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Abstract. A compact group is called a compact Just-Non-Lie group or a
compact JNL group if it is not a Lie group but all of its proper Hausdorff quotient
groups are Lie groups. We show that a compact JNL group is profinite and a
compact nilpotent JNL group is the additive group of p -adic integers for some
prime. Examples show that this fails for compact pronilpotent and solvable
groups.
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1. Introduction

Let X be a class of groups. A group G which belongs to X is said to be an
X-group. A group G is said to be a Just-Non-X group, or a JNX group , if it
is not an X-group but all of its proper quotients are X-groups. The structure of
Just-Non-X groups has already been studied for several choices of the class X ,
so there is a well developed theory about this topic (see [3]). Moreover the study
of Just-Non-X groups has been investigated both in theory of finite groups and
theory of infinite groups and many techniques have general applications.

There are some cautionary observations necessary when we consider as
class X of topological groups such as the class of Lie groups. The literature on
varieties of topological groups is comparatively recent, as shown in [4], [5], [5], [7],
[8]. In particular most of the classical results of [4, Chapter 2] do not apply to
topological groups. In order to speak about quotients in a meaningful way in the
any category of Hausdorff topological groups such as the category of Lie groups,
we must quotients modulo closed normal subgroups (see [1, Definition 1.9]). Since
every compact group has enough Lie group quotients to separate the points the
concept of a compact Just-Non-Lie group is meaningful. One source for facts on
compact groups is [1]; basic properties of compact Lie groups, for instance, are
summarized in [1, Corollary 2.40].

If G is a topological group, let N (G) denote the set of all normal subgroups
of G such that N ∈ N (G) if and only if G/N is a Lie group. Then G ∈ N (G);
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further {1} ∈ N (G) if and only if G is a Lie group. If N ∈ N (G) and M is a closed
normal subgroup of G such that N ≤ M , then M ∈ N (G). If G is a compact
group, then N (G) converges to 1 and the natural morphism G → limN∈N (G) G/N
is an isomorphism of compact groups (see [1, p.17-23]).

A Hausdorff topological group G is said to be a Just-Non-Lie group or,
more shortly, a JNL group if G is a non-Lie group such that all closed normal
subgroups N 6= {1} are contained in N (G),

Lemma 1.1. A JNL group does not contain any nonsingleton closed normal
Lie subgroup.

Proof. If N is a nonsingleton closed normal Lie subgroup of a JNL group, then
N ∈ N (G) and so G/N is a Lie group. But then G , as an extension of a Lie
group by a Lie group is a Lie group, contrary to the definition of JNL group.

As a special consequence, a JNL group does not have a finite normal
nonsingleton subgroup. In particular, an abelian JNL group is torsionfree.

In Section 2 we shall show that every compact JNL group is profinite and
that a compact abelian JNL-group is a group of p-adic integers. We shall illustrate
these facts by some limiting examples and counterexamples. In Section 3 we peruse
a variety and additional observations and results.

Most of our notation is standard and has been referred to [1]. For the
general properties of compact groups we refer to [1]. For profinite groups we have
the source books [9, 11].

2. Compact Just-Non-Lie groups are profinite

We denote by Zp the additive group of p-adic integers for a prime p .

Theorem 2.1. For a compact abelian JNL group G there is a prime p such
that G ∼= Zp .

Proof. A compact abelian group is a Lie group if an only if its character group
is a finitely generated discrete group. Hence, by duality, A = Ĝ is a discrete
abelian group which is not finitely generated, while every proper subgroup is
finitely generated (since every proper quotient of G is a Lie group). We write
A additively. As a consequence of Lemma 1.1, G is torsionfree and so A is
divisible (see [1, Corollary 8.5]). Thus A ∼= Q(I) ⊕

⊕
p∈P Z(p∞)(Ip) , where I and

Ip are suitable sets and P denotes the set of all prime numbers (see [1, Theorem
A1.42]).Suppose that I 6= ∅ . Let a 6= 0, a ∈ Q(I) . Then 1

2∞
Z · a is a proper

subgroup of A that is not finitely generated. This is a contradiction. Thus A is a
divisible torsion group.Write Ap = Z(p∞)(Ip) for its p-primary components. Since

A is nonzero, at least one Ap is nonzero. Let A(p) denote the sum
⊕

q 6=p Aq of all
q -primary components Aq for q prime number which is distinct by p . Suppose
A(p) 6= {0} . Then Ap 6= A and thus Ap is finitely generated contradicting the fact
that a Prüfer group is not finitely generated. Thus A = Z(p∞)(Ip) . Let j ∈ Ip ,
then A ' Z(p∞) ⊕ Z(p∞)(Ip\{j}) . If the second summand were nonzero, then
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Z(p∞) would have to be finitely generated, which is not. Thus Ip = {j} and A is
a Prüfer group. But this causes its dual G to be isomorphic to the group Zp of
p-adic integers.

