Generalizations of Fagnano's Problem

Tran Quang Hung ${ }^{\mathbf{1}}$, Nguyen Thi Thuy Duong ${ }^{2}$
${ }^{1}$ High School for Gifted Students, Vietnam National University, Vietnam
tranquanghung@hus.edu.vn
${ }^{2}$ Student at Concord College, Shropshire, United Kingdom
nt.thuyduong3402@gmail.com

Abstract

We generalize Fagnano's famous problem of minimal inscribed perimeter by replacing the orthocenter with an arbitrary interior point P. By adding weights associated with P to Fagnano's inequality, we show that the new, generalized expression reaches minimum for the pedal triangle of P. We then further generalize our main theorem and derive some extensions by relating them to Fermat-Torricelli problem.

Key Words: Fagnano's inequality, generalized theorem, extremum problem.
MSC 2020: 51M04, 51M16

1 Introduction

In 1775 , the Italian mathematician Giovanni Fagnano proposed his famous problem which can be restated as follows: find in the acute-angled triangle $A B C$ the inscribed triangle with the smallest perimeter; see $[1,3,4,6]$ as well as $[7,9]$. He then provided an analytic solution, showing that the triangle in question is $A B C$'s orthic triangle.

Theorem 1 (Fagnano, 1775). Let $A B C$ be an acute-angled triangle. Of all inscribed triangles of $A B C$, its orthic triangle has the smallest perimeter (See Figure 1).

Ever since Fagnano, multiple other proofs have been discovered using a wide range of tools from geometry to physics. A classic example of a geometric proof is that by Lipot Fejér, using reflections and isosceles triangles; see [1, 3].

In this paper, similar to the approach taken in [2], we generalize Fagnano's problem by adding weights to Fagnano's inequality. We shall substitute orthocenter H with any point P, then add the inverse circumradii of triangles $P B C, P C A$, and $P A B$ as weights.

Theorem 2 (Generalization of Fagnano's problem). Let P be an interior point of given triangle $A B C$. Denote by $\mathrm{R}_{a}, \mathrm{R}_{b}$, and R_{c} the circumradii of triangles $P B C, P C A$, and $P A B$

Figure 1: Orthic triangle $D E F$ of triangle $A B C$ and inscribed triangle $X Y Z$.
respectively. Let X, Y, and Z be points on the lines $B C, C A$, and $A B$ respectively. Then the value of the expression

$$
\begin{equation*}
\frac{Y Z}{\mathrm{R}_{a}}+\frac{Z X}{\mathrm{R}_{b}}+\frac{X Y}{\mathrm{R}_{c}} \tag{1}
\end{equation*}
$$

attains minimum value if and only if $X Y Z$ is the pedal triangle of P with respect to triangle $A B C$.

The original Fagnano's problem can easily be spotted in the particular case where triangle $A B C$ is acute-angled and P coincides with the orthocenter of triangle $A B C$. Then, $\mathrm{R}_{a}, \mathrm{R}_{b}$, and R_{c} are equal to R (circumradius of triangle $A B C$), and Equation (1) becomes $\frac{X Y+Y Z+Z X}{\mathrm{R}}$. According to Theorem 2, since R is a constant, the expression $\frac{X Y+Y Z+Z X}{\mathrm{R}}$ or $X Y+Y Z+Z X$ attains minimum value if and only if $X Y Z$ is the pedal triangle of orthocenter H with respect to triangle $A B C$.

In the last section of this paper, we will also present some extensions of the lemma and main theorem.

2 Proof of main theorem

We start with a lemma which helps integrate areas and later circumradii into the problem.
Throughout this section, we denote the distance between points A and B simply by $A B$ (which is not misleading if we also denote the line passing through two points A and B as $A B)$. The circumcircle of the triangle $P Q R$ will be denoted by $(P Q R)$.

Lemma 1. Let P be an interior point of triangle $A B C$. Denote by S_{a}, S_{b}, and S_{c} the areas of triangles $P B C, P C A$, and $P A B$ respectively. Let R be the second intersection of $P A$ and $(P B C)$, and M be an arbitrary point in this plane. Then

$$
S_{a} \cdot P A \cdot M A+S_{b} \cdot P B \cdot M B+S_{c} \cdot P C \cdot M C \geq S_{a} \cdot P A \cdot A R
$$

and equality holds if and only if M coincides with P.

