Characterizations of Ruled Surfaces in \mathbb{R}^3 and of Hyperquadrics in \mathbb{R}^{n+1} via Relative Geometric Invariants

Stylianos Stamatakis, Ioannis Kaffas, Ioanna-Iris Papadopoulou

Department of Mathematics, Aristotle University of Thessaloniki GR-54124 Thessaloniki, Greece email: stamata@math.auth.gr

Dedicated to Georg Stamou on the occasion of his 70th birthday

Abstract. We consider hypersurfaces in the real Euclidean space \mathbb{R}^{n+1} $(n \geq 2)$ which are relatively normalized. We give necessary and sufficient conditions a) for a surface of negative Gaussian curvature in \mathbb{R}^3 to be ruled, b) for a hypersurface of positive Gaussian curvature in \mathbb{R}^{n+1} to be a hyperquadric and c) for a relative normalization to be constantly proportional to the equiaffine normalization.

Key Words: Ruled surfaces, ovaloids, hyperquadrics, equiaffine normalization, Pick-invariant

MSC 2010: 53A05, 53A07, 53A15, 53A25, 53A40

1. Preliminaries

In this section we fix our notation and state some of the most important notions and formulae concerning the relative differential geometry of hypersurfaces in the real Euclidean space \mathbb{R}^{n+1} $(n \geq 2)$. Our presentation is mainly based on the texts [3] and [5]. For a more detailed exposition of the subject the reader might read [4].

In the Euclidean space \mathbb{R}^{n+1} let $\Phi = (M, \overline{x})$ be a C^r -hypersurface defined by an n-dimensional oriented and connected C^r -manifold M $(r \geq 3)$ and by a C^r -immersion $\overline{x} \colon M \to \mathbb{R}^{n+1}$, whose Gaussian curvature K_I never vanishes on M. A C^s -mapping $\overline{y} \colon M \to \mathbb{R}^{n+1}$ $(r > s \geq 1)$ is called a C^s -relative normalization, if

$$\operatorname{rank}\left(\left\{\overline{x}_{/1}, \overline{x}_{/2}, \dots, \overline{x}_{/n}, \overline{y}\right\}\right) = n + 1,\tag{1a}$$

$$\operatorname{rank}\left(\left\{\overline{x}_{/1}, \overline{x}_{/2}, \dots, \overline{x}_{/n}, \overline{y}_{/i}\right\}\right) = n, \quad \forall \ i = 1, 2, \dots, n, \tag{1b}$$

for all $(u^1, u^2, \dots, u^n) \in M$, where

$$f_{/i} := \frac{\partial f}{\partial u^i}, \quad f_{/ij} := \frac{\partial^2 f}{\partial u^i \partial u^j}, \quad \text{etc.}$$

ISSN 1433-8157/\$ 2.50 © 2014 Heldermann Verlag

denote partial derivatives of a function (or a vector-valued function) f. We will also say that the pair (Φ, \overline{y}) is a relatively normalized hypersurface of \mathbb{R}^{n+1} .

The covector \overline{X} of the tangent vector space is defined by

$$\langle \overline{X}, \overline{x}_{/i} \rangle = 0 \text{ and } \langle \overline{X}, \overline{y} \rangle = 1 \quad (i = 1, 2, \dots, n),$$
 (2)

where \langle , \rangle denotes the standard scalar product in \mathbb{R}^{n+1} .

The quadratic differential form

$$G = G_{ij} du^i du^j$$
, where $G_{ij} := \langle \overline{X}, \overline{x}_{/ij} \rangle$,

is definite or indefinite, depending on whether the Gaussian curvature K_I of Φ is positive or negative, and is called the *relative metric* of Φ . From now on we use G_{ij} as the fundamental tensor for "raising and lowering the indices" in the sense of classical tensor notation.

Let $\overline{\xi}: M \to \mathbb{R}^{n+1}$ be the Euclidean normalization of Φ . By virtue of (1) the *support* function of the relative normalization \overline{y} , which is defined by

$$q := \langle \overline{\xi}, \overline{y} \rangle \colon M \to \mathbb{R}, \quad q \in C^s(M),$$

never vanishes on M. In the sequel we choose $\overline{\xi}$ and \overline{X} to have the same orientation. Then q is positive everywhere on M.