We recall from [1, 11, 13] that a compact group is profinite if and only if it is
totally disconnected. The connected component of the identity will be denoted G0

(see [1, p.23]).

Theorem 2.2. A compact JNL group is totally disconnected, that is, it is
profinite.

Proof. Assume that G is a compact JNL group and G0 6= {1} . We shall derive
a contradiction.

(a) Since G is a compact JNL group, G/G0 is a Lie group and thus, as a
totally disconnected group, is finite.

(b) We will denote with S the commutator subgroup [G0, G0] of G0 and
with A the identity component Z(G0)0 of the center Z(G0) of G0 . Both of these
subgroups are characteristic subgroups of G0 . Set ∆ = S ∩ A . We claim that
∆ = {1} .

Suppose that ∆ 6= {1} . Then G/∆ is a Lie group. In particular, S/∆ is
a Lie group, whence S/Z(S) is a Lie group, since ∆ ≤ Z(S). The factor group
S/Z(S) is of the form

∏
j∈J Sj for a family of centerfree compact connected simple

Lie groups (see [1, Theorem 9.24]), and thus J is finite. Then [1, Theorem 9.19]
allows us to conclude that ∆ is finite. Then Lemma 1.1 implies ∆ = {1} and thus
we have a direct product decomposition G0 = S × A (see [1, Theorem 9.24]).

(c) Suppose that S 6= 1. Then G/S , and therefore G0/S , is a Lie group.
Hence A ' G0/S is a Lie group. Then Lemma 1.1 implies A = {1} . Therefore
G0 = S =

∏
j∈J Sj . Also, G0 is centerfree. By Lee’s Theorem [1, Theorem 9.41]

there is a finite group F such that G = S o F . Since the factors Sj are simple,
the action of F induces a permutation group on J . But F is finite, then there
is a finite subset I of J which is invariant under this action. Then

∏
j∈I Sj is

a nonsingleton normal subgroup of G and is a Lie group as a finite product of
Lie groups. Now Lemma 1.1 again implies that S = {1} , and thus we know that
G0 = A is abelian.

(d) In that case, G 6= A by Theorem 2.1. Hence A is not a Lie group by
Lemma 1.1. The factor group Γ = G/A acts as a finite group of automorphisms
on A and then, By Pontryagin Duality (see [1, Theorem 1.37]), Γ acts as a finite

automorphism group on the torsionfree character group Â as well. A closed
nonsingleton subgroup B of A is normal in G if and only if it is Γ-invariant
in which case A/B is a torus group. Hence the annihilator B⊥ in the character

group Â of A is finitely generated free. Thus we know that

(∗) every proper Γ-invariant subgroup of Â is finitely generated free.

If n is any natural number such that n·Â 6= Â then n·Â is a proper Γ-invariant
subgroup of Â and is, therefore, finitely generated free by (∗). Since Â is

torsionfree, this implies that Â is finitely generated free, and that contradicts
the fact that A is not a Lie group. It follows that Â is divisible and thus is the
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additive group of a Q-vector space. By the Theorem of Maschke and Schur, Â is
a semisimple Γ-module, that is, it is a direct sum of finite dimensional Γ-invariant
Q-vector subspaces. From (∗) we conclude that such a sum can have only one

finite simple summand. Let 0 6= v ∈ Â . The abelian subgroup generated by
{γ·v : γ ∈ Γ} is a finitely generated free, hence proper, Γ-invariant subgroup F of

Â . Now let R = 1
p∞
·Z the subring of Q of all rational numbers of the form m/pn ,

m ∈ Z , n ∈ N for a fixed prime p . Let R ⊗ F denote all linear combinations of
elements r·f with r ∈ R and f ∈ F . Then R⊗F is a proper Γ-invariant subgroup
of Â . Thus on one hand it is finitely generated free by (∗), but on the other fails
to be free since it contains a copy of the additive group of R which is not free.
This contradiction shows that G0 cannot be abelian and nonsingleton. Hence the
assumption G0 6= {1} is false, and this shows that G is totally disconnected, and
thus profinite.

