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Abstract. The pre-Lie operad is an operad structure on the species T of
labelled rooted trees. A result of F. Chapoton shows that the pre-Lie operad
is a free twisted Lie algebra over a field of characteristic zero, that is T =
Lie ◦ F for some species F . Indeed Chapoton proves that any section of the
indecomposables of the pre-Lie operad, viewed as a twisted Lie algebra, gives
such a species F . In this paper, we first construct an explicit vector space basis
of F [S] when S is a linearly ordered set. We deduce the associated explicit
species F , solution to the equation T = Lie ◦ F . As a corollary the graded
vector space (F [{1, . . . , n}])n∈N forms a sub non-symmetric operad of the pre-
Lie operad T .
Mathematics Subject Classification 2000: 18D, 05E, 17B.
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word.

Introduction

One of the most fascinating result in the theory of operads is the Koszul duality
between the Lie operad Lie and the commutative and associative operad Com
[8]. This has inspired many researchers to study this pair of operads and its
refinements. One particular instance of this is the study of pre-Lie algebras. A
pre-Lie algebra is a k-vector space L , where k is the ground field, together with
a product ∗ satisfying the relation

(x ∗ y) ∗ z − x ∗ (y ∗ z) = (x ∗ z) ∗ y − x ∗ (z ∗ y), ∀x, y, z ∈ L.

Any pre-Lie algebra gives rise to a Lie algebra with Lie bracket defined by

[x, y] = x ∗ y − y ∗ x.

In [4], the pre-Lie operad is described in terms of the species T of labelled
rooted trees. We assume in this paper that the ground field k is of characteristic
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zero. This operad sits naturally between Lie and As , the operad for associative
algebras, for the injective morphisms

Lie→ T → As

factor the usual injective morphism from Lie to As .
At the level of algebras, the free pre-Lie algebra generated by a vector

space of dimension 1, is the vector space freely generated by unlabelled rooted
trees. Indeed the enveloping algebra of its associated Lie algebra L1 is isomorphic
to the Grossman-Larson Hopf algebra [9] and its dual is isomorphic to the Connes-
Kreimer Hopf algebra describing renormalisation theory in [6]. Foissy proved that
the Lie algebra L1 is a free Lie algebra in [7]. This result generalizes easily to the
following statement: the Lie algebra associated to a free pre-Lie algebra generated
by a vector space V is a free Lie algebra generated by a vector space W . However,
the proof of Foissy does not give an explicit description of W .

A species [1, 10] is a contravariant functor from the category of finite sets
and bijections to the category of vector spaces. The category of species is equivalent
to the one of S-modules. An S-module is a sequence (M(n))n∈N , with Mn a right
Sn -module. The category of species is endowed with a composition product ◦
described in Section 1. An operad is a monoid in the category of species with
respect to the composition product.

Foissy’s result suggested that, at the level of species, there exists a species
F such that

T = Lie ◦ F .

This was proved by Chapoton in [3]. Furthermore, the morphism of operads
Lie→ T implies that T is a twisted Lie algebra (or Lie algebra in the category of
species). The species of indecomposable elements is T /[T , T ] . Chapoton proves
that any section of the projection T → T /[T , T ] yields a species F , which is a
solution to the equation T = Lie ◦ F .

The purpose of this paper is to describe a specific section of the latter
projection. In fact, we do not use the result of Chapoton.

After some preliminaries, we construct in Section 2 a sub vector space F [S]
of T [S] for any linearly ordered set S and prove that T [S] = Lie(F)[S] using
the Lyndon permutations to describe the basis in Lie . In Section 3 we describe
the species F and prove that T = Lie ◦ F as species. This gives a new proof of
Foissy’s result and of Chapoton’s result. Section 4 is concerned with the study of
the operad T , viewed as a non-symmetric operad. Similarly to species, a graded
vector space amounts to a contravariant functor from the category of finite linearly
ordered sets and ordered bijections (a discrete category) to the category of vector
spaces. There is an analog of the composition product in the category of graded
vector spaces. A non-symmetric operad is a monoid in this category with respect
to this composition product. Any species gives rise to a graded vector space by
forgetting the action of the symmetric group and any operad gives rise to a non-
symmetric operad. We prove that F is a sub non-symmetric operad of T .
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1. The pre-Lie operad and rooted trees

We first recall the definition of the pre-Lie operad based on labelled rooted trees
as in [4]. For n ∈ N∗ , the set {1, . . . , n} is denoted by [n] and [0] denotes the
empty set. The symmetric group on k letters is denoted by Sk .

