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Abstract. Let G0 = K n p be the Cartan motion group associated with a
noncompact semisimple Riemannian symmetric pair (G, K). Let a be a max-
imal abelian subspace of p and let p = a + q be the corresponding orthogonal
decomposition. A flat horocycle in p is a G0 -translate of q . A conical distri-
bution on the space Ξ0 of flat horocycles is an eigendistribution of the algebra
D(Ξ0) of G0 -invariant differential operators on Ξ0 which is invariant under the
left action of the isotropy subgroup of G0 fixing q . We prove that the space
of conical distributions belonging to each generic eigenspace of D(Ξ0) is one-
dimensional, and we classify the set of all conical distributions on Ξ0 when
G/K has rank one. We also consider the question of the irreducibility of the
natural representation of G0 on the eigenspaces of D(Ξ0).
Mathematics Subject Classification 2000: Primary: 43A85, Secondary: 22E46,
44A12.
Key Words and Phrases: Conical distributions, Cartan motion group, horocycle
Radon transform.

1. Introduction and Preliminaries

In this paper we study the flat analogues of conical distributions on the space of
horocycles associated with noncompact symmetric spaces. Let G be a connected
noncompact real semisimple Lie group with finite center, let g be its Lie algebra,
and let K be a maximal compact subgroup of G . Let θ be the corresponding
Cartan involution of G , and we also let θ denote its differential on g . Let k be
the Lie algebra of K and p its orthogonal complement relative to the Killing form
B on g , so that g has Cartan decomposition g = k + p . We will generally use the
notation in Helgason’s books [10], [11], and [12]. In particular, we let a denote a
maximal abelian subspace of p , Σ the set of restricted roots of g relative to a ,
W the Weyl group of Σ, gα the restricted root space corresponding to α ∈ Σ and
mα its dimension. In addition, let a+ denote a fixed Weyl chamber in a , Σ+ the
corresponding positive system of restricted roots, and ρ = 1/2

∑
α∈Σ+ mαα . We

put n =
∑

α∈Σ+ gα , and let N and A be the analytic subgroups of G with Lie
algebras n and a , respectively. Then G has Iwasawa decomposition G = NAK .
Finally, we let M and M ′ denote the centralizer and normalizer of A in K ,
respectively. Then W = M ′/M . We let w be the order of W .
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We identify p with p∗ (respectively a with a∗ ) via the restriction of the
Killing form B to p (respectively a). In this way, elements of the (complexified)
symmetric algebra S(p) can be viewed as polynomial functions on p , and also as
constant coefficient differential operators on p . If p ∈ S(p), we let ∂(p) be the
corresponding differential operator on p .

A horocycle in the symmetric space G/K is an orbit of a conjugate of N
in G/K . The following basic facts about horocycles may be found in Chapter
II, §1–3 of [12]. The group G acts transitively on the space Ξ of all horocycles,
and the isotropy subgroup of G fixing the identity horocycle ξ0 = N · o is MN ,
so that Ξ = G/MN . The mapping (kM, a) 7→ ka · ξ0 is a diffeomorphism of
K/M ×A onto Ξ, and the left G-invariant measure dξ on Ξ (which is unique up
to a constant multiple) is given by∫

Ξ

ϕ(ξ) dξ =

∫
K/M

∫
A

ϕ(kM, a) e2ρ(log a) da dkM , (ϕ ∈ Cc(K/M)) (1)

where dkM denotes the normalized K -invariant measure on K/M and da denotes
the Lebesgue measure on the Euclidean space A .

