized inner product is defined by

A ·B := [AB]|k−l| .

There is another product on vectors, i.e., the outer (or exterior) product

a ∧ b :=
1

2
(ab− ba). (3)

This product can also be generalized to homogeneous multi-vectors (see again [7]). For A ∈∧kV, B ∈
∧lV the generalized outer product is defined by

A ∧B := [AB]|k+l| .

From Eqs. (2) and (3) follows that for vectors the geometric product can be written as the
sum of the inner and the outer product

ab = a · b+ a ∧ b.

More general, this can be defined for multivectors with the commutator and the anti-
commutator product (see [10]). For treating geometric entities within this algebra context
the definition of a k-blade, the inner product null space, and its dual the outer product null
space is needed.

Definition 6. A k-blade is the k-fold exterior product of vectors v ∈
∧1 V . Therefore, a

k-blade can be written as
A = a1 ∧ a2 ∧ · · · ∧ ak.

If the k-blade squares to zero, it is called a null k-blade. The inner product null space (IPNS)
of a blade A ∈

∧kV (cf. [10]) is defined by

NI(A) :=
{
v ∈

∧1
V | v ·A = 0

}
.

Moreover, the outer product null space (OPNS) of a blade A ∈
∧kV is defined by

NO(A) :=
{
v ∈

∧1
V | v ∧ A = 0

}
.

Remark 2. The same set can be described with inner product or outer product null spaces.
In the non-degenrate case the change between both representations is achieved with the
pseudoscalar J = e1 . . . en

NO(A) = NI(AJ).

Lateron we work in a homogeneous Clifford algebra model, and therefore, it does not
matter from which side we multiply with the pseudoscalar, since the inner product respectively
outer product null space is not affected. Moreover, multiplication with the pseudoscalar
corresponds to the application of the polarity corresponding to the measure quadric. In the
degenerate case the Poincaré-identity has to be used (compare to [6]).
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2.3. Pin and Spin groups

With respect to the geometric product the units, i.e., the invertible elements of a Clifford
algebra denoted by Cℓ×(p,q,r) form a group.

Definition 7. The Clifford group is defined by

Γ(Cℓ(p,q,r)) :=
{
g ∈ Cℓ×(p,q,r) | α(g)vg−1 ∈

∧1
V for all v ∈

∧1
V
}
.

A proof that Γ(Cℓ(p,q,r)) is indeed a group with respect to the geometric product can be
found in [4]. We define two important subgroups of the Clifford group.

Definition 8. The Pin group is the subgroup of the Clifford group with N(g) = ±1.

Pin(p,q,r) :=
{
g ∈ Cℓ(p,q,r) | gg∗=±1 and α(g)vg∗ ∈

∧1
V for all v ∈

∧1
V
}
.

Furthermore, we define the Spin group by Pin(p,q,r) ∩ Cℓ+(p,q,r)

Spin(p,q,r) :=
{
g ∈ Cℓ+(p,q,r) | gg∗=±1 and α(g)vg∗ ∈

∧1
V for all v ∈

∧1
V
}
.

Remark 3. For non-degenerated Clifford algebras the Pin group is a double cover of the
orthogonal group of the quadratic space (V, b). Moreover, the Spin group is a double cover of
the special orthogonal group of (V, b) (see [4]).

3. The homogeneous Clifford algebra model corresponding to

Klein’s quadric

To construct a homogeneous Clifford algebra model, we use a vector space as model for the
projective space which is the base space of the model. Thus, we use R

6 as model space for
P5(R) together with the quadric form b given by the corresponding symmetric matrix

B =

(
O I
I O

)

where O denotes the 3 × 3 zero matrix and I the 3 × 3 identity matrix. The
∧1 V subspace

is identified with the vector space, and therefore, with the projective space. The square of a
general vector v =

∑6
i=1 xiei results in

vv = x1x4 + x2x5 + x3x6.

This is the equation of Klein’s quadric, and a vector corresponds to a point on Klein’s quadric
if it is a null vector, i.e., a vector squaring to zero. Since the Clifford algebra allows the
description of subspaces with the use of blades of higher grade, we can express linear line
manifolds within the homogeneous Clifford algebra model (see [8, 9]).