Because of (2) we have

$$\overline{X} = q^{-1}\overline{\xi}, \quad G_{ij} = q^{-1}h_{ij}, \quad G^{(ij)} = q h^{(ij)},$$
 (3)

where h_{ij} are the components of the second fundamental form II of Φ and $h^{(ij)}$ resp. $G^{(ij)}$ the inverses of the tensors h_{ij} and G_{ij} . Let ∇_i^G denote the covariant derivative corresponding to G. By

$$A_{jkl} := \langle \overline{X}, \nabla_l^G \nabla_k^G \overline{x}_{/j} \rangle$$

the (symmetric) Darboux tensor is defined. It gives occasion to define the Tchebychev-vector \overline{T} of the relative normalization \overline{y}

$$\overline{T} := T^m \overline{x}_{/m}, \quad \text{where} \quad T^m := \frac{1}{n} A_i^{im},$$

and the Pick-invariant

$$J := \frac{1}{n(n-1)} A_{jkl} A^{jkl}.$$

We mention, that when the second fundamental form II is positive definite, so does G and in this case $J \ge 0$ holds on M (see, e.g., [2, p. 133]).

Denoting by H_I the Euclidean mean curvature of Φ , by ∇^{II} resp. \triangle^{II} the first resp. the second Beltrami differential operator with respect to the fundamental form II of Φ and by S_{II} the scalar curvature of II, the Pick-invariant is computed by (see [3])

$$J = \frac{3(n+2)}{4n(n-1)} q \nabla^{II} \left(\ln q, \ln q - \ln |K_I|^{\frac{2}{n+2}} \right) + q \frac{1}{n(n-1)} P, \tag{4}$$

where P is the function [6, p. 231]

$$P = n(n-1)(S_{II} - H_I) + (2K_I)^{-2} \nabla^{II} K_I.$$
(5)

The relative shape operator has the coefficients B_i^j such that

$$\overline{y}_{/i} =: -B_i^j \overline{x}_{/j}.$$

The mean relative curvature, which is defined by

$$H := \frac{1}{n} \operatorname{tr} \left(B_i^j \right),$$

is computed by (see [3])

$$H = q H_I + \frac{q}{n} \left[\triangle^{II} \left(\ln q \right) + \nabla^{II} \left(\ln q, \ln \left(q |K_I|^{-\frac{1}{2}} \right) \right) \right]. \tag{6}$$

The scalar curvature S of the relative metric G, which is defined formally and is the curvature of the Riemannian or pseudo-Riemannian manifold (Φ, G) , the mean relative curvature H and the Pick-invariant J satisfy the Theorema Egregium of relative differential geometry, which states that

$$H + J - S = \frac{n}{n-1} \|\overline{T}\|_G,\tag{7}$$

where $\|\overline{T}\|_G := G_{ij} T^i T^j$ is the relative norm of the Tchebychev-vector \overline{T} .

2. The Tchebychev-function and some related formulae

We consider the function

$$\varphi := \left(\frac{q}{q_{\text{AFF}}}\right)^{\frac{n+2}{2n}},\tag{8}$$

where

$$q_{\text{AFF}} := |K_I|^{\frac{1}{n+2}}$$

is the support function of the equiaffine normalization \overline{y}_{AFF} and we call it the Tchebychev-function of the relative normalization \overline{y} . It is known, that for the components of the Tchebychev-vector holds [3, p. 199]

$$T^i = G^{(ij)}(\ln \varphi)_{/i}.$$

Hence, by (3c), we obtain

$$\overline{T} = \nabla^G (\ln \varphi, \overline{x}) = q \, \nabla^{II} (\ln \varphi, \overline{x})$$

and

$$\|\overline{T}\|_{G} = \nabla^{G}(\ln \varphi) = q \nabla^{H}(\ln \varphi).$$
 (9)

We notice that the Tchebychev-vector vanishes identically iff the Tchebychev-function φ is constant, i.e., by (8), iff $q = c \, q_{\text{Aff}}$, $c \in \mathbb{R}^*$, which means that the relative normalization \overline{y} and the equiaffine normalization $\overline{y}_{\text{Aff}}$ are constantly proportional.