Figure 2: Proof of Lemma 1

Proof. (See Figure 2) Let E be the intersection of lines $P C$ and $A B$, and F be the intersection of lines $P A$ and $B C$. Point Q lies on $P C$ such that $B Q$ is parallel to $A P$. By the standard formula for the area of a triangle, we have

$$
\frac{E A}{E B}=\frac{S_{b}}{S_{a}} \quad \text { and } \quad \frac{F B}{F C}=\frac{S_{c}}{S_{b}}
$$

Since triangles $E B Q$ and $E A P$ are similar, we have $\frac{P A}{B Q}=\frac{E A}{E B}=\frac{S_{b}}{S_{a}}$, giving

$$
\begin{equation*}
\frac{S_{a} \cdot P A}{B Q}=S_{b} \tag{2}
\end{equation*}
$$

Since triangles $C B Q$ and $C F P$ are similar, we have $\frac{P Q}{P C}=\frac{F B}{F C}=\frac{S_{c}}{S_{b}}$, so

$$
\begin{equation*}
\frac{S_{c} \cdot P C}{P Q}=S_{b} \tag{3}
\end{equation*}
$$

It follows from (2) and (3) that

$$
\begin{equation*}
\frac{S_{a} \cdot P A}{B Q}=\frac{S_{b} \cdot P B}{P B}=\frac{S_{c} \cdot P C}{P Q} \tag{4}
\end{equation*}
$$

As P is an inner point of triangle $A B C$, it is obvious that F is an inner point of segment $B C$. Therefore P and R are at different sides of line $B C$ or the quadrilateral $P B C R$ is convex and cyclic. Using the Theorem of angles at circumference and that $\angle B P Q+\angle B P C=180^{\circ}$, we have

$$
\begin{equation*}
\angle B P Q=\angle B R C \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\angle B Q P=\angle R P C=\angle R B C . \tag{6}
\end{equation*}
$$

By (5) and (6), triangles $P B Q$ and $R C B$ are similar, therefore

$$
\begin{equation*}
\frac{Q B}{B C}=\frac{P B}{C R}=\frac{P Q}{R B} \tag{7}
\end{equation*}
$$

Combining with (4) gives

$$
\begin{equation*}
\frac{S_{a} \cdot P A}{B C}=\frac{S_{b} \cdot P B}{C R}=\frac{S_{c} \cdot P C}{R B} . \tag{8}
\end{equation*}
$$

Using Ptolemy's inequality for point M and triangle $R B C$, we have

$$
\begin{equation*}
M R \cdot B C \leq M B \cdot R C+M C \cdot R B \tag{9}
\end{equation*}
$$

From (8) and (9), we obtain

$$
\begin{equation*}
S_{a} \cdot P A \cdot M R \leq S_{b} \cdot P B \cdot M B+S_{c} \cdot P C \cdot M C \tag{10}
\end{equation*}
$$

Addition of $S_{a} \cdot P A \cdot M A$ to both sides of (10) gives

$$
\begin{equation*}
S_{a} \cdot P A \cdot(M R+M A) \leq S_{a} \cdot P A \cdot M A+S_{b} \cdot P B \cdot M B+S_{c} \cdot P C \cdot M C \tag{11}
\end{equation*}
$$

Using the triangle inequality, we have

$$
\begin{equation*}
S_{a} \cdot P A \cdot M A+S_{b} \cdot P B \cdot M B+S_{c} \cdot P C \cdot M C \geq S_{a} \cdot P A \cdot A R \tag{12}
\end{equation*}
$$

The right hand side of the inequality (12) is a constant, and equality holds if and only if A, R, and M are collinear and quadrilateral $M B R C$ is cyclic. In other words, equality holds if and only if M coincides with P. Thus, the value of the expression

$$
S_{a} \cdot P A \cdot M A+S_{b} \cdot P B \cdot M B+S_{c} \cdot P C \cdot M C
$$

attains minimum value if and only if M coincides with P.
We now present a synthetic proof of Theorem 2 by using Lemma 1 and Miquel's Theorem [5].

Proof of Theorem 2. (See Figure 2) Since X, Y, and Z lie on the lines $B C, C A$, and $A B$ respectively, using Miquel's theorem [5], circles $(A Y Z),(B Z X)$, and $(C X Y)$ have a common point M.