3.1. Linear line manifolds

Clifford algebras carry the subspace structure of Grassmann algebras together with the metric
properties derived with the corresponding Cayley-Klein geometry. Therefore, we construct
blades of grade k, k ≤ 5, and examine the geometric inner product and geometric outer
product null spaces.
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Two-blades: The exterior product of two vectors corresponds to a two-blade that describes
a line P 1

1 in P
5(R). We use the outer product null space to determine the set of points on P 1

1

contained inM4
2 , and therefore, the set of lines in P3(R) corresponding to the two-blade. If the

whole line P 1
1 is contained in M4

2 the corresponding two-blade is a null two-blade. Thus, the
outer product null space corresponds to a pencil of lines in P3(R) or to two lines in P3(R) that
may be identical. The inner product null space of a two-blade corresponds to a three-space
intersection with Klein’s quadric, i.e., a linear line congruence in P3(R).

Three-blades: Three-blades can be generated as the exterior product of three vectors and
describe two-spaces in P

5(R). The outer product null space of a three-blade corresponds to
the two-space intersection of the two-space P 2

1 described by the three-blade with M4
2 . If the

three-blade is a null three-blade P 2
1 is completely contained in Klein’s quadric and the outer

product null space corresponds to a bundle or a field of lines in P3(R). The outer product null
space of a non-null three-blade corresponds to a conic section of M4

2 that defines a regulus in
P3(R). In a dual way the inner product null space of a three-blade is the intersection of the
image of P 2

1 under the polarity corresponding to the measure quadric with Klein’s quadric.

Four-blades: Outer product null spaces of four-blades correspond to three-space intersec-
tions with Klein’s quadric, and the corresponding set of lines in P3(R) is a linear congruence
of lines. The dual of a three-space in P5(R) is a line. Thus, the inner product null space of a
four-blade is the intersection of this line with M4

2 .

Five-blades: Five-blades describe four-spaces in Klein’s model, and the intersection of a
four-space with Klein’s quadric results in a linear congruence of lines. The outer product null
space of a five-blade corresponds to a linear congruence of lines. Moreover, the inner produt
null space of a five-blade yields a vector.

3.2. Clifford group action

The null vectors correspond to points on Klein’s quadric. Moreover, the sandwich action of
an arbitrary versor on a null vector results in a null vector again. Thus Klein’s quadric is
mapped to itself. To examine the action of the whole Clifford group, we first investigate the
action of non-null vectors on null vectors.

Remark 4. Since we are working in a homogeneous Clifford algebra model, the multiplication
with a real factor does not change the geometric meaning of an algebra element. Therefore,
we use the conjugate element instead of the inverse element. Hence, the sandwich operator
that we use is given by

α(a)va∗ = aa∗(α(a)va−1).

This operator does not involve an inverse, and therefore, it can also be applied if the element
a is not invertible.

Sandwich action of vectors: Let a =
∑6

i=1 aiei and v =
∑6

i=1 xiei be two vectors with
aa 6= 0 and vv = 0. The action of the sandwich operator α(a)va∗ on the

∧1 V subspace can
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be expressed as product of a matrix with a vector. The matrix has the form:

M =




k1 a1a5 a1a6 a1a1 a1a2 a1a3
a2a4 k2 a2a6 a2a1 a2a2 a2a3
a3a4 a3a5 k3 a3a1 a3a2 a3a3
a4a4 a4a5 a4a6 k4 a4a2 a4a3
a5a4 a5a5 a5a6 a5a1 k5 a5a3
a6a4 a6a5 a6a6 a6a1 a6a2 k6




(4)

with
k1 = −a5a2 − a6a3, k2 = −a6a3 − a4a1, k3 = −a4a1 − a5a2,

k4 = −a5a2 − a6a3, k5 = −a6a3 − a4a1, k6 = −a4a1 − a5a2.

This involutoric automorphism of Klein’s quadric corresponds to a null polarity acting on
P3(R) (see [8]). Furthermore, the Clifford group is generated by invertible vectors, and there-
fore, all elements of the Clifford group correspond to compositions of null polarities in P3(R).
Moreover, this means that every element of Cℓ+(3,3) that is an even product of vectors cor-

responds to a collineation, and every element of Cℓ−(3,3) that is an odd product of vectors
corresponds to a correlation.