From the relation (4) we obtain the Pick-invariant of the Euclidean normalization (q = 1)

$$J_{\text{EUK}} = \frac{1}{n(n-1)}P.$$

Hence by using (5) we find

$$J_{\text{EUK}} = S_{II} - H_I + \frac{(n+2)^2}{4n(n-1)} \nabla^{II} \left(\ln q_{\text{AFF}} \right). \tag{10}$$

From (8) and (10) we conclude that the relation (4) can be written as

$$\frac{J}{q} = \frac{3(n+2)}{4n(n-1)} \left[\frac{4n^2}{(n+2)^2} \nabla^{II} (\ln \varphi) - \nabla^{II} (\ln q_{AFF}) \right] + J_{EUK}.$$
 (11)

For the equiaffine $(\varphi = 1)$ Pick-invariant J_{AFF} we deduce

$$\frac{J_{\text{AFF}}}{q_{\text{AFF}}} = \frac{-3(n+2)}{4n(n-1)} \nabla^{II} \left(\ln q_{\text{AFF}} \right) + J_{\text{EUK}}. \tag{12}$$

By subtracting (12) from (11) we obtain

$$\frac{J}{q} - \frac{J_{\text{AFF}}}{q_{\text{AFF}}} = \frac{3n}{(n-1)(n+2)} \nabla^{II} \left(\ln \varphi \right). \tag{13}$$

Similarly, taking (6) and (8) into account, we find

$$\frac{H}{q} - H_I = \frac{2}{n+2} \Delta^{II} \left(\ln \varphi \right) + \frac{4n}{(n+2)^2} \nabla^{II} \left(\ln \varphi \right) - \frac{n-2}{n+2} \nabla^{II} \left(\ln \varphi, \ln q_{AFF} \right) + \frac{1}{n} \Delta^{II} \left(\ln q_{AFF} \right) - \frac{1}{2} \nabla^{II} \left(\ln q_{AFF} \right).$$
(14)

For the mean equiaffine curvature $H_{\mbox{\tiny AFF}}$ we infer

$$\frac{H_{\text{AFF}}}{q_{\text{AFF}}} - H_I = \frac{1}{n} \triangle^{II} \left(\ln q_{\text{AFF}} \right) - \frac{1}{2} \nabla^{II} \left(\ln q_{\text{AFF}} \right). \tag{15}$$

By subtracting (15) from (14) we obtain

$$\frac{H}{q} - \frac{H_{\text{AFF}}}{q_{\text{AFF}}} = \frac{2}{n+2} \Delta^{II} \left(\ln \varphi \right) + \frac{4n}{(n+2)^2} \nabla^{II} \left(\ln \varphi \right) - \frac{n-2}{n+2} \nabla^{II} \left(\ln \varphi, \ln q_{\text{AFF}} \right). \tag{16}$$

The relations (7), (9), (13) and (16) may be combined into

$$\frac{S}{q} - \frac{J_{\text{AFF}} + H_{\text{AFF}}}{q_{\text{AFF}}} = \frac{2}{n+2} \triangle^{II} \left(\ln \varphi \right) - \frac{n(n-2)}{(n+2)^2} \nabla^{II} \left(\ln \varphi \right) - \frac{n-2}{n+2} \nabla^{II} \left(\ln \varphi, \ln q_{\text{AFF}} \right),$$

and with reference to

$$S_{\text{AFF}} = J_{\text{AFF}} + H_{\text{AFF}},\tag{17}$$

where S_{AFF} denotes the inner equiaffine curvature, we conclude that

$$\frac{S}{q} - \frac{S_{\text{AFF}}}{q_{\text{AFF}}} = \frac{2}{n+2} \triangle^{II} \left(\ln \varphi \right) - \frac{n(n-2)}{(n+2)^2} \nabla^{II} \left(\ln \varphi \right) - \frac{n-2}{n+2} \nabla^{II} \left(\ln \varphi, \ln q_{\text{AFF}} \right). \tag{18}$$

3. Characterizations of ruled surfaces in \mathbb{R}^3 and of hyperquadrics in \mathbb{R}^{n+1}

Let now α be any real number. By using the relations (13) and (16)–(18) we obtain

$$\frac{\alpha(S-H)+J}{q} = (\alpha+1)\frac{J_{\text{AFF}}}{q_{\text{AFF}}} - \frac{n\left[\alpha(n-1)-3\right]}{(n-1)\left(n+2\right)}\nabla^{II}\ln\varphi.$$

For $\alpha = \frac{3}{n-1}$ we get

$$\frac{3(S-H) + (n-1)J}{q} = (n+2)\frac{J_{AFF}}{q_{AFF}}.$$
 (19)

This result implies the following

Proposition 1. Let (Φ, \overline{y}) be a relatively normalized hypersurface of \mathbb{R}^{n+1} . Then the function

$$\frac{3(S-H) + (n-1)J}{q}$$

is independent of the relative normalization and vanishes iff $J_{AFF} = 0$.

