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Abstract. We generalize Fagnano’s famous problem of minimal inscribed perime-
ter by replacing the orthocenter with an arbitrary interior point P . By adding
weights associated with P to Fagnano’s inequality, we show that the new, gen-
eralized expression reaches minimum for the pedal triangle of P . We then fur-
ther generalize our main theorem and derive some extensions by relating them to
Fermat-Torricelli problem.
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1 Introduction

In 1775, the Italian mathematician Giovanni Fagnano proposed his famous problem which
can be restated as follows: find in the acute-angled triangle ABC the inscribed triangle with
the smallest perimeter; see [1, 3, 4, 6] as well as [7, 9]. He then provided an analytic solution,
showing that the triangle in question is ABC’s orthic triangle.

Theorem 1 (Fagnano, 1775). Let ABC be an acute-angled triangle. Of all inscribed triangles
of ABC, its orthic triangle has the smallest perimeter (See Figure 1).

Ever since Fagnano, multiple other proofs have been discovered using a wide range of
tools from geometry to physics. A classic example of a geometric proof is that by Lipot Fejér,
using reflections and isosceles triangles; see [1, 3].

In this paper, similar to the approach taken in [2], we generalize Fagnano’s problem by
adding weights to Fagnano’s inequality. We shall substitute orthocenter H with any point P ,
then add the inverse circumradii of triangles PBC, PCA, and PAB as weights.

Theorem 2 (Generalization of Fagnano’s problem). Let P be an interior point of given
triangle ABC. Denote by Ra, Rb, and Rc the circumradii of triangles PBC, PCA, and PAB
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Figure 1: Orthic triangle DEF of triangle ABC and inscribed triangle XY Z.

respectively. Let X, Y , and Z be points on the lines BC, CA, and AB respectively. Then
the value of the expression

Y Z

Ra

+ ZX

Rb

+ XY

Rc

(1)

attains minimum value if and only if XY Z is the pedal triangle of P with respect to trian-
gle ABC.

The original Fagnano’s problem can easily be spotted in the particular case where triangle
ABC is acute-angled and P coincides with the orthocenter of triangle ABC. Then, Ra, Rb,
and Rc are equal to R (circumradius of triangle ABC), and Equation (1) becomes XY +Y Z+ZX

R .
According to Theorem 2, since R is a constant, the expression XY +Y Z+ZX

R or XY +Y Z +ZX
attains minimum value if and only if XY Z is the pedal triangle of orthocenter H with respect
to triangle ABC.

In the last section of this paper, we will also present some extensions of the lemma and
main theorem.

2 Proof of main theorem

We start with a lemma which helps integrate areas and later circumradii into the problem.
Throughout this section, we denote the distance between points A and B simply by AB

(which is not misleading if we also denote the line passing through two points A and B as
AB). The circumcircle of the triangle PQR will be denoted by (PQR).

Lemma 1. Let P be an interior point of triangle ABC. Denote by Sa, Sb, and Sc the areas
of triangles PBC, PCA, and PAB respectively. Let R be the second intersection of PA and
(PBC), and M be an arbitrary point in this plane. Then

Sa · PA · MA + Sb · PB · MB + Sc · PC · MC ≥ Sa · PA · AR

and equality holds if and only if M coincides with P .
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Figure 2: Proof of Lemma 1

Proof. (See Figure 2) Let E be the intersection of lines PC and AB, and F be the intersection
of lines PA and BC. Point Q lies on PC such that BQ is parallel to AP . By the standard
formula for the area of a triangle, we have

EA

EB
= Sb

Sa

and FB

FC
= Sc

Sb

.