Collineations: A general element g ∈ Cℓ+(3,3) corresponding to a collineation is given by

g = g1e0+g2e12+g3e13+g4e14+g5e15+g6e16+g7e23+g8e24+g9e25+g10e26+ g11e34

+ g12e35+g13e36+g14e45+g15e46+g16e56+g17e1234+g18e1235+g19e1236+g20e1245

+ g21e1246+g22e1256+g23e1345+g24e1346+ g25e1356+g26e1456+g27e2345+g28e2346

+ g29e2356+g30e2456+g31e3456+g32e123456.

We derive constraints to this element by α(g)vg∗ ∈
∧1 V for all v ∈

∧1 V . If we try to
compute the corresponding collineation we have to distinguish the type of the collineation,
i.e., if it acts on points or on planes.

Action on points: First we assume g ∈ Cℓ+(3,3) corresponds to a collineation acting on
points. The automorphic collineation of Klein’s quadric induced by g can be transferred to
a collineation that acts on P3(R). Therefore, the element g ∈ Cℓ+(3,3) is applied to a null

three-blade corresponding to a bundle of lines under the constraint that g is a versor (see [8]).
This results in the matrix (mi,j), i, j = 0, . . . , 3, for the collineation with

m00 = g1−g20−g24−g32−g29+g9+g4+g13,

m11 = g24−g9+g20−g13−g32+g1+g4−g29,

m22 = g1−g13−g32−g4+g29+g9−g24+g20,

m33 = g24+g13+g29+g1−g4−g9−g20−g32,

and
m01 = 2(g7 + g17), m02 = 2(g18−g3), m03 = 2(g19+g2),

m10 = −2(g26+g16), m12 = 2(g5+g25), m13 = 2(g6−g22),

m20 = 2(g15−g30), m21 = 2(g8+g28), m23 = 2(g21+2g10),

m30 = −2(g31+g14), m31 = 2(g11−g27), m32 = 2(g23+g12).
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The system of equations
(mi,j) = (ci,j), i, j = 0, . . . , 3 , (5)

can be used to compute an element of Cℓ+(3,3) corresponding to a collineation acting on points

with matrix representation C = (ci,j), i, j = 0, . . . , 3. Therefore, constraint equations derived
from α(g)vg∗ ∈

∧1 V and gg∗ = ±1 are used.

Action on planes: Moreover, the same automorphic collineation of Klein’s quadric may
correspond to a collineation in P

3(R) that maps planes to planes. This action can also be
represented as matrix vector product. Therefore, the general element g ∈ Cℓ+(3,3) is applied to
a null three-blade corresponding to a field of lines. The action can be expressed as collineation
with matrix (mi,j), i, j = 0, . . . , 3 ,

m00 = g32−g20−g13−g29−g9−g24+g1−g4,

m11 = g1+g9+g20+g24+g13−g29+g32−g4,

m22 = g20+g29+g4+g13−g9−g24+g1+g32,

m33 = g9+g24+g29−g13+g1+g4−g20+g32,

and
m01 = 2(g16 − g26), m02 = −2(g15 + g30), m03 = 2(g14 − g31),

m10 = 2(g17 − g7), m12 = 2(g28 − g8), m13 = −2(g27 + g11),

m20 = 2(g3 + g18), m21 = 2(g25 − g5), m23 = 2(g23 − g12),

m30 = 2(g19 − g2), m31 = −2(g22 + g6), m32 = 2(g21 − g10).

Depending on the action of the collineation, i.e., if it acts on points or planes the elements of
the Spin group can be transferred to their matrix representations and vice versa.

Correlations: General elements of the odd part Cℓ−(3,3) have the form

h = h1e1+h2e2+h3e3+h4e4+h5e5+h6e6+ h7e123+h8e124+h9e125+h10e126+h11e134

+ h12e135+h13e136+h14e145+h15e146+h16e156+h17e234+h18e235+h19e236+h20e245

+ h21e246 + h22e256+h23e345+h24e346+h25e356+h26e456+h27e12345+h28e12346

+ h29e12356+h30e12456 + h31e13456+h32e23456.

Their action on points or planes of the three-dimensional projective space P
3(R) can be

described by the sandwich action on null three-blades corresponding to two-spaces contained
entirely in M4

2 that correspond to bundles of lines or fields of lines.