Recall that a species is a contravariant functor from the category of finite
sets Set× and bijections to the category of k-vector spaces Vect . Following Joyal
in [10], a species is equivalent to an S-module V = (Vn)n∈N , that is, a collection
of right Sn -modules Vn .

Given two species A,B : Set× → Vect we have the product

A • B[S] =
⊕

I+J=S

A[I]⊗ B[J ] , (1)

where I + J denotes the disjoint union of the sets I and J . The composition of
species is defined by

A ◦ B[S] =
⊕
k≥0

A[k]⊗Sk
(B•k[S]) .

If B[∅] = 0 the composition of species has the form

A ◦ B[S] =
⊕
Φ`S

A[Φ]⊗

(⊗
φ∈Φ

B[φ]

)
, (2)

where Φ ` S denotes that Φ is a set partition of S .

An operad is a monoid in the category of species with respect to the
composition product. A (twisted) algebra A over an operad P is a species together
with an evaluation product

µA : P ◦ A→ A

satisfying the usual condition (see [1] for more details). An algebra over an operad
is usually a vector space considered as a species which is always zero except on
the emptyset. The terminology “twisted” emphasizes the fact that we generalize
the usual definition to any species. For instance P is the free twisted P -algebra
generated by the unit I for the composition product, whereas ⊕n≥0P [n]/Sn is the
free P -algebra generated by a 1-dimensional vector space.

Given a finite set S of cardinality n let T [S] be the vector space freely
generated by the labelled rooted trees on n vertices with distinct label chosen in
S . For n = 0 we set T [∅] = 0. This gives us a species.

Example 1.1. The space T [{a, b, c}] is the linear span of the following trees:

br r
@�

a

b c br r
@�

b

a c br r
@�

c

a b brra

b

c

brra

c

b

brr b

c

a

brr b

a

c

brrc

a

b

brrc

b

a

In general there are nn−1 such trees on a set of cardinality n (see [2] for more
details).
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Theorem 1.2. [4, theorem 1.9] The species T forms an operad. Algebras over
this operad are pre-Lie algebras, that is, vector spaces L together with a product ∗
satisfying the relation

(x ∗ y) ∗ z − x ∗ (y ∗ z) = (x ∗ z) ∗ y − x ∗ (z ∗ y), ∀x, y, z ∈ L.

As a consequence T is the free twisted pre-Lie algebra generated by I . The
twisted pre-Lie product is described as follows.

Definition 1.3. Given two disjoint sets I, J and two trees T ∈ T [I] and
Y ∈ T [J ] we define

T ∗ Y =
∑

t∈V ert(T )

?>=<89:;Y

t•?>=<89:;T

where the sum is over all possible ways of grafting the root of the tree Y on a
vertex t of T . The root of T ∗ Y is the one of T .

Since any pre-Lie algebra L gives rise to a Lie algebra whose bracket is
defined by [x, y] = x ∗ y − y ∗ x there is a morphism of operads

Lie→ T .

Note that this morphism is injective: an associative algebra is obviously a pre-Lie
algebra and the composition of morphisms of operads

Lie→ T → As

is the usual injective morphism from Lie to As . As a consequence the species
T is a twisted Lie algebra, that is a Lie monoid in the category of species. It is
endowed with the following Lie bracket [ , ] : T • T → T : given two disjoint sets
I, J and two trees T ∈ T [I] and Y ∈ T [J ] we define

[T, Y ] = T ∗ Y − Y ∗ T =
∑

t∈V ert(T )

?>=<89:;Y

t•?>=<89:;T

−
∑

s∈V ert(Y )

?>=<89:;T

s•?>=<89:;Y

. (3)

Example 1.4. For T = br r
@�

c

a d

∈ T [{a, c, d}] and Y = b b ∈ T [{b}] we have

that

[ br r
@�

c

a d

, b b ] = br rr
@�

c

a d

b

+ br rr
@�

c

a db

+ br rr
@�

c

a d

b

− rr rb@�c

a d

b

.