The algebra D(Ξ) of G-invariant differential operators on Ξ is isomorphic
to S(a), the symmetric algebra of a , via

Dp ϕ(k expH · ξ0) = ∂(p)H ϕ(k expH · ξ0), (p ∈ S(a)) (2)

Let D′(Ξ) denote the space of all distributions on Ξ. If D ∈ D(Ξ) and Ψ ∈ D′(Ξ),
the distribution DΨ on Ξ is given by

DΨ(ϕ) = Ψ(D∗ϕ), (ϕ ∈ D(Ξ))

where D∗ ∈ D(Ξ) is the adjoint of D under the invariant measure dξ . If p ∈ S(a),
it follows from (1) that

(Dp)
∗ = De−2ρ◦p∗◦e2ρ , (3)

where p∗ ∈ S(a) is given by ∂(p∗) = ∂(p)∗ , the formal adoint of the differential
operator ∂(p) in a .

If a∗c is the complexified dual space of a , then the set of all joint eigendis-
tributions of D(Ξ) is parametrized by a∗c × D′(K/M). More precisely, if we fix
λ ∈ a∗c , then the relation (3) above implies that the joint eigenspace D′

λ(Ξ) =
{Ψ ∈ D′(Ξ) |Dp Ψ = p(iλ − ρ) Ψ for all p ∈ S(a)} consists precisely of those
distributions in Ξ of the form

Ψ(ϕ) =

∫
K/M

∫
A

ϕ(kM, a) e(iλ+ρ)(log a) da dS(kM) (ϕ ∈ D(Ξ)) (4)

for some S ∈ D′(K/M). (See Proposition 4.4, Chapter II in [12].)

A conical distribution in Ξ is an MN -invariant joint eigendistributon of
D(Ξ). If λ is regular and simple, it turns out that the vector space of conical
distributions in D′

λ(Ξ) is w -dimensional, and an explicit basis {Ψλ,s} can be
found in [7], each of which is supported in the closure of a Bruhat orbit in Ξ.
For exceptional λ , the problem of classification of the conical distributions turns
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out to be more difficult, although for rank one it is completely solved. (See [7] and
Hu’s thesis [13]; the results in these papers are explained in §5–6 of [12].)

In this paper we consider the analogue of conical distributions on the space
of flat horocycles in p . The flat horocycles are the translates, under the Cartan
motion group, of the tangent space at the origin o in G/K to the identity horocycle
ξ0 = N · o .

To be more precise, let us consider the Cartan motion group G0 = K n p .
G0 has group law (k,X) (k′, X ′) = (kk′, X+k ·X ′), for k, k′ ∈ K and X, X ′ ∈ p ,
where we have put k ·X ′ = Ad k(X ′). The mapping

(T,X) 7→ T +X (T ∈ k, X ∈ p) (5)

identifies the Lie algebra g0 of G0 with g as vector spaces. Under this identifica-
tion, the adjoint representation Ad0 of G0 on g0 is given by

Ad0 (k,X) (T ′ +X ′) = k · T ′ + k ·X ′ − [k · T ′, X] (6)

and the Lie bracket [ , ]0 on g0 is given by

[T +X,T ′ +X ′]0 = [T, T ′] + [T,X ′]− [T ′, X] (7)

with T, T ′ ∈ k, X, X ′ ∈ p , where the Lie brackets on the right are taken in g . In
effect, the Lie bracket on g0 is the same as that on g , except that the subspace p

has been made abelian.

Now G0 acts transitively on p by (k,X) · Y = X + k · Y , with k ∈ K and
X, Y ∈ p . Let q be the orthogonal complement of a in p . If we identify p with
the tangent space ToX , we have q = To(N · o). A flat horocycle is a translate of q

by an element of G0 . Let Ξ0 be the set of all flat horocycles. Then of course Ξ0

is a homogenous space of G0 , and according to Lemma 5.1, Chapter IV of [12], its
isotropy subgroup at q is Hq = M ′ n q .

The flat horocycle Radon transform of f ∈ Cc(p) is the function on Ξ0

defined by

Rf(ξ) =

∫
ξ

f(X) dm(X) (ξ ∈ Ξ0) (8)

where dm(X) is the Euclidean measure on ξ . One may view this as the flat
analogue of the horocycle Radon transform on a noncompact symmetric space
G/K . Properties of this transform, such as an inversion formula, and range and
support theorems, have been studied in papers by Helgason and Orloff ([9], [18],
[19]). (For a summary, see [12] Chapter IV, §5.) For a brief introduction to
harmonic analysis on p , see [12], Chapter III, §7, which replicates much of the
material in [8]. For a sample of the numerous papers dealing with analysis related
to Cartan motion groups, see [1], [2], [3], [4], [14].