Action on planes: The action of a general element h ∈ Cℓ−(3,3), when applied to a null
three-blade corresponding to a two-space contained in Klein’s quadric which is the image of
a field of lines under the Klein map, can be expressed as 4× 4 matrix (mi,j), i, j = 0, . . . , 3 ,
that determines a correlation with m00=−2h7, m11=−2h16, m22=2h21, m33=−2h23, and

m01 = h9+h13−h29+h1, m02 = h2−h8+h28+h19, m03 = h3−h27−h18−h11,

m10 = h29+h13+h9−h1, m12 = h6−h22+h15+h30, m13 = h31−h25−h5−h14,

m20 = h19−h8−h2−h28, m21 = h15−h30−h6−h22, m23 = h4−h20+h32+h24,

m30 = h27−h11−h18−h3, m31 = h5−h31−h25−h14, m32 = h24−h4−h32−h20.
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Action on points: The same element h ∈ Cℓ−(3,3) can be interpreted as correlation in P3(R)
that acts on points and maps them to planes. This action can be described by a product of a
matrix m(i,j), i, j = 0, . . . , 3 , with a vector. This matrix can be expressed with the coefficients
of h ∈ Cℓ−(3,3) and has the entries m00=2h26, m11=2h17, m22=−2h12, m33=2h10, and

m01 = h32−h4−h20−h24, m02 = h14−h31−h25−h5, m03 = h30+h15+h22−h6,

m10 = h4−h32−h24−h20, m12 = h18−h27−h3−h11, m13 = h2+h8+h19−h28,

m20 = h31+h14−h25+h5, m21 = h3−h11+h27+h18, m23 = h9−h13−h1−h29,

m30 = h15−h30+h6+h22, m31 = h8−h2+h28+h19, m32 = h1−h13+h29+h9.

Depending on the action of the correlation, i.e., if it acts on points or planes, the elements of
the Pin group can be transferred to their matrix representations and vice versa.

4. A factorization algorithm and its application

At this point we recall a theorem from [8].

Theorem 1. Every regular collineation or correlation can be expressed as the product of six
null polarities at the most.

For a proof we refer to [8] or [9]. With the help of a modified version of a factorization
algorithm introduced in [10, p. 107] we factorize arbitrary regular 4 × 4 matrices into the
product of six skew symmetric matrices at the most. Thus, we present a new method to
factorize regular projective transformations. Let [g]k denote the grade-k part of the versor g.
For example, a versor g with maximal grade four can be written as g = [g]0 + [g]2 + [g]4. The
part of maximal grade [g]max is always a blade (see [10]). The non-null vector v ∈

∧1 V that
is contained in NO([g]max) satisfies

vgmax = v · gmax. (6)

Hence, g′ = gv−1 reduces the grade of the maximum blade of g by one. With Remark 4 this
can be simplified to g′ = gv∗ for homogeneous Clifford algebra models. Moreover, for vectors
v ∈

∧1 V we have v∗ = −v, and therefore, we can use g′ = gv to reduce the degree of the
initial versor g. The result of this product is again a versor. Repeated application of this
process results in a set of vectors v1, . . . , vmax whose geometric product results in the versor
g except for a real factor. Note that this procedure may fail for null versors. We show this
algorithm in an example

Example 1. Let K ∈ PGL(P3(R)) be a collineation of P3(R) that acts on points

K =




1 0 3 0
1 1 0 1
1 2 1 0
1 1 2 1


.

To get a versor g ∈ Cℓ+(3,3) corresponding to this collineation we have to solve the system (5).

2(g7+g17) = 0, 2(g18−g3) = 3, 2(g19+g2) = 0, −2(g26+g16)=1,

2(g5+g25) = 0, 2(g6−g22) = 1, 2(g15−g30) = 1, 2(g8+g28) = 2,

2(g21+2g10) = 0, −2(g31+g14) = 1, 2(g11−g27) = 1, 2(g23+g12) = 2,
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g1−g20−g24−g32−g29+g9+g4+g13 = 1,

g24−g9+g20−g13−g32+g1+g4−g29 = 1,

g1−g13−g32−g4+g29+g9−g24+g20 = 1,

g24+g13+g29+g1−g4−g9−g20−g32 = 1.

There are two possibilities to guarantee that the resulting versor is in the Spin group, i.e.,
gg∗ = 1 or gg∗ = −1. We compute both solutions and start with the constraint equations
implied by α(g)vg∗ ∈ ∧1 V for all v ∈ ∧1 V and gg∗ = 1. The corresponding Spin group
element has the form:

g+ =
1

8
√
2

(
7e0+6e12−6e13+e14−2e15−6e23+6e24−e25−2e26+2e34+6e35−5e36−4e45

+ 2e46+6e1234−4e56+6e1235−6e1236−5e1245+2e1246−4e1256+2e1345−e1346+2e1356

− 2e2345+2e2346+e2356−2e2456−e123456
)
.