As we mentioned in the Introduction, we shall now describe explicitly a
species F such that T = Lie ◦ F .
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2. T [S] = Lie ◦ F [S] as vector spaces

In this section, we show an auxiliary result relating T to a free Lie algebra over
rooted trees that are increasing in the first level. We give an explicit isomorphism
using basis. This has the advantage to be explicit but it is not natural. In the
next section we will induce an action of the symmetric groups on both side hence
giving an identity of species.

Given a finite set S and a linear order on S , let F [S] be the vector space
spanned by the set of S -labelled rooted trees that are increasing at the first level.
That is the trees such that the labels increase from the root to the adjacent vertices
and no other condition on the other labels. Also, we let F [∅] = 0. At this point,
F is not a species as it depends on an order on S . We will turn this into a species
in the next section.

Example 2.1. The space F [{1, 2, 3}] with the natural order on {1, 2, 3} has
basis given by the following trees:

br r
@�

1

2 3 brr1

2

3

brr1

3

2

brr2

3

1

In general there are (n− 1)n−1 such trees (see e.g. [5] for more details).

For our next result, we also need to consider Lie[S] as the vector space of
multilinear brackets of degree |S| . That is the vector space spanned by all brackets
of the elements of S (without repetition) modulo the antisymmetry relation and
Jacobi identity. It is easy to check that this construction is functorial. We then
have that Lie is a species. In fact, Lie is an operad and algebras over this operad
are the classical Lie algebras. (see e.g. [8]).

Example 2.2. The space Lie[{1, 2, 3}] is the linear span of the following brack-
ets:

[[1, 2], 3], [[1, 3], 2], [[2, 1], 3], [[2, 3], 1], [[3, 1], 2], [[3, 2], 1],

[1, [2, 3]], [1, [3, 2]], [2, [1, 3]], [2, [3, 1]], [3, [1, 2]], [3, [2, 1]].

As we will see below, it is well known that this space has dimension equal to two
and that a basis is given by {[[3, 1], 2], [3, [2, 1]]} . In general there are (n − 1)!
linearly independent brackets [11].

If we are given a linear order on S we can construct an explicit basis of
Lie[S] . This is the classical Lyndon basis of Lie (see [11]). More precisely, Lie[S]
has basis given by the Lyndon permutations with Lyndon bracketing. For our
purpose we use the reverse lexicographic order to produce the following basis of
Lie[S] . Let S = {a < b < · · · < y < z} . A Lyndon permutation σ : S → S is
a permutation such that σ(a) = z . The Lyndon bracketing sb[σ] of σ is defined
recursively. We write σ =

(
σ(a), σ(b), . . . , σ(z)

)
as the list of its values. If S = {a}

then we define sb[σ(a)] = a . If |S| > 1, let k ∈ S be such that σ(k) = y the
second largest value of S , then define

sb[σ(a), . . . , σ(j), σ(k), . . . , σ(z)] =
[
sb[σ(a), . . . , σ(j)], sb[σ(k), . . . , σ(z)]

]
.
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A basis of Lie[S] is given by the set {sb[σ] : σ is Lyndon} . In the Example 2.2
we have that (3, 1, 2) and (3, 2, 1) are the only two Lyndon permutations and
sb[3, 1, 2] = [sb[3, 1], sb[2]] = [[sb[3], sb[1]], 2] = [[3, 1], 2]. Similarly sb[3, 2, 1] =
[3, [2, 1]].

Even though F is not a species we can still define Lie ◦ F . Let S be a
finite set with a linear order. We define

Lie ◦ F [S] =
⊕
Φ`S

Lie[Φ]⊗

(⊗
φ∈Φ

F [φ]

)
,

where for Φ ` S we induce a linear order on each part φ ∈ Φ from the linear order
on S .

Theorem 2.3. T [S] = Lie ◦ F [S] as vector spaces.

Proof. Given a linear order on a finite set S , we construct a linear isomorphism
between T [S] and Lie ◦F [S] . By definition, Lie ◦F [S] is any bracketing of trees
of type F such that the disjoint union of all the labels is S . Since T is a Lie
monoid there is a natural map Ξ: Lie ◦ F [S] → T [S] . We need to show that this
map is injective and surjective.