On account of the relations (7) and (19) we infer that

$$\|\overline{T}\|_{G} = \frac{(n-1)(n+2)}{3n} \left(J - \frac{q}{q_{AFF}}J_{AFF}\right) = \frac{n+2}{n} \left(H - S + \frac{q}{q_{AFF}}J_{AFF}\right).$$
 (20)

From (20) follows immediately

$$J_{AFF} = 0 \iff 3n \|\overline{T}\|_{G} = (n-1)(n+2)J \iff n \|\overline{T}\|_{G} = (n+2)(H-S).$$
 (21)

We suppose that n=2 and $K_I < 0$. It is well known (see [1, p. 125]), that the vanishing of J_{AFF} characterizes the ruled surfaces of \mathbb{R}^3 among the surfaces of negative Gaussian curvature. So, from the relations (19) and (21) we obtain the following characterizations for ruled surfaces in \mathbb{R}^3 :

Proposition 2. Let $\Phi \subset \mathbb{R}^3$ be a surface of negative Gaussian curvature. Then Φ is a ruled surface iff there exists a relative normalization of Φ , for which one of the following equivalent properties holds true:

- (a) 3(S-H)+J=0,
- (b) $3\|\overline{T}\|_G = 2J$,
- (c) $\|\overline{T}\|_G = 2(H S)$.

Let now be $n \geq 2$ and $K_I > 0$. Moreover, without loss of generality, we assume that the second fundamental form II is positive definite. It is also well-known (see [5, p. 380]) that in this case the equiaffine Pick-invariant is non-negative and that it vanishes iff Φ is a hyperquadric. So, by using the relations (19) and (21), we can characterize the hyperquadrics of \mathbb{R}^{n+1} among all hypersurfaces of positive Gaussian curvature as the following proposition states:

Proposition 3. Let $\Phi \subset \mathbb{R}^{n+1}$ be a hypersurface of positive Gaussian curvature. Then Φ is a hyperquadric iff there exists a relative normalization of Φ , for which one of the following equivalent properties holds true:

- (a) 3(S-H) + (n-1)J = 0,
- (b) $3n \|\overline{T}\|_G = (n-1)(n+2)J$,
- (c) $n \|\overline{T}\|_G = (n+2)(H-S).$

4. The vanishing of the Pick-invariant and some integral formulae

Another consequence of relation (13) are the following two propositions:

Proposition 4. Let $\Phi \subset \mathbb{R}^{n+1}$ be a hypersurface of positive Gaussian curvature. For the Pick-invariant of every relative normalization \overline{y} the following relation is valid

$$\frac{J}{q} - \frac{J_{\text{AFF}}}{q_{\text{AFF}}} \ge 0. \tag{22}$$

The equality holds iff the relative normalization \overline{y} and the equiaffine normalization \overline{y}_{AFF} are constantly proportional.

Proof. Because of the assumption $K_I > 0$ we have $\nabla^H(\ln \varphi) \geq 0$. So the inequality follows from (13). Furthermore,

$$\frac{J}{q} - \frac{J_{\text{AFF}}}{q_{\text{AFF}}} = 0 \iff \nabla^{II}(\ln \varphi) = 0 \iff \varphi = \text{const.} \iff q = c \, q_{\text{AFF}}, \ c \in \mathbb{R}^*,$$

which proves the assertion.

Proposition 5. Let $\Phi \subset \mathbb{R}^{n+1}$ be a hypersurface of positive Gaussian curvature. If there is a relative normalization \overline{y} , whose Pick-invariant vanishes identically, then Φ is a hyperquadric. Furthermore \overline{y} is constantly proportional to the equiaffine normalization \overline{y}_{AFF} .