Let D(Ξ0) denote the algebra of all differential operators on Ξ0 invariant
under the left action of G0 . By analogy with Ξ = G/MN , a conical distribution
on Ξ0 is a joint eigendistribution of D(Ξ0) invariant under the left action of the
isotropy subgroup Hq of G0 fixing q . Our aim in this paper is to classify such
conical distributions.
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In Section 2, we prove that D(Ξ0) is isomorphic to the algebra I(a) of
W -invariant elements in the symmetric algebra S(a). This is the analogue for
Ξ0 of Theorem 2.2 in [5], which states that D(Ξ) is isomorphic to S(a). (See
equation (2) above.) It follows that the spaces of joint eigendistributions of D(Ξ0)
are parametrized by the set a∗c/W of W orbits in a∗c . In Section 3, we obtain a
general characterization of the joint eigendistributions in Ξ0 similar to that given
by the expression (4) above for Ξ. In Section 4, we prove our main result (Theorem
4.3 below), which states that in each “generic” joint eigenspace (corresponding to
regular λ ∈ a∗c ), the space of conical distributions is one-dimensional, where we
also provide an explicit basis vector.

In Section 5 we show that, by contrast, the space of conical distributions
in each joint eigenspace corresponding to non-regular λ is infinite-dimensional.
The problem of classifying the conical distributions for such λ appears to be
difficult, although for G/K of rank one (so that λ = 0), we obtain a complete
characterization in Theorem 5.2.

Finally, in Section 6, we consider the natural representation of G0 on the
spaces of joint eigendistributions of D(Ξ0), relate these to conical distributions,
and study the question of irreducibility.

The author would like to express his gratitude to Prof. S. Helgason for
his valuable assistance in the preparation of this paper and in particular in the
proof of Lemma 5.1. The author would also like to thank the referee, whose many
thoughtful suggestions have contributed to a substantial improvement of the paper.

2. Invariant Differential Operators on Ξ0 and Ξ̃0

Just as with Ξ ∼= K/M × A , it will be convenient to characterize Ξ0 as a
vector bundle. For each s ∈ W , we choose a representative ms ∈ M ′ . Then
the map π : K/M × a → Ξ0 given by π(kM,H) = k · (H + q) is w to one,
with π(kM,H) = π(km−1

s M, sH). We can thus identify Ξ0 with the associated
bundle K/M ×W a over K/M ′ , where K/M can be viewed as a principal bundle
over K/M ′ with discrete structure group W = M ′/M . For convenience, we put
[kM,H] = π(kM,H). It will be clear from the context that this will not be
confused with the Lie bracket.

Using the above notation, the action of G0 on Ξ0 is given by

(k,X) · [k0M,H0] = X + k · (k0 · (H0 + q))

= kk0 ·
(
H0 + ((kk0)

−1 ·X)a + q
)

= [kk0M,H0 + ((kk0)
−1 ·X)a] (9)

Here Xa is the orthogonal projection (under the Killing form) of X ∈ p onto a .

It will also be convenient to note that G0 also acts transitively on the
product manifold Ξ̃0 = K/M × a via

(k,X) · (k0M,H0) = (kk0M,H0 + ((kk0)
−1 ·X)a). (10)

(That this is a group action is straighforward to verify.) Note that Ξ̃0 , rather than
Ξ0 , is in a certain sense the limit of the space G/MN ∼= K/M × A of horocycles
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in G/K . The isotropy subgroup of G0 at the origin ξ̃0 = (eM, 0) ∈ Ξ̃0 is M n q .