Assume that we have a finite set S and a linear order on S . For Φ =
{φ1, φ2, . . . , φ`} ` S we have that each part φi is also ordered. We can then order
any set of trees {Ti : Ti ∈ F [φi], 1 ≤ i ≤ `} using the roots of the trees. It follows
that a basis for Lie ◦ F [S] is given by{

sb[Tσ(1) · · ·Tσ(`)] : Φ={φ1,...,φ`}`S, σ : [`]→[`], Ti∈F [φi], Tσ(1) has the largest root
}
.

To complete the proof, we need to show that{
Ξ(sb[Tσ(1) · · ·Tσ(`)]) : Φ={φ1,...,φ`}`S, σ : [`]→[`], Ti∈F [φi], Tσ(1) has the largest root

}
(4)

is a basis of T [S] . Using the order on S , we introduce a grading on the basis of
labelled rooted trees of T [S] and show that there exists a triangularity relation
between the basis in (4) and the basis of labelled rooted trees. We say that a tree
T ∈ T [S] is of degree d if the maximal decreasing connected subtree of T from
the root has d vertices. For any tree T ∈ T [S] we denote by MD(T ) its maximal
decreasing connected subtree from the root. For example consider

T1 = br rr rrr
@

@
�
5

2

6

7 1

3

4

and T2 = rr rb@�3

1 4

2

.

MD(T1) is built with the vertices labelled by {5, 3, 2, 1} and MD(T2) with the
vertex labelled by {2} . Hence T1 is of degree 4 and T2 is of degree 1. Remark
that T ∈ F [S] if and only if the degree of T is 1.

Given a set partition Φ = {φ1, . . . , φ`} ` S , a permutation σ : [`] → [`] , a
family of trees {Ti : Ti ∈ F [φi], Tσ(1) has the largest root} , we claim that in the
expansion of Ξ(sb[Tσ(1) · · ·Tσ(`)]) there is a unique tree of maximal degree ` (with
coefficient 1). Furthermore, the correspondence from Ξ(sb[Tσ(1) · · ·Tσ(`)]) to its
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maximal degree term T is such that MD(T ) is formed from the vertices labelled
by the labels of the roots of T1, T2, . . . , T` . In fact the maximal decreasing subtree
of any tree in the expansion of Ξ(sb[Tσ(1) · · ·Tσ(`)]) is formed from the vertices
labelled by a subset of the labels of the roots of T1, T2, . . . , T` .

We proceed by induction on ` . For ` = 1 we have Ξ(sb[T1]) = T1 a unique
tree of degree 1. For ` = 2 we are given two trees of degree 1:

T1 = brr r
HH@��

b

···Y1 Y2 Yr

and T2 = brr r
HH@��

a

···X1 X2 Xk

,

where Ti ∈ F [φi] . This implies that the root of each Yj is strictly greater than
b and the root of each Xj is strictly greater than a . We assume without loss of
generality that b > a . When we expand Ξ(sb[T1T2]) = [T1, T2] we obtain

brr r
HH@�

b

···Y1 Y2 Yr rrr r
@��

a

···X1 X2 Xk

��� − brr r
HH@�

a

···X1 X2 Xk rrr r
@��

b

···Y1 Y2 Yr

��� +
∑ brr r

HH@��
b

···Y1 Y2 Yr

rrr r
HH@��

a

···X1 X2 Xk

�
�

−
∑ brr r

HH@��
b

···Y1 Y2 Yr

brr r
HH@��

a

···X1 X2 Xk

�
�

.

The first term is of degree 2 and its maximal decreasing subtree is built from {b, a}
the roots of T1 and T2 . All the other trees in this expansion are of degree 1 and
their maximal decreasing subtrees are labelled either by a or by b .

We now assume that ` > 2. To compute Ξ(sb[Tσ(1) · · ·Tσ(`)]), let b1, b2, . . . , b`
be the roots of Tσ(1), Tσ(2), . . . Tσ(`) respectively. By construction we have that
b1 = max(b1, b2, . . . , b`). Let bk = max(b2, . . . , b`). That is bk is the second largest
root and k > 1. The Lyndon factorization writes

Ξ(sb[Tσ(1) · · ·Tσ(`)]) =
[
Ξ(sb[Tσ(1) · · ·Tσ(k−1)]),Ξ(sb[Tσ(k) · · ·Tσ(`)])

]
.