Denote by d_{a} the diameter length of $(A Y Z)$ and R the radius of $(A B C)$. By the law of sines, we have

$$
\begin{equation*}
Y Z=d_{a} \cdot \sin A=d_{a} \cdot \frac{B C}{2 \mathrm{R}} \tag{13}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
\frac{Y Z}{\mathrm{R}_{a}}=\frac{d_{a} \cdot \frac{B C}{2 \mathrm{R}}}{\frac{P B \cdot P C \cdot B C}{4 S_{a}}}=\frac{2 d_{a} \cdot S_{a}}{\mathrm{R} \cdot P B \cdot P C} \tag{14}
\end{equation*}
$$

Since $M A$ is a chord of $(A Y Z)$,

$$
\begin{equation*}
d_{a} \geq M A \tag{15}
\end{equation*}
$$

and equality occurs iff $A M$ is diameter of $(A Y Z)$, in other words Y and Z are orthogonal projections of M on sides $C A$ and $A B$ respectively. From (14) and (15), we get

$$
\begin{equation*}
\frac{Y Z}{\mathrm{R}_{a}} \geq \frac{2 S_{a} \cdot M A \cdot P A}{\mathrm{R} \cdot P A \cdot P B \cdot P C} \tag{16}
\end{equation*}
$$

Figure 3: Proof of Theorem 2

Similarly, we get the same inequalities

$$
\begin{equation*}
\frac{Z X}{\mathrm{R}_{b}} \geq \frac{2 S_{b} \cdot M B \cdot P B}{\mathrm{R} \cdot P A \cdot P B \cdot P C} \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{X Y}{\mathrm{R}_{c}} \geq \frac{2 S_{c} \cdot M C \cdot P C}{\mathrm{R} \cdot P A \cdot P B \cdot P C} \tag{18}
\end{equation*}
$$

With the same reason for equality occurs in (15), the equalities of (16), (17), and (18) occur iff $X Y Z$ is the pedal triangle of M. Adding (16), (17), and (18), and using Lemma 1 gives

$$
\begin{align*}
\frac{Y Z}{\mathrm{R}_{a}}+\frac{Z X}{\mathrm{R}_{b}}+\frac{X Y}{\mathrm{R}_{c}} & \geq 2 \frac{S_{a} \cdot P A \cdot M A+S_{b} \cdot P B \cdot M B+S_{c} \cdot P C \cdot M C}{\mathrm{R} \cdot P A \cdot P B \cdot P C} \tag{19}\\
& \geq \frac{2 S_{a} \cdot P A \cdot A R}{\mathrm{R} \cdot P A \cdot P B \cdot P C}
\end{align*}
$$

where R is the second intersection of $P A$ with $(P B C)$. Furthermore,

$$
\begin{equation*}
\frac{2 S_{a} \cdot P A \cdot A R}{\mathrm{R} \cdot P A \cdot P B \cdot P C}=\frac{2 S_{a} \cdot A R}{\mathrm{R} \cdot P B \cdot P C} \tag{20}
\end{equation*}
$$

which is a constant. Thus, the right hand side of inequality (19) is a constant, and the equality in (19) holds if and only if M coincides with P, combining with the equalities of (16), (17), and (18) occur iff $X Y Z$ is the pedal triangle of M. We deduce that the equality of (19) occurs iff X, Y, and Z coincide with D, E, and F respectively, where $D E F$ is the pedal triangle of P with respect to triangle $A B C$.
. Therefore, the value of the expression (1) reaches minimum value if and only if $X Y Z$ is the pedal triangle of P with respect to triangle $A B C$.

3 Some extensions and consequences

Here, we will present some extensions and applications of Lemma 1 and the main theorem.
First, we can regard Lemma 1 as a generalization of Fermat-Torricelli problem [8, 10]. Indeed, let us consider a triangle with angles not exceeding 120° and the Fermat point F. It is conspicuous that $\angle B F C=\angle C F A=\angle A F B=120^{\circ}$, and thus the areas of triangles $F B C$, $F C A$, and $F A B$ are directly proportional to $F A, F B$, and $F C$ respectively. If we introduce Lemma 1 here, with $P=F$, then

$$
\begin{equation*}
\frac{S_{a}}{F A}=\frac{S_{b}}{F B}=\frac{S_{c}}{F C}=k \tag{21}
\end{equation*}
$$

As k is a constant, we are left with the problem of finding the minimum value of

$$
\begin{equation*}
M A+M B+M C \tag{22}
\end{equation*}
$$

Equality is reached when M coincides with F. Furthermore, Lemma 1 can be generalized with powers as follows:

Theorem 3. Let P be a point in the interior of $A B C$. Denote by S_{a}, S_{b}, and S_{c} the areas of triangles $P B C, P C A$, and $P A B$ respectively. Let p be a real number no less than 1 , and M be an arbitrary point in this plane. Then the value of the expression

$$
S_{a} \cdot P A^{2-p} \cdot M A^{p}+S_{b} \cdot P B^{2-p} \cdot M B^{p}+S_{c} \cdot P C^{2-p} \cdot M C^{p}
$$

is minimal if and only if M coincides with P.
Proof. Case $p=1$, we obtain Lemma 1.
Case $p>1$. Let R be the intersection of $P A$ and $(P B C)$. Since $p>1$, let $q=\frac{p}{p-1}, q$ is a positive real number and $\frac{1}{p}+\frac{1}{q}=1$. Holder's inequality transforms this into

$$
\begin{align*}
& \left(S_{a} \cdot P A^{2-p} \cdot M A^{p}+S_{b} \cdot P B^{2-p} \cdot M B^{p}+S_{c} \cdot P C^{2-p} \cdot M C^{p}\right)^{\frac{1}{p}} \\
& =\frac{\left(\sum\left(S_{a}^{\frac{1}{p}} \cdot P A^{\frac{2-p}{p}} \cdot M A\right)^{p}\right)^{\frac{1}{p}} \cdot\left(\sum\left(S_{a}^{\frac{1}{q}} \cdot P A^{\frac{2}{q}}\right)^{q}\right)^{\frac{1}{q}}}{\left(\sum\left(S_{a}^{\frac{1}{q}} \cdot P A^{\frac{2}{q}}\right)^{q}\right)^{\frac{1}{q}}} \tag{23}\\
& \geq \frac{\sum S_{a}^{\frac{1}{p}+\frac{1}{q}} \cdot P A^{\frac{2-p}{p}+\frac{2}{q}} \cdot M A}{\left(\sum S_{a} \cdot P A^{2}\right)^{\frac{1}{q}}} .
\end{align*}
$$

Furthermore, using Lemma 1 we have

$$
\begin{equation*}
\frac{\sum S_{a}^{\frac{1}{p}+\frac{1}{q}} \cdot P A^{\frac{2-p}{p}+\frac{2}{q}} \cdot M A}{\left(\sum S_{a} \cdot P A^{2}\right)^{\frac{1}{q}}}=\frac{\sum S_{a} \cdot P A \cdot M A}{\left(\sum S_{a} \cdot P A^{2}\right)^{\frac{1}{q}}} \geq \frac{S_{a} \cdot P A \cdot R A}{\left(\sum S_{a} \cdot P A^{2}\right)^{\frac{1}{q}}} \tag{24}
\end{equation*}
$$

From (23) and (24), we can now observe that

$$
\begin{equation*}
S_{a} \cdot P A^{2-p} \cdot M A^{p}+S_{b} \cdot P B^{2-p} \cdot M B^{p}+S_{c} \cdot P C^{2-p} \cdot M C^{p} \geq\left(\frac{S_{a} \cdot P A \cdot R A}{\left(\sum S_{a} \cdot P A^{2}\right)^{\frac{p-1}{p}}}\right)^{p} \tag{25}
\end{equation*}
$$

or

$$
\begin{equation*}
S_{a} \cdot P A^{2-p} \cdot M A^{p}+S_{b} \cdot P B^{2-p} \cdot M B^{p}+S_{c} \cdot P C^{2-p} \cdot M C^{p} \geq \frac{\left(S_{a} \cdot P A \cdot R A\right)^{p}}{\left(\sum S_{a} \cdot P A^{2}\right)^{p-1}} \tag{26}
\end{equation*}
$$

From the conditions for equality of Holder's inequality and Lemma 1, it is not a challenge to realize that the equality in (26) is attained when and only when M coincides with P.