We may reformulate this theorem as

Corollary 2.3. In a compact JNL group, every nonsingleton normal closed
subgroup is open and of finite index.

Proposition 2.4. A compact JNL group with a nonsingleton center is a central
extension of a group Zp of p-adic integers by a finite group.

Proof. Let Z(G) 6= {1} denote the center of the compact JNL group G . If
G = Z(G), the assertion follows from Theorem 2.1. Assume G 6= Z(G). By
Lemma 1.1, the center Z(G) is not a Lie group and by Corollary 2.3, Z(G) is
open, that is, G/Z(G) is finite. Now let N 6= {1} be a closed subgroup of Z(G).
Then N is a closed normal subgroup of G and thus G/N is finite. In particular,
Z(G)/N ≤ G/N is finite. Thus Z(G) is a compact abelian JNL group. Therefore
Z(G) ∼= Zp for some prime p by Theorem 2.1 and the proposition is proved.

Among other things it follows at once that a compact JNL group without
nonsingleton torsionfree normal subgroups is centerfree. More significantly, we
have

Corollary 2.5. A compact nilpotent JNL group is abelian and therefore is iso-
morphic to a p-adic group.

Proof. If we can prove that G is abelian whenever G is nilpotent of class at
most 2, then we are done, because the second center Z2(G) has class of nilpotence
at most 2 and would have class 2 if G is nonabelian.
Thus, without loss of generality, we may assume that G is nilpotent of class at
most 2. Then [G, G] ≤ Z(G), and

[g1Z(G), g2Z(G)] = {[g1, g2]},

where g1, g2 ∈ G , so that the bihomomorphic function

b : G×G → Z(G)
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factors through a bihomomorphic function

B : G/Z(G)×G/Z(G) → Z(G).

Now G/Z(G) is finite and Z(G) ∼= Zp by Proposition 2.4. Now [G, G] =
B(G/Z(G) × G/Z(G)) is a union of finite subgroups

⋃
g∈G B(G/Z(G), gZ(G)).

On the other hand, Z(G) ∼= Zp is torsionfree and thus does not contain any non-
singleton finite subgroups. Hence B(G/Z(G), gZ(G)) = {1} for each g ∈ G and
thus [G, G] = 1.

This corollary does not extend to solvable compact JNL-groups and not
even to metabelian ones:

Example 2.6. We take a prime number p 6= 2. Let R ⊆ Zp \ pZ denote the
multiplicative group of (p− 1)-th roots of unity.

(a) We form G = Zp o R with R acting on Zp by multiplication. Then G
is a profinite centerfree metabelian group. Every nonsingleton normal subgroup
of G contains one of the form pkZp × {1} and thus is open and has finite index.
Therefore G is a compact JNL group which illustrates that solvability of compact
JNL groups does not imply commutativity.

(b) Let A = Z2
p be the free Zp -module of rank 2. Every closed (additive)

subgroup of A is obviously a free Zp -module of rank at most 2. Any Zp -submodule
of rank 2 is an open subgroup of A , and, equivalently, has finite index in A . A
Zp -submodule of rank 1 of A is of the form Zp · (a, b) for some a, b ∈ Zp . Let Γ
be a group of automorphisms of A with the matrix representations(

a 0
0 b

)
,

(
0 a
b 0

)
where a, b ∈ R . We note that Γ is a group of monomial matrices and it is
isomorphic to a semidirect product of the group R2 by the cyclic group of order
2. In particular, |Γ| = 2(p− 1)2 .

Now let
G = Γ n A

denote the semidirect product with respect to the natural action of Γ on A . We
will see that

(∗∗) G is a compact JNL group.

