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Abstrat. New results are disussed in terms of the Rupert property of polyhe-

dra, whih is about �nding a hole (a straight tunnel) in a solid through whih a

ongruent opy of the solid an pass. Reently it is proved in [7℄ that 8 of the 13

Arhimedean solids have this property. In our paper we prove that the simplest

Arhimedean solid, the trunated tetrahedron is also of Rupert property. More-

over, we prove general results on the Nieuwland onstant, a saling fator between

the passing and the original solids if a larger opy an also pass through. We

also de�ne a generalised Nieuwland onstant for those solids not possessing this

property and prove that this onstant an be arbitrary small.
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1. Introdution

More than 300 years ago Prine Rupert of Rhine with fellow mathematiian JohnWallis

onsidered and solved the problem of �nding a straight hole in a ube through whih a

ongruent ube an pass [5℄. Around 100 years later, Pieter Nieuwland proved that even a

larger ube an pass through, and the maximum sale of the passing ube has been found to

be

3
√
2

4
. In 1950 Shrek published a detailed overview of the problem of Rupert and the

proof of Nieuwland [3℄. Now the Rupert problem is still in the forefront of researh with

relevant new results in reent years.

At �rst we de�ne the basi notions, based on [2℄.

De�nition 1. By a hole we mean the intersetion of the given solid and a generalised ylinder,

where the intersetion is entirely in the inner part of the solid, that is eah generator line

of the ylinder intersets the solid in a single line segment and generators annot even be

tangent lines of the surfae of the solid.
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De�nition 2. A solid is alled Rupert (or having Rupert property), if there exists a hole in

the solid in a way that a ongruent solid an pass through this hole.

De�nition 3. Suppose that the solid has Rupert property. If a larger opy of the solid an

also pass through a proper hole, than the ratio of the sale of the maximally enlarged solid

and the original one is alled Nieuwland onstant.

Based on the above mentioned fat, the Nieuwland onstant of the ube is

3
√
2

4
. Here we

note, that ontinuously enlarging a solid passing through the enlarging hole, sooner or later

we reah the limit when the solid (and one of the generators of the hole) will touh the surfae

of the initial solid, whih is not allowed by de�nition. Consequently, the exat Nieuwland

onstant is in fat an upper limit of the sale.

As it is desribed in [2℄, it is easy to see that the searh for the appropriate hole in a

onvex solid is idential to the searh for two di�erent orthogonal parallel projetions of the

solid to two di�erent planes in a way, that one projeted shape an entirely �t into the inner

part of the other projetion. Based on this view it is also trivial that not all onvex solids

possess the Rupert property: for example all orthogonal projetions of a sphere are ongruent

irles, none of whih an �t entirely into the inner part of another.

Bak to polyhedra, Sriba proved that, beside the ube, the tetrahedron and the ota-

hedron also have this property [4℄. Finally, in 2017 Jerrard, Wetzel and Yuan proved

the Rupert property for the dodeahedron and the iosahedron, ompleting the disussion of

Rupert property of Platoni solids in a positive manner [2℄. In 2018 Huber et al. proved that

the n-ube is also Rupert [1℄.

Reently Ying, Yuan and Zamfiresu studied Arhimedean solids and proved that 8 of

the 13 polyhedra possess the Rupert property (ubotahedron, trunated otahedron, trun-

ated ube, rhombiubootahedron, trunated ubotahedron, iosidodeahedron, trunated

iosahedron and trunated dodeahedron) [7℄. Moreover, the Nieuwland onstants of these

Platoni and Arhimedean solids were also estimated [2, 7℄. However, the existene of the

Rupert hole of �ve of the Arhimedean solids are still unsolved.

In this paper we extend the results of Ying, Yuan and Zamfiresu, by proving in

Setion 2, that the Arhimedean trunated tetrahedron also has this property. In Setion 3

we study and generalise the notion of Nieuwland onstant for those solids having no Rupert

property. If there is no hole in the solid where a ongruent opy an pass through, we will

onsider the largest downsale opy (where the saling fator is less than 1) for whih one

an �nd a hole. This fator will be alled generalised Nieuwland onstant. Moreover here we

prove, that the Nieuwland onstant an be arbitrary large and arbitrary small. The existene

of a solid with arbitrary large Nieuwland onstant is more or less trivial, thinking about an

ellipsoid with properly seleted axes a >> b >> c. Based on this idea here we prove that for

any k > 1, k ∈ R, there exists a symmetri onvex polytope in R
n
(atually an n-orthotope)

with a Nieuwland onstant larger than k. Furthermore, we prove that for any 0 < k ≤ 1,
k ∈ R, there exists a polyhedron with generalised Nieuwland onstant smaller than k.