By induction hypothesis we have that

Ξ(sb[Tσ(1) · · ·Tσ(k−1)]) = Y0 +
∑

i

ciYi

where Y0 is of degree k − 1 and MD(Y0) is formed with vertices labelled by
{b1, . . . , bk−1} and the trees Yi (i 6= 0) are of degree < k − 1 where MD(Yi) are
formed with vertices labelled by a subset of {b1, . . . , bk−1} . Similarly,

Ξ(sb[Tσ(k) · · ·Tσ(`)]) = X0 +
∑

j

djXj

where X0 is of degree `− k + 1 and MD(X0) is formed with vertices labelled by
{bk, . . . , b`} and the trees Xj (j 6= 0) are of degree < `−k+1 where MD(Xj) are
formed with vertices labelled by a subset of {bk, . . . , b`} . The largest degree term
in [Yi, Xj] must be obtained by either grafting MD(Yi) in MD(Xj), or by grafting
MD(Xj) in MD(Yi). Hence the largest degree term in [Yi, Xj] is of degree at most
deg(Yi) + deg(Xj). Hence it is sufficient to concentrate our attention on [Y0, X0] .
In this case, recall that b1 is the largest value, so it must be the root of MD(Y0).
Similarly bk is the root of MD(X0). We can get a tree of degree ` by grafting X0
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at the root of Y0 . If we graft X0 anywhere else in Y0 we get a tree of degree strictly
smaller. In fact, since bk > max(b2, ..., bk−1), if we graft X0 on MD(Y0) (not at
the root) or anywhere else, we get a tree of degree equal to deg(Y0) = k − 1 < ` .
On the other hand, since b1 is maximal, if we graft Y0 in X0 we always get a tree
of degree equal to deg(X0) = `− k + 1 < ` .

We now remark that MD(Z) of any term Z in the expansion of [Yi, Xj] , is
either MD(Yi),MD(Xj), the grafting of MD(Yi) in MD(Xj) or the grafting of
MD(Xj) in MD(Yi). In all cases, the vertices of MD(Z) are labelled by a subset
of {b1, . . . , b`} and this conclude the induction.

To conclude the triangularity relation we need to show that for any tree
T ∈ T [S] there is a basis element in the basis (4) with T as its leading degree term.
For this we proceed by induction on the degree of T . Our hypothesis is that for
any tree T ∈ T [S] we can find a set partition Φ = {φ1, . . . , φ`} ` S , a permutation
σ : [`] → [`] and a family of trees {Ti : Ti ∈ F [φi], Tσ(1) has the largest root} , such
that T is the leading term of Ξ(sb[Tσ(1) · · ·Tσ(`)]). Furthermore, MD(T ) is the
subtree formed with the vertices labelled by labels of the roots of T1, . . . , T` .

If T is of degree 1, then T = Ξ(sb[T ]) and MD(T ) is a single vertex. If
deg(T ) > 1, then T is of the form

T = brr r
H

H
@�

b

···Y1 Y2 Yr rrr r
@��

a

···X1 X2 Xk

��� , (5)

where a is the largest label adjacent to the root such that a < b . Such an a
exists since MD(T ) is of size deg(T ) > 1. It is clear that b is the largest value of
the labels of MD(T ) (it is a decreasing tree, the root has the largest value). By
choice, a is the second largest value of the labels of MD(T ). We now consider
the two subtrees

Z1 = brr r
HH@��

b

···Y1 Y2 Yr

and Z2 = brr r
HH@��

a

···X1 X2 Xk

.

Clearly deg(Z1) < deg(T ) and deg(Z2) < deg(T ). Hence by induction hypothesis
we can find a set partition Φ = {φ1, . . . , φ`} ` S , a permutation σ : [`] → [`] and
a family of trees {Ti : Ti ∈ F [φi]} such that Tσ(1) has root labelled by b and Tσ(k)

has root labelled by a for some k > 1. Furthermore MD(Z1) is the subtree of Z1

labelled by the labels of the roots of Tσ(1), . . . , Tσ(k−1) and MD(Z2) is the subtree
of Z2 labelled by the labels of the roots of Tσ(k), . . . , Tσ(`) . We can find this data
in such a way that Z1 is the leading term of Ξ(sb[Tσ(1) · · ·Tσ(k−1)]) and Z2 is the
leading term of Ξ(sb[Tσ(k) · · ·Tσ(`)]).