If we demand that gg∗ = −1 the resulting Spin group element is computed as

g− =
1

8
√
2

(
e0−6e12−6e13−e14+2e15+4e16+6e23+2e24+e25+2e26+2e34+2e35+5e36

+ 2e46−6e1234+6e1235+6e1236+5e1245−2e1246+6e1345+e1346−2e1356−4e1456

− 2e2345+6e2346−e2356−2e2456−4e3456−7e123456
)
.

Both elements g+ and g− correspond to the same collineation whose entries can be computed
with the coefficients of g+ and g− and (mi,j), i, j = 0, . . . , 3.

Depending on the matrix of the projective transformation, i.e., if it describes a collineation
or correlation that acts on points or planes, the corresponding versor can be computed with
the use of the corresponding systems derived in the previous section.

Remark 5. The matrix

K =




−1 0 3 0
1 1 0 1
1 2 1 0
1 1 2 1




results in a versor with complex entries. Thus, we have to work over the complex numbers.

Moreover, it can be verified that g+ =̂ Jg−, where ‘=̂’ means ‘equal up to a scalar factor’.
Multiplication with the pseudoscalar does not change the action of the versor since

(Jg)v(Jg)∗ = α(J)α(g)vg∗J∗ = JJ∗α(g)vg∗ =̂ α(g)vg∗.

Remark 6. Multiplication with an element of the center C(Cℓ(3,3)) = ae0 + be123456, a, b ∈ C,
has no effect on the sandwich action of a versor. Therefore, we have a group isomorphism

PGL(4,C)/C(PGL(4,C)) → Pin (Cℓ(3,3))/C(Cℓ(3,3)).

Now we factorize the element g+ into vectors that correspond to null polarities. Due
to the homogeneous setting we start with the numerator of g+ of Example 1 denoted by
g (= 8

√
2g+).
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Example 2. To factorize g , we first observe that [g]max = [g]6 = −e123456. Multiplication
with a scalar does not change the outer product null space of a k-blade, and therefore follows

NO([g]max) = NO(e123456) = {v ∈
∧1

V }.

We can now choose an arbitrary non-null vector v1 ∈ NO([g]max). Let v1 = e1+e4 be the first
factor. The versor g1=gv1 has maximal grade five and the grade-5 part is given by

[g1]5 =̂e23456−4e12345+4e12346−3e12456+e13456.

The outer product null space of [g1]5 is computed as

NO([g1]5) = {a ∈
∧1

V | a ∧ [g1]5 = 0}.

This results in the set of all vectors a =
∑6

i=1 aiei satisfying a1−a2−3a3+4a5+4a6=0. We
choose the non-null vector v2 = 4e2+e5 ∈ NO([g1]5) and compute the grade-four part of
g2=g1v2

[g2]4 =̂ e2356−12e1234+5e2345−4e1236+4e1235+e1245+e1345−8e2346

+ 4e2456−e3456+8e1246−3e1256−4e1346+e1356+e1456.

Again we determine a vector contained in the outer product null space of [g2]4. This null
space is three-dimensional and spanned by the vectors

b1 = e1+5e2+e6, b2 = 4e1+8e2+e5, b3 = e1+e2+e4, b4 = e1+4e2−e3.

We choose the non-null vector b3 and set v3 = b3. In the next step we have to compute the
outer product null space of [g3]3 with g3 = g2v3 that is two-dimensional and spanned by

b1 = e1+4e2−3e3, b2 = 3e1+7e2−e4+e5, b3 = 4e2−e4+e6 .

To keep the factors simple, we set

v4 = b1 + b3 = −e1 + e3 − e4 + e6.

The reduced versor g4 = g3v4 has maximal grade two and the outer product null space of the
grade-two part is spanned by the two vectors:

b1 = 2e1+3e2+e3−e4+e5, b2 = 4e2−e4+e6.

Note that the vector b2 is a null vector, and therefore, we choose v5 = b1 as the next factor.
The last factor v6 is obtained by

v6 = g4v5 = 8e1+8e2+4e3−3e4+4e5−e6.

This results in the factorization
v6v5v4v3v2v1 =̂ g.