2. The Rupert property of the trunated tetrahedron

In this setion we prove that there is a hole in the Arhimedean trunated tetrahedron through

whih a ongruent trunated tetrahedron an pass. We will follow the idea desribed in [7℄,

�nding two appropriate orthogonal projetions, one of whih an entirely be plaed into the
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Figure 1: Two important orthogonal projetions of the trunated tetrahedron

other one. We will pay speial attention to the important restrition that all of the verties

and edges of the �rst projetion must be in the inner part of the other projetion.

Theorem 1. The trunated tetrahedron has the Rupert property.

Proof. To prove that the trunated tetrahedron is Rupert, let us onsider two di�erent initial

orthogonal projetions, seen in Figure 1. One of them (Figure 1, left) is a diamond shape

image mapped onto a symmetry plane of the solid passing through the ommon edge LM of

two hexagons. The other projetion (Figure 1, right) is mapping the solid onto the plane of

one of the hexagonal side, in our ase onto the plane of hexagon ACDFGI. In both ases the

horizontal diagonals of the mapped hexagons, KN, AF, and BE, and the horizontal sides of

the hexagons, LM and CD, are parallel to the image planes, onsequently they an be seen

in real length. Sine AF and BE are of equal lengths, for symmetry reasons the quadrilateral

ABEF is a retangle. In their urrent positions, the left diamond shape image is higher than

the right one, that is, the distane between vertex J and edge LM is longer than the distane

between vertex H and edge CD. Consequently, the left image annot �t into the right one.

However, rotating the polyhedron around the edge CD, whilst keeping the image plane

idential, the height of the right image an be inreased. With edge length

√
8 of the poly-

hedron, it is easy to alulate that the height of the left image is 6, but the maximum height

of the right image of the rotating polyhedron an be inreased up to

√
38. This maximum

happens when the spatial segment between vertex H and midpoint of edge CD, along whih

the distane of vertex H and edge CD is measured, will be parallel to the image plane. Dur-

ing this rotation the length of the horizontal diagonals and horizontal edges does not hange.

Therefore, after this rotation the left image an �t into the modi�ed (vertially strehed) right

image in a way, that edge LM is parallel but slightly above edge CD, vertex K is on edge AB,

and vertex N is on edge EF. Due to the di�erene in height, vertex J is still below vertex H,

inside the modi�ed right image. By a su�iently small rotation around the entroid of the

diamond shape image, the verties L, M and J will still be inside the modi�ed right image,

whilst verties K and N will leave the sides of the retangle ABEF and will also be inner

points of the modi�ed right image. The �nal position of these two projetions an be seen in

Figure 2 with enlarged images of the surroundings of verties of the diamond shape image to

show that eah vertex is inside the larger image. And this was to be proved.
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Figure 2: The Rupert property of the trunated tetrahedron with saled images of the verties.

Note that the �gure does not show symmetry due to the �nal (su�iently small) rotation

around entroid O

An upper limit of the Nieuwland onstant an easily be alulated by the ratio of the

original height of the diamond shape image and the maximal height of the right image, whih

is

√
38

6
.

3. The generalised Nieuwland onstant

So far the Nieuwland onstant has been de�ned and alulated only for those ases when a

spei� polyhedron has had the Rupert property. Instead of onsidering the solid at �rst,

let us introdue a di�erent approah, and onsider the problem from the viewpoint of the

Nieuwland onstant: if an arbitrary positive real number is given, an we �nd a proper

polyhedron with this number or larger as Nieuwland onstant? Moreover, what happens, if a
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solid has no Rupert property? Can we �nd a hole through whih a smaller opy of the solid

an pass? How small an be the largest hole? These question will be disussed in this setion.

The �rst question will be answered in R
n
using the approah of [1℄.

Theorem 2. For any k > 1, k ∈ R, there exists an n-dimensional onvex polytope with

Nieuwland onstant larger than k.

Proof. Consider a retangular n-dimensional uboid (an n-orthotope) with mutually orthog-

onal edges of length a1 = 1, a2 = k + 1, . . . , an = (k + 1)(n−1)
. Consider the hyperplane

determined by edges a2, a3, . . . , an, onto whih the orthogonal projetion of the polytope is

a (n− 1)-dimensional uboid with edge lengths k + 1, . . . , (k + 1)(n−1)
.