Using the same argument as before, it is clear that T is the leading term
of [Z1, Z2] . Thus, T is the leading term of[

Ξ(sb[Tσ(1) · · ·Tσ(k−1)]) , Ξ(sb[Tσ(k) · · ·Tσ(`)])
]
. (6)

We now need to show that the element in (6) is one of the element in the basis (4).
This follows from the fact that a is the second largest element among the labels
of the roots of T1, . . . , T` . In particular it implies that the first step in the Lyndon
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bracketing of Ξ(sb[Tσ(1) · · ·Tσ(`)]) is precisely the element in (6). As a conclusion,
MD(T ) is the subtree of T labelled by the roots of Tσ(1), . . . , Tσ(`) .

Example 2.4. Let us compare the basis of T [{1, 2, 3}] as given in Example 1.1
with the following basis of (Lie ◦ F)[{1, 2, 3}] as given by Eq. (4):

br r
@�

1

2 3

, brr1

2

3

, brr1

3

2

, brr2

3

1

,
[ br2

3

, b1
]
,
[ b2, br1

3]
,
[ b3, br1

2]
,
[ b3, [ b2, b1 ]

]
,
[
[ b3, b1 ], b2

]
.

The first four elements are already trees and they correspond to the basis of F as
given in Example 2.1. As we expand the remaining elements in the basis of trees
(via Ξ) we get

[ br2

3

, b1
]

= br r
@�

2

1 3

+ brr2

3

1

− brr1

2

3

,
[ b2, br1

3]
= brr2

1

3

− br r
@�

1

2 3

− brr1

3

2

,

[ b3, br1

2]
= brr3

1

2

− br r
@�

1

2 3

− brr1

2

3

,

[ b3, [ b2, b1 ]
]

= brr3

2

1

− br r
@�

2

1 3

− brr2

1

3

− brr3

1

2

+ br r
@�

1

2 3

+ brr1

2

3

,

[
[ b3, b1 ], b2

]
= br r

@�
3

1 2

+ brr3

1

2

− brr2

3

1

− br r
@�

1

2 3

− brr1

3

2

+ brr2

1

3

.

Each tree of the basis in Example 1.1 appears once as the leading term (the first
term) of an expression above.

Remark 2.5. The Lie bracket on T is filtrated with respect to the degree. More
precisely, if we start with two disjoint sets I, J (with a linear order on the disjoint
union I + J ) and two elements in T ∈ T [I] and Y ∈ T [J ] with deg(T ) = d1 and
deg(Y ) = d2 , then the maximal degree part of [T, Y ] is of degree d1 + d2 . This
follows from the fact that MD(Z) of the term Z appearing in the maximal degree
part of [T, Y ] must be obtained from a subtree of either the grafting of MD(T ) in
MD(Y ) or the other way around. Grafting at the root will produce a decreasing
tree in one case (hence achieving the degree d1 + d2 ). In general other graftings
of MD(T ) in MD(Y ) (or the other way around) may have maximal degree. This
did not happen in the proof of the Theorem 2.3 because the label of the roots of
MD(T ) and MD(Y ) where the largest two labels.

3. T = Lie ◦ F as species

In the previous section we have shown that T [S] is isomorphic to Lie ◦ F [S]
as vector spaces for any finite set S with a linear order. Using the basis (4)
in Theorem 2.3 we can now define the notion of Lie-degree. We say that an
element Ξ(sb[Tσ(1) · · ·Tσ(`)]) has Lie-degree ` = L-deg(Ξ(sb[Tσ(1) · · ·Tσ(`)])). For
an arbitrary element ϕ ∈ T [S] we let L-deg(ϕ) = ` if ` is the smallest Lie-
degree of the basis elements with non-zero coefficient in the expansion of ϕ in the
basis (4). It is clear that given two disjoint sets I, J with linear order on I + J ,
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ϕ ∈ T [I] and ψ ∈ T [J ] , we have that L-deg([ϕ, ψ]) = L-deg(ϕ) + L-deg(ψ). The
notion of Lie-degree is not related to the notion of degree we used in the proof of
Theorem 2.3.