The next step is to carry over the factorization to projective transformations. Each vector
corresponds to a null polarity. Therefore, we aim at a matrix product of the form

M6M5M4M3M2M1 =̂ K.
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Since we started with a collineation that maps points to points, we have to ensure that the
vectors are transferred to projective mappings of the right type. For example, the product
M2M1 must be the matrix corresponding to a collineation that maps points to points. Hence,
M1 has to correspond to a null polarity acting on points and M2 to a null polarity acting on
planes. Thus, the matrix product has to be understood as

M6M
∗
5M4M

∗
3M2M

∗
1 =̂ K,

where M∗
i , i = 1, 3, 5 , is a null polarity acting on points and Mi, i = 2, 4, 6 , is a null polarity

acting on planes. We compute the matrices M∗
i and Mi with the matrix representations

computed in section 3.2. This results in the six null polarities:

M∗
1 =



0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0


, M2 =




0 0 4 0
0 0 0 −1
−4 0 0 0
0 1 0 0


, M∗

3 =



0 −1 0 0
1 0 0 1
0 0 0 −1
0 −1 1 0


 ,

M4 =




0 −1 0 1
1 0 1 0
0 −1 0 −1
−1 0 1 0


, M∗

5 =




0 1 −1 0
−1 0 −1 3
1 1 0 −2
0 −3 2 0


, M6 =




0 8 8 4
−8 0 −1 −4
−8 1 0 −3
−4 4 3 0


.

With these six skew symmetric matrices it can be verified that

M6M
∗
5M4M

∗
3M2M

∗
1 = −1

4
K.

Thus, we have found one possible factorization of the initial projective mapping into six null
polarities.

It is worth to check the maximal grade of a versor that is the solution of the other systems
that were derived in Section 3.2 if a factorization of a 4× 4 matrix is searched. The maximal
grade of the versor determines the number of skew-symmetric matrices that are necessary to
factorize the given matrix and for correlations the maximal possible grade is five.

5. The homogeneous Clifford algebra model of Lie’s sphere geometry

The same construction that we described for Klein’s quadric can be applied to any quadric. As
a second example that shall demonstrate the power of this calculus, we examine Lie sphere
geometry in a Clifford algebra context. Lie sphere geometry is the geometry of oriented
spheres. Especially, for the three-dimensional case the set of oriented spheres can be mapped
to a hyperquadric L4

1 in five-dimensional projective space P5(R). The construction goes back
to S. Lie and was treated again by W. Blaschke (cf. [1]). A modern treatment of this topic
can be found in [2]. Moreover, the Lie construction can be achieved for arbitrary dimension.

5.1. Lie’s quadric

A point model for the set of oriented hyperspheres, hyperplanes, and points (considered as
spheres of radius 0) of Rn is given by the projective hyperquadric

Ln+1
1 : −x2

0 + x2
1 + · · ·+ x2

n+1 − x2
n+2 = 0.
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For our purposes it is convenient that we restrict ourselves to the case of oriented spheres
in three-dimensional Euclidean space. Nevertheless, we formulate the calculus for arbitrary
dimensions. The quadric Ln+1

1 ⊂ Pn+2(R) is of dimension n+1, degree 2, and is called Lie’s
quadric. The maximal dimension of subspaces contained by Ln+1

1 is 1, and therefore, there are
no two-spaces contained entirely in Ln+1

1 . Oriented hyperspheres, hyperplanes, and points are
represented in Lie coordinates as shown in Table 1. It is not difficult to recover the Euclidean
representation from Lie coordinates. If x0 + x1 = 0 and if xn+2 = 0 we have the point at
infinity. If xn+2 6= 0 we bring the point to the form (h,−h,N, 1)T R by dividing by xn+2. If
x0 + x1 6= 0 and if xn+2 = 0, we have a proper point. We obtain its normal form by dividing
by x0 + x1. The last case is if xn+2 6= 0. In this case we have an oriented sphere. Again we
get its normal form through division by x0 + x1.

Table 1: Correspondence between Euclidean entities and Lie-coordinates.