From (9) and (10), it is immediate that the projection map π : Ξ̃0 → Ξ0 commutes
with the action of G0 . It will frequently be useful to do calculations on Ξ0 by
lifting them up to Ξ̃0 . All groups being unimodular, there are unique (up to

constant multiple) G0 -invariant measures on Ξ0 and on Ξ̃0 , which we can take in
both cases to be dkM dH .

In this section, our objective is to determine the algebras D(Ξ0) and D(Ξ̃0)

of G0 -invariant differential operators on Ξ0 and Ξ̃0 , respectively.

All algebras here are over C . Let I(p) and I(a) be the subalgebras of AdK -
invariant elements of S(p) and of W -invariant elements of S(a), respectively. It is
clear that the algebra D(p) of G0 -invariant differential operators on p is I(p). It is
also a well-known fact that the restriction mapping p 7→ p = p|a is an isomorphism
of I(p) onto I(a).

Now let P ∈ S(a). Then from (10) the differential operator DP on Ξ̃0

given by

DP Φ(kM,H) = ∂(P )H Φ(kM,H) (Φ ∈ E(Ξ̃0)) (11)

is easily seen to belong to D(Ξ̃0). If P ∈ I(a), we abuse notation and also use DP

to denote the (well-defined) differential operator on Ξ0 given by

DP ϕ[kM,H] = ∂(P )H ϕ[kM,H] (ϕ ∈ E(Ξ0)) (12)

Then it follows from (9) that DP ∈ D(Ξ0). For ϕ ∈ E(Ξ0), put ϕ̃ = ϕ ◦ π . Then
clearly

(DPϕ)e= DP ϕ̃ (13)

For P ∈ S(a), we let P ∗ be its formal adjoint in a . Then the adjoint of

the differential operator DP on Ξ̃0 (with respect to the G0 -invariant measure
dkM dH ) is DP ∗ . The same holds for the operator DP on Ξ0 if P ∈ I(a),
where the G0 -invariant measure dξ on Ξ0 is fixed so as to satisfy

∫
Ξ0
ϕ(ξ) dξ =∫eΞ0

ϕ̃(kM,H) dkM dH .

Theorem 2.1. 1. The map P 7→ DP is an algebra isomorphism of S(a)

onto D(Ξ̃0).

2. The map P 7→ DP is an algebra isomorphism of I(a) onto D(Ξ0).

This theorem is the flat analogue of Theorem 2.2 in [5], which characterizes
the algebra D(Ξ) of left G-invariant differential operators on the horocycle space
Ξ. (See also Theorem 2.2, Chapter II in [12].) Our proof below is an adaptation
of the proof of that theorem.

Let H0
q = M n q , so that Ξ̃0 = G0/H

0
q . We let m denote the Lie algebra

of M , and let l denote the orthogonal complement of m in k with respect to −B .
Then g0 has the orthogonal decomposition (relative to B or the inner product
Bθ = −B(·, θ(·)) on g) given by

g0 = g = (m⊕ q)⊕ l⊕ a. (14)
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Let p : g0 7→ g0H
0
q be the coset map from G0 onto Ξ̃0 , and let τ(g) : g0H

0
q 7→

gg0H
0
q be left translation by g ∈ G0 on Ξ̃0 . Then τ(k,X) is given by (10) and

from that we have p(k,X) = (kM, (k−1 ·X)a). Now if e0 = (e, 0) is the identity
element of G0 , then (14) shows that dpe0 is a linear bijection of l ⊕ a onto the

tangent space Teξ0Ξ̃0 . Let σ be the projection of g onto l ⊕ a according to the
decomposition (14). It is straightforward to show that

dpe0 ◦ σ ◦ Ad0 (h) = dτ(h) ◦ dpe0 ◦ σ (15)

for all h ∈ H0 . Thus the restriction of dpe0 to l⊕a intertwines the representations

σ ◦ Ad0 (h) and dτ(h) of H0 on l⊕ a and on Teξ0Ξ̃0 , respectively.