Let N be a nonsingleton closed normal subgroup of G . We must show
that N has finite index in G . Since it suffices to show that the normal subgroup
N ∩ (A × {1}) has finite index in G , we may assume that N = B × {1} , where
B is a Γ-invariant Zp -submodule of A . We must show that rank B=2, for then
B is open in A ; therefore A/B is finite. Since N 6= {1} we have rank B > 0.
Now assume that rank B=1. We will derive a contradiction. Indeed we have
B = Zp · (a, b) for suitable elements a, b,∈ Zp , not both of which are zero. Since
B is Γ-invariant, for each γ ∈ Γ there is a nonzero λ = λγ ∈ Zp such that
γ(a, b) = λ · (a, b). If b = 0, then a 6= 0 and we let

τ =

(
0 1
1 0

)
,
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whence (λτa, 0) = λτ (a, 0) = τ(a, 0) = (0, a), which is impossible. Likewise a = 0
is impossible, and so a 6= 0 6= b . Then (λτa, λτb) = λτ (a, b) = τ(a, b) = (b, a), and
so λτ = b/a = a/b . We conclude that (a + b)(a − b) = a2 − b2 = 0, then either
a = b or a = −b . We set

α =

(
r 0
0 1

)
for some 1 6= r ∈ R . The existence of such r is due to the fact that p 6= 2.
Then, in the first case, (λαa, λαa) = λα(a, b) = α(a, b) = (ra, b). We first conclude
λα = 1, then a = ra and so r = u , a contradiction. In the second case, we obtain
λαa = ra , then −λαa = λαb = b = −a . So again we get λα = 1 and r = 1. This
final contradiction proves (∗∗).

By Theorem 2.1, a compact abelian JNL group is isomorphic to Zp . But
in our case A 6∼= Zp and so A is not a compact JNL group. The group G has the
following properties:

(i) G is a solvable compact JNL group with a nonsingleton abelian normal open
subgroup A× {1} of finite index in G which is not a compact JNL group.

(ii) G is a compact JNL group which is solvable of derived length 3. Moreover,
G′′ is abelian and G′′ 6∼= Zp .

(iii) G is centerfree.

We saw that Corollary 2.5 on profinite nilpotent JNL groups does not extend
to profinite solvable JNL groups. It does not extend to profinite pronilpotent JNL
groups either as the example of the Nottingham Group shows:

Example 2.7. Let p be a prime number. Following [11, p. 66–67], Fp[t]
denotes the formal power series algebra over the field with p elements Fp in an
indeterminate t . Write A for the group of (continuous) automorphisms of Fp[t]
and for each integer n ≥ 1 let Jn be the kernel of the homomorphism from A to
the automorphism group of Fp[t]/(t

n+1), where (tn+1) is the ideal generated by
tn+1 . From [11, p. 66–67], we know that G = J1 coincides with the inverse limit
of J1/Jn for n ≥ 1 and each J1/Jn is a finite group of order pn . Thus G is a
profinite pro-p and thus pronilpotent group. Moreover G is a centerfree profinite
JNL group.

3. Miscellaneous results on compact JNL groups

We present a variety of observations which are apt to contribute to the development
of an intuition for compact JNL groups. First the simple observation that a
compact JNL group never has minimal normal subgroups.

Remark 3.1. Let G be a compact JNL group. If M is a nonsingleton closed
normal subgroup of G , then G contains an open normal subgroup which is properly
smaller than M .
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Proof. The set N (G) of all normal subgroups such that G/N is a Lie group
is a nontrivial filterbasis intersecting in {1} while not containing {1} . If M is a
nonsingleton closed normal subgroup of G , then M ∈ N (G). By Theorem 2.2,
M is an identity neighborhood. Now there is an N ∈ N (G) such that M 6⊆ N .
Then M ∩N ∈ N (G) is properly smaller than M .

One might surmise that in a compact JNL group an open normal subgroup
of finite index should be itself a compact JNL-group. Example 2.6 (ii) shows that
even in the solvable case this is not the case. We inspect a sufficient condition for
the conjecture to hold. Let G be a compact group and H a closed subgroup. We
call HG =

⋂
g∈G gHg−1 , that is, the largest normal subgroup contained in H , the

core of H . We say that H is core-free if HG = {1} . This terminology is standard
for abstract groups and can be found for instance in [10].

Proposition 3.2. Let G be a compact JNL group and N 6= {1} a closed
subgroup of G. If no nonsingleton closed normal subgroup of N is core-free in
G, then N is a compact JNL group.