We consider the species [T , T ] which is the image of [, ] : T • T → T . It

follows from our discussion above that T [S]
/

[T , T ][S] is isomorphic to the set

of homogeneous elements of Lie-degree equal to one. These elements are precisely
F [S] . We thus have the following corollary:

Corollary 3.1. There is a linear isomorphism F [S] → T [S]
/

[T , T ][S] .

Since T
/

[T , T ] is clearly a species, Corollary 3.1 allows us to view F as

a species.

Example 3.2. Using the basis (4) of T [3], the space F [3] = T [3]
/

[T , T ][3] is

the linear span of the elements:

br r
@�

1

2 3

, brr1

2

3

, brr1

3

2

, brr2

3

1

,
[ br2

3

, b1
]
,
[ b2, br1

3]
,
[ b3, br1

2]
,
[ b3, [ b2, b1 ]

]
,
[
[ b3, b1 ], b2

]
.

The first four elements form a basis of F [3] and the remaining ones are zero
modulo [T , T ] . The action of the symmetric group S3 is given by the action on
the quotient. For example, if we consider the transposition σ = (1 2), then

σ
( br r

@�
1

2 3)
= br r

@�
2

1 3

=
[ br2

3

, b1
]
− brr2

3

1

+ brr1

2

3

≡ − brr2

3

1

+ brr1

2

3

.

Once we have the identification F ∼= T
/

[T , T ] , we have a natural action

of the symmetric group on F [n] and on Lie ◦ F [n] . That is, we have the

Corollary 3.3. T [S] = Lie ◦ F [S] as species.

Proof. To describe the action of Sn on Lie ◦ F [n] , we consider the natural
order on [n] and the basis{

sb[Tσ(1) · · ·Tσ(`)] : Φ={φ1,...,φ`}`S, σ : [`]→[`], Ti∈F [φi], Tσ(1) has the largest root
}
. (7)

A permutation π ∈ Sn acts on a basis element sb[Tσ(1) · · ·Tσ(`)] as follows. The
permutation π acts on a tree Tσ(i) by acting on its labels φi . We write the element
π(Tσ(i)) as a linear combination of trees in F [π(φi)]. We then substitute the results
in sb[Tσ(1) · · ·Tσ(`)] . We use the Jacobi relation and antisymmetry to rewrite the
result as a linear combination of elements in the basis (7). The important fact to
notice is that the element π

(
sb[Tσ(1) · · ·Tσ(`)]

)
is a linear combination of elements

of the basis (7) with exactly the same Lie-degree (the same number of F -trees
bracketed). Hence the matrix representation corresponding to π ∈ Sn acting on
the basis (7) is block diagonal, each block corresponds to the Lie-degrees.
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On the other hand, we have shown in the Theorem 2.3, that under the map
Ξ: Lie ◦ F [S] → T [S] the basis (7) is sent to the basis{

Ξ(sb[Tσ(1) · · ·Tσ(`)]) : Φ={φ1,...,φ`}`S, σ : [`]→[`], Ti∈F [φi], Tσ(1) has the largest root
}
.
(8)

Now a permutation π ∈ Sn acts on a basis element Ξ(sb[Tσ(1) · · ·Tσ(`)]) as follows.
We rewrite π(Tσ(i)) as a linear combination of basis elements in T [π(φi)]. We
remark that the Lie-degree of the result is also one but contains higher Lie-degree
terms. We then substitute the results in sb[Tσ(1) · · ·Tσ(`)] . We use the Jacobi
relation and antisymmetry to rewrite the result as a linear combination of elements
in the basis (8). The important fact to notice in this case is that the element
π
(
Ξ(sb[Tσ(1) · · ·Tσ(`)])

)
is a linear combination of elements of the basis (7) with Lie-

degree equal or higher than Ξ(sb[Tσ(1) · · ·Tσ(`)]). Hence the matrix representation
corresponding to π ∈ Sn acting on the basis (8) is block triangular, each block
corresponding to a Lie-degree. Moreover the block diagonal part of this matrix is
exactly the same as the action of π on Lie◦F . In characteristic zero, Sn -modules
are fully decomposable (by semi-simplicity). It is clear that the Sn -modules T [n]
and Lie ◦ F [n] have the same block decomposition. Hence they are equivalent as
Sn -modules.