Since triangles EBQ and EAP are similar, we have P A
BQ

= EA
EB

= Sb

Sa
, giving

Sa · PA

BQ
= Sb. (2)

Since triangles CBQ and CFP are similar, we have P Q
P C

= F B
F C

= Sc

Sb
, so

Sc · PC

PQ
= Sb. (3)

It follows from (2) and (3) that

Sa · PA

BQ
= Sb · PB

PB
= Sc · PC

PQ
. (4)

As P is an inner point of triangle ABC, it is obvious that F is an inner point of segment BC.
Therefore P and R are at different sides of line BC or the quadrilateral PBCR is convex and
cyclic. Using the Theorem of angles at circumference and that ∠BPQ + ∠BPC = 180◦, we
have

∠BPQ = ∠BRC (5)

and
∠BQP = ∠RPC = ∠RBC. (6)
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By (5) and (6), triangles PBQ and RCB are similar, therefore

QB

BC
= PB

CR
= PQ

RB
. (7)

Combining with (4) gives
Sa · PA

BC
= Sb · PB

CR
= Sc · PC

RB
. (8)

Using Ptolemy’s inequality for point M and triangle RBC, we have

MR · BC ≤ MB · RC + MC · RB. (9)

From (8) and (9), we obtain

Sa · PA · MR ≤ Sb · PB · MB + Sc · PC · MC. (10)

Addition of Sa · PA · MA to both sides of (10) gives

Sa · PA · (MR + MA) ≤ Sa · PA · MA + Sb · PB · MB + Sc · PC · MC. (11)

Using the triangle inequality, we have

Sa · PA · MA + Sb · PB · MB + Sc · PC · MC ≥ Sa · PA · AR. (12)

The right hand side of the inequality (12) is a constant, and equality holds if and only if A,
R, and M are collinear and quadrilateral MBRC is cyclic. In other words, equality holds if
and only if M coincides with P . Thus, the value of the expression

Sa · PA · MA + Sb · PB · MB + Sc · PC · MC

attains minimum value if and only if M coincides with P .

We now present a synthetic proof of Theorem 2 by using Lemma 1 and Miquel’s Theo-
rem [5].

Proof of Theorem 2. (See Figure 2) Since X, Y , and Z lie on the lines BC, CA, and AB
respectively, using Miquel’s theorem [5], circles (AY Z), (BZX), and (CXY ) have a common
point M .

Denote by da the diameter length of (AY Z) and R the radius of (ABC). By the law of
sines, we have

Y Z = da · sin A = da · BC

2R . (13)

Hence,
Y Z

Ra

=
da · BC

2R
P B·P C·BC

4Sa

= 2da · Sa

R · PB · PC
. (14)

Since MA is a chord of (AY Z),
da ≥ MA (15)

and equality occurs iff AM is diameter of (AY Z), in other words Y and Z are orthogonal
projections of M on sides CA and AB respectively. From (14) and (15), we get

Y Z

Ra

≥ 2Sa · MA · PA

R · PA · PB · PC
. (16)
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Figure 3: Proof of Theorem 2

Similarly, we get the same inequalities

ZX

Rb

≥ 2Sb · MB · PB

R · PA · PB · PC
(17)

and
XY

Rc

≥ 2Sc · MC · PC

R · PA · PB · PC
. (18)

With the same reason for equality occurs in (15), the equalities of (16), (17), and (18) occur
iff XY Z is the pedal triangle of M . Adding (16), (17), and (18), and using Lemma 1 gives

Y Z

Ra

+ ZX

Rb

+ XY

Rc

≥ 2Sa · PA · MA + Sb · PB · MB + Sc · PC · MC

R · PA · PB · PC

≥ 2Sa · PA · AR

R · PA · PB · PC

(19)

where R is the second intersection of PA with (PBC). Furthermore,

2Sa · PA · AR

R · PA · PB · PC
= 2Sa · AR

R · PB · PC
(20)

which is a constant. Thus, the right hand side of inequality (19) is a constant, and the
equality in (19) holds if and only if M coincides with P , combining with the equalities of
(16), (17), and (18) occur iff XY Z is the pedal triangle of M . We deduce that the equality
of (19) occurs iff X, Y , and Z coincide with D, E, and F respectively, where DEF is the
pedal triangle of P with respect to triangle ABC.

