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Abstract. We consider hypersurfaces in the real Euclidean space R
n+1 (n ≥ 2)

which are relatively normalized. We give necessary and sufficient conditions a) for
a surface of negative Gaussian curvature in R

3 to be ruled, b) for a hypersurface
of positive Gaussian curvature in R

n+1 to be a hyperquadric and c) for a relative
normalization to be constantly proportional to the equiaffine normalization.
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1. Preliminaries

In this section we fix our notation and state some of the most important notions and formulae
concerning the relative differential geometry of hypersurfaces in the real Euclidean space Rn+1

(n ≥ 2). Our presentation is mainly based on the texts [3] and [5]. For a more detailed
exposition of the subject the reader might read [4].

In the Euclidean space R
n+1 let Φ = (M,x) be a Cr-hypersurface defined by an n-

dimensional oriented and connected Cr-manifold M (r ≥ 3) and by a Cr-immersion x : M →
R

n+1, whose Gaussian curvature KI never vanishes on M . A Cs-mapping y : M → R
n+1

(r > s ≥ 1) is called a Cs-relative normalization, if

rank
(

{x/1, x/2, . . . , x/n, y}
)

= n + 1, (1a)

rank
(

{x/1, x/2, . . . , x/n, y/i}
)

= n, ∀ i = 1, 2, . . . , n, (1b)

for all (u1, u2, . . . , un) ∈ M , where

f/i :=
∂f

∂ui
, f/ij :=

∂2f

∂ui∂uj
, etc.
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denote partial derivatives of a function (or a vector-valued function) f . We will also say that
the pair (Φ, y) is a relatively normalized hypersurface of Rn+1.

The covector X of the tangent vector space is defined by

〈X, x/i〉 = 0 and 〈X, y 〉 = 1 (i = 1, 2, . . . , n) , (2)

where 〈 , 〉 denotes the standard scalar product in R
n+1.

The quadratic differential form

G = Gij du
i duj, where Gij := 〈X, x/ij〉,

is definite or indefinite, depending on whether the Gaussian curvature KI of Φ is positive or
negative, and is called the relative metric of Φ. From now on we use Gij as the fundamental
tensor for “raising and lowering the indices” in the sense of classical tensor notation.

Let ξ : M → R
n+1 be the Euclidean normalization of Φ. By virtue of (1) the support

function of the relative normalization y, which is defined by

q := 〈ξ, y 〉 : M → R, q ∈ Cs(M),

never vanishes on M . In the sequel we choose ξ and X to have the same orientation. Then q

is positive everywhere on M .
Because of (2) we have

X = q−1ξ, Gij = q−1hij , G(ij) = q h(ij), (3)

where hij are the components of the second fundamental form II of Φ and h(ij) resp. G(ij) the
inverses of the tensors hij and Gij . Let ∇

G
i denote the covariant derivative corresponding to

G. By
Ajkl := 〈X, ∇G

l ∇G
k x/j〉

the (symmetric) Darboux tensor is defined. It gives occasion to define the Tchebychev-vector

T of the relative normalization y

T := Tm x/m, where Tm :=
1

n
Aim

i ,

and the Pick-invariant

J :=
1

n(n− 1)
AjklA

jkl.

We mention, that when the second fundamental form II is positive definite, so does G and in
this case J ≥ 0 holds on M (see, e.g., [2, p. 133]).

Denoting by HI the Euclidean mean curvature of Φ, by ∇II resp. △II the first resp. the
second Beltrami differential operator with respect to the fundamental form II of Φ and by
SII the scalar curvature of II, the Pick-invariant is computed by (see [3])

J =
3(n+ 2)

4n(n− 1)
q∇II

(

ln q, ln q − ln |KI |
2

n+2

)

+ q
1

n (n− 1)
P, (4)

where P is the function [6, p. 231]

P = n(n− 1) (SII −HI) + (2KI)
−2∇IIKI . (5)
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The relative shape operator has the coefficients Bj
i such that

y/i =: −B
j
i x/j .

The mean relative curvature, which is defined by

H :=
1

n
tr
(

B
j
i

)

,

is computed by (see [3])

H = q HI +
q

n

[

△II (ln q) +∇II

(

ln q, ln
(

q |KI |
−

1

2

)) ]

. (6)

The scalar curvature S of the relative metric G, which is defined formally and is the curvature
of the Riemannian or pseudo-Riemannian manifold (Φ, G), the mean relative curvature H and
the Pick-invariant J satisfy the Theorema Egregium of relative differential geometry, which
states that

H + J − S =
n

n− 1
‖T‖G, (7)

where ‖T‖G := Gij T
i T j is the relative norm of the Tchebychev-vector T .