Theorem 3 can also be used to obtain a result as follows:
Consequence 1. For real number $p \geq 1$, suppose triangle $A B C$ contains a point P which satisfies

$$
\begin{equation*}
\frac{S_{a}}{P A^{p-2}}=\frac{S_{b}}{P B^{p-2}}=\frac{S_{c}}{P C^{p-2}} \tag{27}
\end{equation*}
$$

where S_{a}, S_{b}, and S_{c} denote the areas of triangles $P B C, P C A$, and $P A B$ respectively. Let M be an arbitrary point in this plane, then the expression

$$
M A^{p}+M B^{p}+M C^{p}
$$

attains minimum value when and only when M coincides with P.
This result can be considered a generalization for Fermat-Torricelli problem with powers. Another power generalization can be derived for Theorem 2

Theorem 4 (Generalization of Theorem 2 with powers). Let P be an interior point of a given triangle $A B C$. Denote by $\mathrm{R}_{a}, \mathrm{R}_{b}$, and R_{c} the circumradii of triangles $P B C, P C A$, and $P A B$ respectively. Let p be a real number no less than 1 . Let X, Y, and Z be points on the lines $B C, C A$, and $A B$ respectively. Then, the value of the expression

$$
\begin{equation*}
\frac{Y Z^{p}}{\mathrm{R}_{a} \cdot(B C \cdot P A)^{p-1}}+\frac{Z X^{p}}{\mathrm{R}_{b} \cdot(C A \cdot P B)^{p-1}}+\frac{X Y^{p}}{\mathrm{R}_{c} \cdot(A B \cdot P C)^{p-1}} \tag{28}
\end{equation*}
$$

is minimal if and only if $X Y Z$ is the pedal triangle of P with respect to triangle $A B C$.
Proof. Recalling $p \geq 1$ and inequality (16) gives us

$$
\begin{equation*}
\left(\frac{Y Z}{\mathrm{R}_{a}}\right)^{p} \geq\left(\frac{2 S_{a} \cdot M A \cdot P A}{\mathrm{R} \cdot P A \cdot P B \cdot P C}\right)^{p} \tag{29}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\frac{Y Z^{p}}{\mathrm{R}_{a} \cdot(B C \cdot P A)^{p-1}} \geq\left(\frac{2 S_{a} \cdot M A \cdot P A}{\mathrm{R} \cdot P A \cdot P B \cdot P C}\right)^{p} \cdot \frac{\mathrm{R}_{a}^{p-1}}{(B C \cdot P A)^{p-1}} . \tag{30}
\end{equation*}
$$

Simultaneously, we have

$$
\begin{align*}
S_{a}^{p-1} \cdot P A^{2(p-1)} & =\left(\frac{B C \cdot P B \cdot P C}{4 \mathrm{R}_{a}}\right)^{p-1} \cdot P A^{(p-1)} \cdot P A^{(p-1)} \\
& =\frac{(B C \cdot P A)^{p-1}}{\left(4 \mathrm{R}_{a}\right)^{p-1}} \cdot(P A \cdot P B \cdot P C)^{p-1}, \tag{31}
\end{align*}
$$

or

$$
\begin{equation*}
\frac{\mathrm{R}_{a}^{p-1}}{(B C \cdot P A)^{p-1}}=\left(\frac{P A \cdot P B \cdot P C}{4}\right)^{p-1} \cdot S_{a}^{1-p} \cdot P A^{2-2 p} \tag{32}
\end{equation*}
$$

From (30) and (32), it follows that

$$
\begin{equation*}
\frac{Y Z^{p}}{\mathrm{R}_{a} \cdot(B C \cdot P A)^{p-1}} \geq \frac{2^{2-p}}{P A \cdot P B \cdot P C \cdot \mathrm{R}^{p}} \cdot S_{a} \cdot P A^{2-p} \cdot M A^{p} \tag{33}
\end{equation*}
$$

Now using (26), we obtain

$$
\begin{align*}
\sum \frac{Y Z^{p}}{\mathrm{R}_{a} \cdot(B C \cdot P A)^{p-1}} & \geq \frac{2^{2-p}}{P A \cdot P B \cdot P C \cdot \mathrm{R}^{p}} \cdot\left(\sum S_{a} \cdot P A^{2-p} \cdot M A^{p}\right) \\
& \geq \frac{2^{2-p}}{P A \cdot P B \cdot P C \cdot \mathrm{R}^{p}} \cdot \frac{\left(S_{a} \cdot P A \cdot R A\right)^{p}}{\left(\sum S_{a} \cdot P A^{2}\right)^{p-1}} \tag{34}
\end{align*}
$$

where R is the intersection of $P A$ and $(P B C)$. Equality is reached when and only when X, Y, and Z are projections of P on $B C, C A$, and $A B$ respectively.