Euclidean Lie

points: u ∈ Rn

(
1 + u · u

2
,
1− u · u

2
, u1, . . . , un, 0

)T

R

∞ (1,−1, 0, . . . , 0, 0)T R

sphere: center p ∈ Rn, signed radius r
(
1 + p · p− r2

2
,
1− p · p+ r2

2
, p1, . . . , pn, r

)T

R

planes: u ·N = h, unit normal N ∈ Rn (h,−h,N1, . . . , Nn, 1)
T
R

The fundamental invariant of Lie sphere geometry is the oriented contact of spheres.
It is not difficult to show that two spheres are in oriented contact if, and only if, their
Lie coordinates s1, s2 ∈ Ln+1

1 satisfy ℓ(s1, s2) = 0, where ℓ( · , · ) denotes the bilinear form
corresponding to Ln+1

1 .

Especially for n = 3 the lines on L4
1 correspond to so called parabolic pencils of spheres.

These pencils consist of all oriented spheres with one common point of contact. Furthermore,
each parabolic pencil contains exactly one point, i.e., sphere of radius 0. If this point sphere
is not ∞ the pencil contains exactly one oriented hyperplane Σ.

Remark 7. Conics on Lie’s quadric correspond to Dupin cyclides, that are the envelopes of
two one-parameter families of spheres.

The group of Lie transformations shows up as the group of projective automorphisms of
Ln+1
1 . This group is isomorphic to O(n+1, 2)/±1 (see Cecil [2]). Since the Pin group of the

Clifford algebra Cℓ(n+1,2,0) is a double cover of O(n + 1, 2) we can use this group to describe
Lie transformations.

5.2. The homogeneous Clifford algebra model corresponding to Lie sphere

geometry

In this section we discuss the Clifford algebra model for Lie sphere geometry in the three-
dimensional case. Therefore, the projective space we are dealing with is a five-dimensional
space P5(R). The homogeneous Clifford algebra model is obtained with the six-dimensional
real vector space R6 as a model for the projective image space together with the quadratic
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form of Lie’s quadric

Q =




−1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 −1




.

This algebra has signature (p, q, r) = (4, 2, 0) and is of dimension 26 = 64. Again, the
advantage of the Clifford algebra lies in the common description of the application of Lie
transformations. Arbitrary projective subspaces of P5(R) are transformed by the sandwich
operator. As an example we determine all Lie inversions that leave the point at infinity fixed,
i.e., the subgroup of Laguerre transformations. The point at infinity has the form p = e1−e2
(compare to Table 1). A general invertible vector is given by a =

∑6
i=1 aiei with aa 6= 0. The

application of the sandwich operator to p results in

α(a)pa∗ =− 2(a1+a2)a3e3−2(a1+a2)a4e4 − (a21+a22+a23+a24+a25−a26+2a2a1)e1

− (a21+a22−a23−a24−a25+a26+2a2a1)e2 − 2(a1+a2)a5e5−2(a1+a2)a6e6.

To guarantee that this entity represents the point at infinity, we first see that a1+a2=0. With
this condition the coefficients of e3, e4, e5, and e6 vanish. Moreover, the sum of the coefficients
e1 and e2 has to vanish. This results in

−2a21 − 2a22 − 4a2a1 = −2(a1 + a2)
2 = 0.

Therefore, the only condition to a Lie inversion that it represents a Laguerre transformation
is given by a1 + a2 = 0, and the subgroup of Laguerre transformations is generated by all
vectors with a1 + a2 = 0.

Remark 8. Analogue to Theorem 1 we can formulate a similar theorem for Lie sphere
geometry in arbitrary dimensions. Since the projective model space for n-dimensional Lie
sphere geometry has dimension n+ 2, the vector space for the homogeneous Clifford algebra
model has dimension n + 3. That means, the highest grade is equal to n + 3, and therefore,
every group element can be written as the composition of n+3 vectors at the most. Especially
for the case n = 3, we have similar results as for Klein’s quadric. In this case six involutions
are necessary to generate the whole group.

Let us reformulate this remark as a theorem.

Theorem 2. Every Lie transformation in n-dimensional space is the composition of n+3
involutions, that correspond to the sandwich action of vectors.

6. Conclusion

With the help of the homogeneous Clifford algebra model corresponding to line geometry
we introduced null polarities as fundamental involutions. After we transferred linear line
manifolds to this model, we derived the correspondence between regular projective trans-
formations and versors. Every versor can be factorized into vectors that correspond to null
polarities. Therefore, every 4× 4 matrix corresponding to a projective transformation can be
expressed as the product of six skew symmetric matrices at the most. Moreover, we presented
a homogeneous Clifford algebra model corresponding to Lie sphere geometry.
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