2. The Tchebychev-function and some related formulae

We consider the function

ϕ :=

(

q

qaff

)
n+2

2n

, (8)

where

qaff := |KI |
1

n+2

is the support function of the equiaffine normalization yaff and we call it the Tchebychev-

function of the relative normalization y. It is known, that for the components of the
Tchebychev-vector holds [3, p. 199]

T i = G(ij)(lnϕ)/j .

Hence, by (3c), we obtain

T = ∇G (lnϕ, x) = q∇II (lnϕ, x)

and
∥

∥T
∥

∥

G
= ∇G (lnϕ) = q∇II (lnϕ) . (9)

We notice that the Tchebychev-vector vanishes identically iff the Tchebychev-function ϕ is
constant, i.e., by (8), iff q = c qaff, c ∈ R

∗, which means that the relative normalization y and
the equiaffine normalization yaff are constantly proportional.

From the relation (4) we obtain the Pick-invariant of the Euclidean normalization (q = 1)

Jeuk =
1

n(n− 1)
P.
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Hence by using (5) we find

Jeuk = SII −HI +
(n + 2)2

4n(n− 1)
∇II (ln qaff) . (10)

From (8) and (10) we conclude that the relation (4) can be written as

J

q
=

3(n+ 2)

4n(n− 1)

[

4n2

(n + 2)2
∇II (lnϕ)−∇II (ln qaff)

]

+ Jeuk. (11)

For the equiaffine (ϕ = 1) Pick-invariant Jaff we deduce

Jaff

qaff
=

−3(n + 2)

4n(n− 1)
∇II (ln qaff) + Jeuk. (12)

By subtracting (12) from (11) we obtain

J

q
−

Jaff

qaff
=

3n

(n− 1)(n+ 2)
∇II (lnϕ) . (13)

Similarly, taking (6) and (8) into account, we find

H

q
−HI =

2

n+ 2
△II (lnϕ) +

4n

(n + 2)2
∇II (lnϕ) (14)

−
n− 2

n+ 2
∇II (lnϕ, ln qaff) +

1

n
△II (ln qaff)−

1

2
∇II (ln qaff) .

For the mean equiaffine curvature Haff we infer

Haff

qaff
−HI =

1

n
△II (ln qaff)−

1

2
∇II (ln qaff) . (15)

By subtracting (15) from (14) we obtain

H

q
−

Haff

qaff
=

2

n+ 2
△II (lnϕ) +

4n

(n+ 2)2
∇II (lnϕ)−

n− 2

n + 2
∇II (lnϕ, ln qaff) . (16)

The relations (7), (9), (13) and (16) may be combined into

S

q
−

Jaff +Haff

qaff
=

2

n + 2
△II (lnϕ)−

n(n− 2)

(n + 2)2
∇II (lnϕ)−

n− 2

n+ 2
∇II (lnϕ, ln qaff) ,

and with reference to

Saff = Jaff +Haff, (17)

where Saff denotes the inner equiaffine curvature, we conclude that

S

q
−

Saff

qaff
=

2

n+ 2
△II (lnϕ)−

n(n− 2)

(n + 2)2
∇II (lnϕ)−

n− 2

n + 2
∇II (lnϕ, ln qaff) . (18)
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3. Characterizations of ruled surfaces in R
3 and of hyperquadrics

in R
n+1

Let now α be any real number. By using the relations (13) and (16)–(18) we obtain

α(S −H) + J

q
= (α + 1)

Jaff

qaff
−

n [α(n− 1)− 3]

(n− 1) (n+ 2)
∇II lnϕ.

For α =
3

n− 1
we get

3(S −H) + (n− 1)J

q
= (n + 2)

Jaff

qaff
. (19)

This result implies the following

Proposition 1. Let (Φ, y) be a relatively normalized hypersurface of Rn+1. Then the function

3(S −H) + (n− 1)J

q

is independent of the relative normalization and vanishes iff Jaff = 0.

On account of the relations (7) and (19) we infer that

‖T‖G =
(n− 1) (n+ 2)

3n

(

J −
q

qaff
Jaff

)

=
n + 2

n

(

H − S +
q

qaff
Jaff

)

. (20)

From (20) follows immediately

Jaff = 0 ⇐⇒ 3n
∥

∥T
∥

∥

G
= (n− 1) (n+ 2)J ⇐⇒ n

∥

∥T
∥

∥

G
= (n + 2) (H − S) . (21)

We suppose that n = 2 andKI < 0. It is well known (see [1, p. 125]), that the vanishing of Jaff

characterizes the ruled surfaces of R3 among the surfaces of negative Gaussian curvature. So,
from the relations (19) and (21) we obtain the following characterizations for ruled surfaces
in R

3:

Proposition 2. Let Φ ⊂ R
3 be a surface of negative Gaussian curvature. Then Φ is a ruled

surface iff there exists a relative normalization of Φ, for which one of the following equivalent

properties holds true:

(a) 3(S −H) + J = 0,

(b) 3‖T‖G = 2J ,

(c) ‖T‖G = 2(H − S).