In Theorem 4, if we let $X^{\prime} Y^{\prime} Z^{\prime}$ be the pedal triangle of P in $A B C$, we notice that

$$
\frac{Y^{\prime} Z^{\prime}}{B C \cdot P A}=\frac{Z^{\prime} X^{\prime}}{C A \cdot P B}=\frac{X^{\prime} Y^{\prime}}{A B \cdot P C}
$$

which gives rise to the following result
Consequence 2. Let P be an arbitrary interior point of triangle $A B C$, and $X^{\prime} Y^{\prime} Z^{\prime}$ its pedal triangle with respect to $A B C$. Denote by $\mathrm{R}_{a}, \mathrm{R}_{b}$, and R_{c} the circumradii of triangles $P B C$, $P C A$, and $P A B$ respectively. X, Y, and Z are points on the lines $B C, C A$, and $A B$. For real numbers $p \geq 1$, the value of the expression

$$
\begin{equation*}
\frac{Y Z^{p}}{\mathrm{R}_{a} \cdot Y^{\prime} Z^{p-1}}+\frac{Z X^{p}}{\mathrm{R}_{b} \cdot Z^{\prime} X^{\prime p-1}}+\frac{X Y^{p}}{\mathrm{R}_{c} \cdot X^{\prime} Y^{p-1}} \tag{35}
\end{equation*}
$$

attains a minimum value if and only if $X=X^{\prime}, Y=Y^{\prime}$, and $Z=Z^{\prime}$.
From Consequence 2, let triangle $A B C$ be acute and P coincides with its orthocenter then $\mathrm{R}_{a}=\mathrm{R}_{b}=\mathrm{R}_{c}$, we obtain the following consequence

Consequence 3 (Generalization of Fagnano's problem with powers). Let $A B C$ be a triangle and $X^{\prime} Y^{\prime} Z^{\prime}$ its orthic triangle. Let X, Y, and Z be the points on the lines $B C, C A$, and $A B$ respectively. For real numbers $p \geq 1$, the value of the expression

$$
\begin{equation*}
\frac{Y Z^{p}}{Y^{\prime} Z^{\prime p-1}}+\frac{Z X^{p}}{Z^{\prime} X^{\prime p-1}}+\frac{X Y^{p}}{X^{\prime} Y^{\prime p-1}} \tag{36}
\end{equation*}
$$

attains a minimum value if and only if $X=X^{\prime}, Y=Y^{\prime}$, and $Z=Z^{\prime}$.

4 Conclusion

By adding powers and specific weights to Fermat-Torricelli and Fagnano's problems, we found the generalized problem of which they are both special cases. We viewed Lemma 1 as a way to add weights to Fermat-Torricelli problem, thereby generalizing it and Fagnano's problem. We also give a general direction using powers for these two well-known geometric extremal problems.

Acknowledgements

The authors are grateful to Professor Floor van Lamoen for his valuable suggestions and comments. The authors would also like to thank two referees for careful reading, valuable comments, and all the helping.

References

[1] H. S. M. Coxeter and S. L. Greitzer: Geometry Revisited. Math. Assoc. Amer., Washington, DC, 1967. Pp. 88-89.
[2] S. Dar and S. Gueron: A Weighted Erdös-Mordell Inequality. Amer. Math. Monthly 108(2), 165-168, 2001. doi: $10.2307 / 2695531$.
[3] H. Dörrie: 100 Great Problems of Elementary Mathematics: Their History and Solution. Dover Publications, 1965. Pp. 359-360.
[4] F. Holland: Another Verification of Fagnano's Theorem. Forum Geom. 7, 207-210, 2007.
[5] R. Honsberger: Episodes in Nineteenth and Twentieth Century Euclidean Geometry. Math. Assoc. Amer., Washington, DC, 1995. Ch. 8, pp. 79-86.
[6] M. H. Nguyen: Another Proof of Fagnano's Inequality. Forum Geom. 4, 199-201, 2004.

Internet Sources

[7] A. Bogomolny: Fagnano's Problem. Interactive Mathematics Miscellany and Puzzles. http://www. cut-the-knot.org/triangle/Fagnano.shtml.
[8] A. Bogomolny: The Fermat Point and Generalizations. Interactive Mathematics Miscellany and Puzzles. http://www.cut-the-knot.org/Generalization/fermat_point . shtml.
[9] E. W. Weisstein: Fagnano's Problem. MathWorld-A Wolfram Web Resource. https: //mathworld.wolfram.com/FagnanosProblem.html.
[10] E. W. Weisstein: Fermat Points. MathWorld-A Wolfram Web Resource. https: //mathworld.wolfram.com/FermatPoints.html.

Received February 4, 2021; final form May 8, 2021.