4. Operations on F

A non-symmetric operad is a graded vector space (Pn)n∈N together with composi-
tion products

Pn ⊗ Pi1 ⊗ . . .⊗ Pin → Pi1+...+in

satisfying associativity conditions. As pointed out in the introduction a graded
vector space amounts to a contravariant functor from the category of finite linearly
ordered sets and ordered bijections to finite dimensional vector spaces. There is a
composition product given by

P ◦Q[S] = ⊕k,S1,...,Sk
P ([k])⊗⊗k

i=1Q[Si]

where [k] = {1 < . . . < k} and S1 < . . . < Sk in an ordered partition of S . A
non-symmetric operad is a monoid in the category of graded vector spaces with
respect to this composition product. Obviously, any species becomes a graded
vector space when forgetting the action of the symmetric group– or equivalently
when restricting on the subcategory of finite linearly ordered sets in the category
of finite sets. Besides, any operad is a non-symmetric operad when forgetting the
action of the symmetric group.

We prove in this section that F is a sub non-symmetric operad of T . It is
not a suboperad: one needs to forget the action of the symmetric group to prove
the result, since F is not a monoid in the category of species.

We recall first the operad structure on T as explained in [4]. To give the
operadic structure it is enough to explain the composition on two elements, that
is, the compositions

◦i : T [I]⊗ T [J ] → T [I \ {i}+ J ],



14 Bergeron and Livernet

for two disjoint sets I and J and for i ∈ I . Let T ∈ T [I] , In(T, i) the set of
incoming edges at the vertex labelled by i in T . The composition is defined by

T ◦i S =
∑

f :In(T,i)→J

T ◦f
i S

where T ◦f
i S is the rooted tree obtained by substituting the tree S for the vertex

i in T . The outgoing edge of i , if it exists, becomes the outgoing edge of the root
of S , whereas the incoming edges of i are grafted on the vertices of S following
the map f . The root is the root of T or the root of S if i is the root of T . Here
is an example:

r rb@�

a b

i

◦i
rbα
β

= rr rb@�
α

a b

β

+ rr rb�α

a

b

β

+ rr rb�α

b

a

β

+ r r rb@�

αa b

β

If I and J are endowed with a linear order then I \ {i} + J is endowed
with the order on I and J and for all x in I one has x < J if and only if x < i
and x > J if and only if x > i . Recall that the degree of a tree T is the number
of vertices of MD(T ), the maximal decreasing connected subtree of T from the
root. Given a linearly ordered set I , the vector space T [I] is filtered by the degree:
FdT [I] is spanned by the trees T of degree less than d . Therefore F [I] = F1T [I] .

Theorem 4.1. Let I, J be two linearly ordered sets and let i ∈ I . The compo-
sition

◦i : T [I]⊗ T [J ] → T [I \ {i}+ J ]

maps FdT [I]⊗ FeT [J ] to Fd+e−1T [I \ {i}+ J ].

Proof. Let T ∈ T [I] , S ∈ T [J ] and f : In(T, i) → J .

If i is a vertex of MD(T ) then any vertex x in T lying in the path from
the root of T to i satisfies x > i . Then x > J and x is a vertex of MD(T ◦f

i S).
Also any vertex of MD(S) is a vertex of MD(T ◦f

i S). Let y be a vertex of T
attached to i by an edge E in In(T, i). If y is a vertex of MD(T ) then y < i and
y < J . If f sends E to a vertex of MD(S) then y is a vertex of MD(T ◦f

i S). If
it doesn’t then the degree of T ◦f

i S is strictly less than d + e − 1. If y is not a
vertex of MD(T ) then y > i and y > J , hence y is not a vertex of MD(T ◦f

i S).

It is also clear that any other vertex of T which is not in MD(T ) or any
vertex which is not in MD(S) is not in MD(T ◦f

i S). As a consequence the degree
of T ◦f

i S is less than d + e − 1. It is exactly d + e − 1 if f sends any vertex of
MD(T ) attached to i by an edge in In(T, i) to a vertex of MD(S). In this case

MD(T ◦f
i S) = MD(T ) ◦f̃

i MD(S) where f̃ is the restriction of f to the set of
edges of MD(T ).

If i is not a vertex of MD(T ) then one sees easily that MD(T ◦f
i S) =

MD(T ).

Corollary 4.2. The collection (F [n])n≥1 forms a sub non-symmetric operad of
the pre-Lie operad T .
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Proof. We apply the previous theorem to d = e = 1.
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