Let now be n ≥ 2 and KI > 0. Moreover, without loss of generality, we assume that
the second fundamental form II is positive definite. It is also well-known (see [5, p. 380])
that in this case the equiaffine Pick-invariant is non-negative and that it vanishes iff Φ is a
hyperquadric. So, by using the relations (19) and (21), we can characterize the hyperquadrics
of Rn+1 among all hypersurfaces of positive Gaussian curvature as the following proposition
states:

Proposition 3. Let Φ ⊂ R
n+1 be a hypersurface of positive Gaussian curvature. Then Φ is

a hyperquadric iff there exists a relative normalization of Φ, for which one of the following

equivalent properties holds true:

(a) 3(S −H) + (n− 1)J = 0,

(b) 3n
∥

∥T
∥

∥

G
= (n−1)(n+2)J ,

(c) n
∥

∥T
∥

∥

G
= (n+ 2)(H − S).
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4. The vanishing of the Pick-invariant and some integral formulae

Another consequence of relation (13) are the following two propositions:

Proposition 4. Let Φ ⊂ R
n+1 be a hypersurface of positive Gaussian curvature. For the

Pick-invariant of every relative normalization y the following relation is valid

J

q
−

Jaff

qaff
≥ 0. (22)

The equality holds iff the relative normalization y and the equiaffine normalization yaff are

constantly proportional.

Proof. Because of the assumption KI > 0 we have ∇II (lnϕ) ≥ 0. So the inequality follows
from (13). Furthermore,

J

q
−

Jaff

qaff
= 0 ⇐⇒ ∇II (lnϕ) = 0 ⇐⇒ ϕ = const. ⇐⇒ q = c qaff, c ∈ R

∗,

which proves the assertion.

Proposition 5. Let Φ ⊂ R
n+1 be a hypersurface of positive Gaussian curvature. If there is a

relative normalization y, whose Pick-invariant vanishes identically, then Φ is a hyperquadric.

Furthermore y is constantly proportional to the equiaffine normalization yaff.

Proof. Let y be a relative normalization of Φ with vanishing Pick-invariant. Then, from the
relation (13) we obtain

−
Jaff

qaff
=

3n

(n− 1)(n+ 2)
∇II (lnϕ) . (23)

Because of Jaff ≥ 0 and ∇II lnϕ ≥ 0, both members of (23) vanish. But Jaff ≥ 0 implies that
Φ is a hyperquadric and ∇II lnϕ = 0 implies that the function ϕ is constant, which means
that q = c qaff, c ∈ R

∗, and the proof is completed.

We conclude the paper by considering closed surfaces of positive Gaussian curvature
(ovaloids) in R

3. For n = 2 relation (16) becomes

H

q
−

Haff

qaff
=

1

2
△II (lnϕ) +

1

2
∇II (lnϕ),

from which we have

Proposition 6. Let (Φ, y) be a relatively normalized ovaloid in R
3. Then

∫∫

M

(

H

q
−

Haff

qaff

)

dOII ≥ 0,

where dOII is the element of area of Φ with respect to the second fundamental form II of Φ.
The equality is valid iff the relative normalization y is constantly proportional to the equiaffine

normalization yaff.

Furthermore, for n = 2, relation (18) becomes

S

q
−

Saff

qaff
=

1

2
△II (lnϕ). (24)

From this equation we easily deduce:
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Proposition 7. Let (Φ, y) be a relatively normalized ovaloid in R
3. If the function

S

q
−

Saff

qaff

does not change its sign on M , then the relative normalization y and the equiaffine normal-

ization yaff are constantly proportional.

Finally, from the relations (10), (12), (15) and (17) for n = 2 we obtain

Saff

qaff
− SII =

1

2
△II (ln qaff). (25)

If we now integrate (24) and (25) over M we get

∫∫

M

S

q
dOII =

∫∫

M

Saff

qaff
dOII =

∫∫

M

SII dOII = 2πχ,

where χ = 2 is the Euler characteristic of Φ. Hence we arrive at

Proposition 8. Let (Φ, y) be a relatively normalized ovaloid in R
3. Then the following integral

formula is valid
∫∫

M

S

q
dOII = 4π.

Corollary 9. For an ovaloid Φ ⊂ R
3 the following integral formula is valid

∫∫

M

Saff

qaff
dOII = 4π.
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