While the pair (G0, H
0
q ) is not reductive, it is nonetheless possible to deter-

mine D(Ξ̃0) from the elements of the (complexified) symmetric algebra S(l ⊕ a)
which are invariant under σ ◦ Ad (H0

q ).

Lemma 2.2. S(a) is precisely the algebra of elements in the symmetric algebra
S(l⊕ a) which are invariant under σ ◦ Ad0 (H0

q ).

Proof. Let (m,X) ∈ H0
q . Then according to (6), we have Ad0 (m,X) (H) = H

for any H ∈ a . This shows that a , and hence S(a), is invariant under Ad0 (H0
q )

and thus also under σ ◦ Ad0 (H0
q ).

For the converse, let ad0 denote the adjoint representation on the Lie
algebra g0 . Then σ ◦ ad0 is the representation of the Lie subalgebra m⊕ q (of g0 )
on l ⊕ a corresponding to the representation σ ◦ Ad0 of H0

q on the same space.
For convenience, for each T +X ∈ m⊕ q , we let d(T +X) denote the restriction
of σ ◦ ad0(T + X) to l ⊕ a . We then extend d(T + X) to a derivation of the
symmetric algebra S(l⊕ a).

We will prove that if Q ∈ S(l⊕ a) such that

d(Y )Q = 0 for all Y ∈ q (16)

then Q ∈ S(a). This will then imply that the elements of S(l⊕a) invariant under
σ ◦ Ad0 (q) belong to S(a), which will prove the lemma.

For each α ∈ Σ+ , let Xα
1 , · · · , Xα

mα
be an orthonormal basis of the restricted

root space gα with respect to the inner product Bθ on g . Then the vectors
Eα

i = Xα
i + θ(Xα

i ) form an orthogonal basis (with respect to −B ) of the subspace

lα = {T ∈ k | ad (H)2 T = α(H)2 T for all H ∈ a}.

of k . Likewise, the vectors Y α
i = Xα

i − θ(Xα
i ) form an orthogonal basis (with

respect to B ) of

qα = {X ∈ p | ad (H)2X = α(H)2X for all H ∈ a}.

Finally, we have l = ⊕α∈Σ+lα and q = ⊕α∈Σ+qα .

If α 6= β , it is easy to check that [Y α
i , E

β
j ]0 = [Y α

i , E
β
j ] ∈ q and therefore

d(Y α
i )(Eβ

j ) = 0 (1 ≤ i ≤ mα, 1 ≤ j ≤ mβ)
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On the other hand, for 1 ≤ i, j ≤ mα ,

[Y α
i , E

α
j ]0 = [Y α

i , E
α
j ]

= ([Xα
i , X

α
j ]− θ[Xα

i , X
α
j ]) + ([Xα

i , θ(X
α
j )]− θ[Xα

i , θ(X
α
j )])

The first quantity on the right above belongs to q . If i 6= j , then [Xα
i , θ(X

α
j )] ∈

m , so the second expression on the right above vanishes. If i = j , then the
second quantity on the right equals 2Aα , where Aα is the vector in a such that
B(Aα, H) = α(H) for all H ∈ a .

We conclude that

d(Y α
i )(Eβ

j ) =

{
2Aα if α = β and i = j

0 otherwise
(17)

Suppose now that Q ∈ S(l ⊕ a) such that d(Y )Q = 0 for all Y ∈ q . Fix
any basis H1, . . . , Hl of a . Then Q can be written uniquely as a polynomial in
the Eβ

j with coefficients in S(a):

Q =
∑
N

{
PN(H1, . . . , Hl)

∏
β∈Σ+

((Eβ
1 )n(β,1) · · · (Eβ

mβ
)n(β,mβ))

}
(18)

where the sum ranges over multiindices N = (n(β, j)) (1 ≤ j ≤ mβ, β ∈ Σ+).

For convenience, let us put E(β)N(β) = (Eβ
1 )n(β,1) · · · (Eβ

mβ
)n(β,mβ) and PN =

PN(H1, . . . , Hl).