Proof. Let \overline{y} be a relative normalization of Φ with vanishing Pick-invariant. Then, from the relation (13) we obtain

$$-\frac{J_{\text{AFF}}}{q_{\text{AFF}}} = \frac{3n}{(n-1)(n+2)} \nabla^{II} \left(\ln \varphi \right). \tag{23}$$

Because of $J_{\text{AFF}} \geq 0$ and $\nabla^{II} \ln \varphi \geq 0$, both members of (23) vanish. But $J_{\text{AFF}} \geq 0$ implies that Φ is a hyperquadric and $\nabla^{II} \ln \varphi = 0$ implies that the function φ is constant, which means that $q = c \, q_{\text{AFF}}, c \in \mathbb{R}^*$, and the proof is completed.

We conclude the paper by considering closed surfaces of positive Gaussian curvature (ovaloids) in \mathbb{R}^3 . For n=2 relation (16) becomes

$$rac{H}{q} - rac{H_{ ext{AFF}}}{q_{ ext{AFF}}} = rac{1}{2} igtriangledown^{II} (\ln arphi) + rac{1}{2} igtriangledown^{II} (\ln arphi),$$

from which we have

Proposition 6. Let (Φ, \overline{y}) be a relatively normalized ovaloid in \mathbb{R}^3 . Then

$$\iint_{M} \left(\frac{H}{q} - \frac{H_{\text{AFF}}}{q_{\text{AFF}}} \right) \, dO_{II} \ge 0,$$

where dO_{II} is the element of area of Φ with respect to the second fundamental form II of Φ . The equality is valid iff the relative normalization \overline{y} is constantly proportional to the equiaffine normalization \overline{y}_{AFF} .

Furthermore, for n = 2, relation (18) becomes

$$\frac{S}{q} - \frac{S_{\text{AFF}}}{q_{\text{AFF}}} = \frac{1}{2} \Delta^{II}(\ln \varphi). \tag{24}$$

From this equation we easily deduce:

Proposition 7. Let (Φ, \overline{y}) be a relatively normalized ovaloid in \mathbb{R}^3 . If the function

$$rac{S}{q} - rac{S_{ ext{AFF}}}{q_{ ext{AFF}}}$$

does not change its sign on M, then the relative normalization \overline{y} and the equiaffine normalization \overline{y}_{AFF} are constantly proportional.

Finally, from the relations (10), (12), (15) and (17) for n=2 we obtain

$$\frac{S_{\text{AFF}}}{q_{\text{AFF}}} - S_{II} = \frac{1}{2} \triangle^{II} (\ln q_{\text{AFF}}). \tag{25}$$

If we now integrate (24) and (25) over M we get

$$\iint_{M} \frac{S}{q} dO_{II} = \iint_{M} \frac{S_{AFF}}{q_{AFF}} dO_{II} = \iint_{M} S_{II} dO_{II} = 2\pi\chi,$$

where $\chi = 2$ is the Euler characteristic of Φ . Hence we arrive at

Proposition 8. Let (Φ, \overline{y}) be a relatively normalized ovaloid in \mathbb{R}^3 . Then the following integral formula is valid

$$\iint_M \frac{S}{q} \, \mathrm{d}O_{II} = 4\pi.$$

Corollary 9. For an ovaloid $\Phi \subset \mathbb{R}^3$ the following integral formula is valid

$$\iint_{M} \frac{S_{\text{AFF}}}{q_{\text{AFF}}} \, dO_{II} = 4\pi.$$

Acknowledgement

The authors would like to express their thanks to the referee for his useful remarks.

References

- [1] W. Blaschke: Vorlesungen über Differentialgeometrie II, Affine Differentialgeometrie. Verlag Julius Springer, Berlin 1923.
- [2] H. Huck et al.: Beweismethoden der Differentialgeometrie im Großen. Lecture Notes in Math. 335, Springer-Verlag, Berlin 1973.
- [3] F. Manhart: Relativgeometrische Kennzeichnungen Euklidischer Hypersphären. Geom. Dedicata 29, 193–207 (1989).
- [4] P.A. Schirokow, A.P. Schirokow: Affine Differentialgeometrie. B.G. Teubner Verlagsgesellschaft, Leipzig 1962.
- [5] R. Schneider: Zur affinen Differentialgeometrie im Großen I. Math. Z. 101, 375–406 (1967).
- [6] R. Schneider: Closed convex hypersurfaces with second fundamental form of constant curvature. Proc. Amer. Soc. **35**, 230–233 (1972).

Received April 25, 2014; final form October 19, 2014