Now onsider the hyperplane determined by edges a1, . . . , an−1, onto whih the orthogonal

projetion of the original polytope is another (n − 1)-dimensional uboid with edge lengths

1, k + 1, . . . , (k + 1)(n−2)
. The sale of this latter polytope by a fator k + 1

k
yields a (n −

1)-dimensional uboid with edge lengths k + 1
k
, (k + 1)(k + 1

k
), . . . , (k + 1)(n−2)(k + 1

k
).

This enlarged polytope still �ts into the projetion on the hyperplane of a2, a3, . . . , an if the

orresponding edges are parallel, respetively, sine k + 1
k
< k + 1 and (k + 1)(m)(k + 1

k
) <

(k + 1)(m+1)
for any m = 1, . . . , n − 2 and k > 1. Consequently the Nieuwland onstant of

this retangular polytope is at least k + 1
k
.

So our answer is a�rmative if k > 1. For other positive values, however, we have to

reonsider the onept of Nieuwland. The onstant is originally de�ned for solids with Rupert

property. But even if a solid has no Rupert property, there an be a smaller opy of this solid

whih an pass through a proper hole. This is to be de�ned as a generalisation of the original

onept.

De�nition 4. The sale fator 0 < k ≤ 1 is alled generalised Nieuwland onstant of a given

solid, if there is a opy of this solid downsaled by k, whih an pass through a proper hole

in the original solid, but there is no larger opy with this property.

The ase k = 1 is enabled, sine the generalised Nieuwland onstant is, as well as the

original onept of the onstant, an upper limit. For instane, the generalised Nieuwland

onstant of the sphere is 1, beause saling the sphere by a fator arbitrarily lose to 1 (but

less than 1) the saled sphere an obviously pass through a entrally loated irular hole in

the original sphere.

It is evident, that for any solid with no Rupert property a generalised Nieuwland onstant

an be assigned. Given a solid, there exists a seant line lose enough to the surfae of the

solid interseting the solid in one single hord segment. Considering a right irular ylinder

with this hord as rotational axis and with su�iently small radius, the intersetion of the

ylinder and the solid an funtion as a hole through whih an appropriately downsaled solid

(the bounding sphere of whih is of smaller radius than the ylinder) an pass.

It is however not evident, if for any arbitrarily small k there exists a solid with Nieuwland

onstant smaller than k. Sine the Wetzel-onjeture states that every onvex polyhedron has

the Rupert-property [2℄, we will try to �nd onave polyhedra to prove this statement.

Theorem 3. For any real number 0 < k < 1 there exists a polyhedron, suh that its generalised
Nieuwland onstant is smaller than k.
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Figure 3: The unit ube, and iterations of the Menger-sponge (soure: [6℄)

Proof. Consider the �rst iteration of the Menger-sponge in the unit ube (see the seond

polyhedron in Figure 3). The generalised Nieuwland onstant of this solid annot be greater

than

1
2
, sine the edges are triseted in onstruting the Menger-sponge. Therefore a ube

saled by

1
2
annot be plaed in a way that it is entirely overed by the original polyhedron.

Consequently, it is impossible to �nd a hole for the polyhedron downsaled by

1
2
.

However, along the original edge of the unit ube there is an

1
3
× 1

3
× 1 uboid. In

this uboid one an easily �nd a hole for a Menger-sponge downsaled by

1
3
. Thus, the

generalised Nieuwland onstant of the �rst iteration of the Menger-sponge is between

1
2
and

1
3
. Analogously, the generalised Nieuwland onstant of the nth

iteration of the Menger-sponge

is between

1

2n
and

1

3n
. Sine the series

1
2n

onverges to 0, when n tends to in�nity, for any

0 < k < 1 there exists an integer number n, for whih 1
2n

< k. Consequently, for any 0 < k < 1
there exists an iteration of the Menger-sponge, the generalised Nieuwland onstant of whih

is smaller than k, and this was to be proved.

Here we note that there are also many solids for whih the generalised Nieuwland onstant

is between

1
2
< k < 1.

4. Conlusion and future work

We have proved that the trunated tetrahedron has the Rupert property and introdued the

generalised Nieuwland onstant also for those polyhedra not having the Rupert property.

However, there are many problems still unsolved: to prove that the remaining Arhimedean

solids have the Rupert property and if every onvex polyhedron has this property. Although

we provided polyhedra with generalised Nieuwland onstant smaller or larger than a prede-

�ned k, it would be interesting to show a polyhedron with generalised Nieuwland onstant

equal to a prede�ned k.
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