. Therefore, the value of the expression (1) reaches minimum value if and only if XY Z
is the pedal triangle of P with respect to triangle ABC.
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3 Some extensions and consequences

Here, we will present some extensions and applications of Lemma 1 and the main theorem.
First, we can regard Lemma 1 as a generalization of Fermat-Torricelli problem [8, 10].

Indeed, let us consider a triangle with angles not exceeding 120◦ and the Fermat point F . It
is conspicuous that ∠BFC = ∠CFA = ∠AFB = 120◦, and thus the areas of triangles FBC,
FCA, and FAB are directly proportional to FA, FB, and FC respectively. If we introduce
Lemma 1 here, with P = F , then

Sa

FA
= Sb

FB
= Sc

FC
= k. (21)

As k is a constant, we are left with the problem of finding the minimum value of

MA + MB + MC. (22)

Equality is reached when M coincides with F . Furthermore, Lemma 1 can be generalized
with powers as follows:

Theorem 3. Let P be a point in the interior of ABC. Denote by Sa, Sb, and Sc the areas
of triangles PBC, PCA, and PAB respectively. Let p be a real number no less than 1, and
M be an arbitrary point in this plane. Then the value of the expression

Sa · PA2−p · MAp + Sb · PB2−p · MBp + Sc · PC2−p · MCp

is minimal if and only if M coincides with P .

Proof. Case p = 1, we obtain Lemma 1.
Case p > 1. Let R be the intersection of PA and (PBC). Since p > 1, let q = p

p−1 , q is a
positive real number and 1

p
+ 1

q
= 1. Holder’s inequality transforms this into

(
Sa · PA2−p · MAp + Sb · PB2−p · MBp + Sc · PC2−p · MCp

) 1
p

=

(∑ (
S

1
p
a · PA

2−p
p · MA

)p) 1
p

·
(∑ (

S
1
q
a · PA

2
q

)q) 1
q

(∑ (
S

1
q
a · PA

2
q

)q) 1
q

≥
∑

S
1
p

+ 1
q

a · PA
2−p

p
+ 2

q · MA

(∑
Sa · PA2)

1
q

.

(23)

Furthermore, using Lemma 1 we have

∑
S

1
p

+ 1
q

a · PA
2−p

p
+ 2

q · MA

(∑
Sa · PA2)

1
q

=
∑

Sa · PA · MA

(∑
Sa · PA2)

1
q

≥ Sa · PA · RA

(∑
Sa · PA2)

1
q

. (24)

From (23) and (24), we can now observe that

Sa · PA2−p · MAp + Sb · PB2−p · MBp + Sc · PC2−p · MCp ≥

 Sa · PA · RA

(∑
Sa · PA2)

p−1
p

p

(25)
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or

Sa · PA2−p · MAp + Sb · PB2−p · MBp + Sc · PC2−p · MCp ≥ (Sa · PA · RA)p

(∑
Sa · PA2)p−1 . (26)

From the conditions for equality of Holder’s inequality and Lemma 1, it is not a challenge to
realize that the equality in (26) is attained when and only when M coincides with P .

Theorem 3 can also be used to obtain a result as follows:

Consequence 1. For real number p ≥ 1, suppose triangle ABC contains a point P which
satisfies

Sa

PAp−2 = Sb

PBp−2 = Sc

PCp−2 (27)

where Sa, Sb, and Sc denote the areas of triangles PBC, PCA, and PAB respectively. Let
M be an arbitrary point in this plane, then the expression

MAp + MBp + MCp

attains minimum value when and only when M coincides with P .