Since d(Y α
i )H = 0 for all H ∈ a , (17) implies that

d(Y α
i )Q =

2Aα

∑
n(α,i) 6=0

n(α, i)PN

(∏
β 6=α

E(β)N(β) ((Eα
1 )n(α,1) · · · (Eα

i )n(α,i)−1 · · · (Eα
mα

)n(α,mα))
)

(19)

Since the right hand side equals 0, the coefficient of Aα above must equal 0. This
coefficient is therefore an empty sum. Since (19) holds for all Y α

i , we conclude
that there is only one summand in (18), the one corresponding to N = 0. This
shows that Q ∈ S(a).

Let us recall that, by definition, Hq = M ′ n q .

Corollary 2.3. The algebra of elements of S(l⊕a) invariant under σ◦Ad0(Hq)
is I(a).

Proof. This is clear from Lemma 2.2 and (6).

The rest of the proof of the first assertion in Theorem 2.1 proceeds exactly as
in Helgason’s book ([12], Theorem 2.2, Chapter II). For completeness, we include
it. It will be convenient here to denote the basis {Eα

i } of l by Hl+1, . . . , Hl+r .
Then for some δ > 0, the inverse of the map

(t1, . . . , tl+r) 7→ exp(t1H1 + · · ·+ tl+rHl+r)H0 (
∑

t2i < δ2)
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is a chart on a neighborhood of the identity coset eH0 = ξ̃0 in Ξ̃0 . Suppose that
D ∈ D(Ξ̃0). Then there is a unique polynomial P in l + r variables such that

Dϕ(ξ̃0) = P

(
∂

∂t1
, . . . ,

∂

∂tl+r

)
ϕ(exp(

∑
tiHi) · ξ̃0)

∣∣∣∣
(t)=(0)

(20)

for all ϕ ∈ E(Ξ̃0). Now for each h ∈ H0 , there is a diffeomeorphism (t1, . . . , tl+r) 7→
(s1, . . . , sl+r) on neighborhoods of 0 ∈ Rl+r such that

τ(h) exp
(∑

tiHi

)
H0 = exp

(∑
sjHj

)
H0.

For convenience, let us put ϕ(exp(
∑
tiHi)H0) = ϕ(t1, . . . , tl+r). Since D(ϕ)(ξ̃0) =

D(ϕτ(h))(ξ̃0), we have

P

(
∂

∂t1
, . . . ,

∂

∂tl+r

)
(ϕ(t1, . . . , tl+r)− ϕ(s1, . . . , sl+r))

∣∣∣∣
(t)=(0)

(21)

Assume that P is of order N , let PN denote the sum of the highest order terms
in P , and write

PN =
∑
|J |=N

aJ

(
∂

∂t1

)j1

◦ · · · ◦
(

∂

∂tl+r

)jl+r

.

If we fix a multiindex J of order N and let ϕ(t1, . . . , tl+r) = tJ = tj11 . . . t
jl+r

l+r near
the origin, then (21) shows that

aJ =
∑
|I|=N

RJI aI (22)

where (RJI) is the matrix of the linear operator on the vector space of homogeneous
degree N polynomial functions on Rl+r extending the operator on Rl+r whose
matrix is the Jacobian matrix (∂sj/∂ti) at (t) = (0). But this Jacobian matrix is
also the matrix of σ◦Ad0 (h) with respect to the basis {Hi} of l⊕a . Equation (22)
thus shows that

∑
|J |=N aJH

J is invariant under σ ◦ Ad0 (h). Hence by Lemma

2.2, we conclude that PN = PN(∂/∂t1, . . . , ∂/∂tl). Since D is G0 -invariant, we
see that

Dϕ(g0 · ξ̃0) = PN

(
∂

∂t1
, . . . ,

∂

∂tl

)
ϕ(g0 exp(

l∑
i=1

tiHi) · ξ̃0)
∣∣∣∣
(0)

+ lower order terms

so that D −DPN
is an element of D(Ξ̃0) whose order is less than the order of D .