Proof. Let M 6= {1} be a closed normal subgroup of N . Then MG 6= {1}
and so G/MG is finite by Theorem 2.2. Thus the closed subgroup N/MG is a Lie
group, too. But then N/M ∼= (N/MG)/(M/MG) is finite as well.

As we observed, even if N is an open normal subgroup it need not be a
compact JNL group as Example 2.6 (ii) shows. The case that N is central, on the
other hand is one in which 3.2 applies. as we saw in 2.4.

If G is as pronilpotent compact JNL-group, in view of 2.2 we see that G
is the product of its Sylow subgroups G ∼=

∏
p∈P Sp (see [11, Propositions 2.2.2,

2.3.2, 2.4.3]). It follows at once that only finitely many Sylow subgroups are
nonsingleton and precisely one of them is infinite. This reduces the problem of
classifying all compact pronilpotent JNL groups to the corresponding problem for
pro-p groups (p is a prime). However, we appear to know next to nothing about
such a classification.

If G is a compact JNL group and N a pronilpotent nonsingleton normal
subgroup, then since the Sylow subgroups Sp of N are characteristic, they are
normal in G and it then follows that G is a finite extension of an infinite pro-p
group. In particular, this applies to the case that N is abelian.

The question when a compact JNL group G splits semidirectly over one of
its open finite index subgroups N does not lead very far, except the very special
case that N is abelian and, according to the preceding remark is isomorphic to a
finite product Sp0 × Sp1 × · · · × Spn where Sp0 is an infinite abelian pro-p0 group
and the Spk

are finite pk groups for 1 ≤ k ≤ n . If each of the primes dividing
G/N differs from p0, . . . , pn , then indeed G splits semidirectly over N by [2, Satz
III].

Still, the following general observation shows, for instance, that the weight
of a compact JNL group is ℵ0 .
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Proposition 3.3. Let G be a compact JNL group. There is a descending
sequence

G = G1 ≥ G2 ≥ G3 ≥ . . . ≥ {1}
of closed normal subgroups of G converging to 1 such that Gn/Gn+1 is a finite
product of finite simple groups or groups of prime order, for each positive integer
n ≥ 1. In particular, G is a second countable and thus metric profinite group.

Proof. The totally disconnected compact JNL group G cannot be finite, since
it is not a Lie group. Then it has a descending family of compact normal subgroups

G = G1 ≥ G2 ≥ G3 ≥ . . .

converging to 1, such that each factor group Gn/Gn+1 is a product of simple
groups or groups of prime order, for each positive integer n ≥ 1 (see [1, Theorem
9.91]). Since G is a compact JNL group, by 2.2 it follows recursively that Gn is
a nonsingleton finite product of finite simple groups or groups of prime order and
the claim follows.
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suggestions and to Prof. K. H. Hofmann for most of the ideas and methods which
have been used in the present paper.

References

[1] Hofmann, K. H., and S. A. Morris, “The Structure of Compact Groups,”
Walter de Gruyter, Berlin, 2006.

[2] Hofmann, K. H., Zerfällung topologischer Gruppen, Math. Zeit. 84 (1964),
16–37.

[3] Kurdachenko, L., J. Otal, and I.Subbotin, “Groups with prescribed quo-
tient subgroups and associated module theory,” World-Scientific, Singa-
pore, 2002.

[4] Neumann, H., Varieties of groups, Springer-Verlag, 1967, Berlin.

[5] Morris, S. A., Varieties of topological groups, Bull. Austral. Math. Soc.1
(1969), 145–160.

[6] —, Varieties of topological groups. II, III, Bull. Austral. Math. Soc. 2
(1970), 1–13 and 165–178.

[7] —, Varieties of topological groups, Bull. Austral. Math. Soc. 3 (1970),
429–431.

[8] —, Varieties of topological groups, a survey, Colloq. Math. 46 (1982), 147–
165.

[9] Ribes, L., and A. Zalesskii, “Profinite Groups,” Springer-Verlag, Berlin,
2000.

[10] Robinson, D. J., “A Course in the Theory of Groups,” Springer-Verlag,
Berlin, 1980.

[11] Wilson, J. S., “Profinite Groups,” Clarendon Press, Oxford, 1998.

Francesco Russo
Mathematics Department of Naples,
via Cinthia 80126 Naples, Italy
francesco.russo@dma.unina.it

Received June 20, 2007
and in final form June 20, 2007