This result can be considered a generalization for Fermat-Torricelli problem with powers.
Another power generalization can be derived for Theorem 2

Theorem 4 (Generalization of Theorem 2 with powers). Let P be an interior point of a
given triangle ABC. Denote by Ra, Rb, and Rc the circumradii of triangles PBC, PCA, and
PAB respectively. Let p be a real number no less than 1. Let X, Y , and Z be points on the
lines BC, CA, and AB respectively. Then, the value of the expression

Y Zp

Ra · (BC · PA)p−1 + ZXp

Rb · (CA · PB)p−1 + XY p

Rc · (AB · PC)p−1 (28)

is minimal if and only if XY Z is the pedal triangle of P with respect to triangle ABC.

Proof. Recalling p ≥ 1 and inequality (16) gives us(
Y Z

Ra

)p

≥
( 2Sa · MA · PA

R · PA · PB · PC

)p

. (29)

Thus
Y Zp

Ra · (BC · PA)p−1 ≥
( 2Sa · MA · PA

R · PA · PB · PC

)p

· Rp−1
a

(BC · PA)p−1 . (30)

Simultaneously, we have

Sp−1
a · PA2(p−1) =

(
BC · PB · PC

4Ra

)p−1
· PA(p−1) · PA(p−1)

= (BC · PA)p−1

(4Ra)p−1 · (PA · PB · PC)p−1 ,

(31)

or
Rp−1

a

(BC · PA)p−1 =
(

PA · PB · PC

4

)p−1
· S1−p

a · PA2−2p. (32)



68 T. Quang Hung, Nguyen Thi Thuy Duong: Generalizations of Fagnano’s Problem

From (30) and (32), it follows that

Y Zp

Ra · (BC · PA)p−1 ≥ 22−p

PA · PB · PC · Rp
· Sa · PA2−p · MAp. (33)

Now using (26), we obtain

∑ Y Zp

Ra · (BC · PA)p−1 ≥ 22−p

PA · PB · PC · Rp
·

(∑
Sa · PA2−p · MAp

)
≥ 22−p

PA · PB · PC · Rp
· (Sa · PA · RA)p

(∑
Sa · PA2)p−1

(34)

where R is the intersection of PA and (PBC). Equality is reached when and only when X,
Y , and Z are projections of P on BC, CA, and AB respectively.

In Theorem 4, if we let X ′Y ′Z ′ be the pedal triangle of P in ABC, we notice that

Y ′Z ′

BC · PA
= Z ′X ′

CA · PB
= X ′Y ′

AB · PC

which gives rise to the following result

Consequence 2. Let P be an arbitrary interior point of triangle ABC, and X ′Y ′Z ′ its pedal
triangle with respect to ABC. Denote by Ra, Rb, and Rc the circumradii of triangles PBC,
PCA, and PAB respectively. X, Y , and Z are points on the lines BC, CA, and AB. For
real numbers p ≥ 1, the value of the expression

Y Zp

Ra · Y ′Z ′p−1 + ZXp

Rb · Z ′X ′p−1 + XY p

Rc · X ′Y ′p−1 (35)

attains a minimum value if and only if X = X ′, Y = Y ′, and Z = Z ′.

From Consequence 2, let triangle ABC be acute and P coincides with its orthocenter
then Ra = Rb = Rc, we obtain the following consequence

Consequence 3 (Generalization of Fagnano’s problem with powers). Let ABC be a triangle
and X ′Y ′Z ′ its orthic triangle. Let X, Y , and Z be the points on the lines BC, CA, and AB
respectively. For real numbers p ≥ 1, the value of the expression

Y Zp

Y ′Z ′p−1 + ZXp

Z ′X ′p−1 + XY p

X ′Y ′p−1 (36)

attains a minimum value if and only if X = X ′, Y = Y ′, and Z = Z ′.

4 Conclusion

By adding powers and specific weights to Fermat-Torricelli and Fagnano’s problems, we found
the generalized problem of which they are both special cases. We viewed Lemma 1 as a way
to add weights to Fermat-Torricelli problem, thereby generalizing it and Fagnano’s problem.
We also give a general direction using powers for these two well-known geometric extremal
problems.
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