A simple induction on the order then completes the proof of the first assertion of
Theorem 2.1.

For the second assertion, suppose that D ∈ D(Ξ0). Then there exists a
polynomial P such that (20) holds for all functions ϕ ∈ E(Ξ0), with ξ0 replacing

ξ̃0 . With this substitution, the rest of the proof above carries over, with h ∈ H0
q

replaced by h ∈ Hq = M ′nq , and with PN(H1, . . . , Hl) M
′ -invariant by Corollary

2.3.
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3. The Space of Joint Eigendistributions

Suppose that Ψ ∈ D′(Ξ0) is an eigendistribution of D(Ξ0). Then according to
Lemma 3.11, Chapter III of [11], there exists a λ ∈ a∗c (unique up to W -orbit)
such that

DP Ψ = P (iλ) Ψ (23)

for all P ∈ I(a). We let D′
λ(Ξ0) denote the vector space consisting of all Ψ ∈

D′(Ξ0) satisfying (23).

Any eigendistribution Ψ ∈ D′(Ξ̃0) of D(Ξ̃0) likewise corresponds to a unique
λ ∈ a∗c satisfying (23) for all P ∈ S(a). For a given λ , we denote the vector space

of all such distributions by D′
λ(Ξ̃0).

The following can be proved in a manner analogous to the proof of Propo-
sition 4.4, Chapter II in [12].

Proposition 3.1. Let Ψ ∈ D′
λ(Ξ̃0). Then there is a unique S ∈ D′(K/M) such

that

Ψ(ϕ) =

∫
K/M

∫
a

ϕ(kM,H) eiλ(H) dH dS(kM). (24)

Conversely, if S ∈ D′(K/M), then the distribution Ψ on Ξ̃0 defined above belongs

to D′
λ(Ξ̃0).

If F ∈ E(Ξ̃0), we define Fπ ∈ E(Ξ0) by

Fπ[kM,H] =
1

w

∑
s∈W

F (km−1
s M, sH)

Then the pullback Φ̃ of a distribution Φ ∈ D′(Ξ0) is defined by

Φ̃(F ) = Φ(Fπ) (F ∈ D(Ξ̃0)) (25)

Note that
Φ̃(ϕ̃) = Φ(ϕ)

for all Φ ∈ D′(Ξ0), ϕ ∈ D(Ξ0). Let P ∈ I(a) and Φ ∈ D′(Ξ0). Then it is easy
to see from (11) and (12) and the fact that DP (Fπ) = (DPF )π , that, in analogy
with (13), we have

(DP Φ)e= DP Φ̃. (26)

Since D(Ξ0) is smaller than D(Ξ̃0), it is not true that Φ̃ belongs to

D′
λ(Ξ̃0) whenever Φ ∈ D′

λ(Ξ0). (It is easy to construct smooth counterexamples.)
Nonetheless, as we shall see below, we can obtain a result for D′

λ(Ξ0) similar to
Proposition 3.1.

Suppose that Φ ∈ D′
λ(Ξ0). Then by (26) Φ̃ satisfies

DP (Φ̃) = P (iλ) Φ̃ (P ∈ I(a)) (27)

Now for functions α ∈ D(a) and β ∈ E(K/M), let β ⊗ α be the function

β(kM)α(H) on Ξ̃0 = K/M × a . The linear span of such functions is dense in

D(Ξ̃0).
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If we fix β ∈ E(K/M), the map

Tβ : α ∈ D(a) → Φ̃(β ⊗ α) (28)

is a distribution in a ; in fact, we see from (27) that Tβ is an eigendistribution of
the algebra I(a). Since this algebra contains elliptic elements, it follows that Tβ

is in fact a smooth eigenfunction of I(a), with

(∂(P )Tβ)(H) = P (iλ)Tβ(H) (29)

for all P ∈ I(a). The space of such eigenfunctions is described in [11], Chapter
III, Theorem 3.13. Let Wλ denote the subgroup of W consisting of those elements
fixing λ , let Iλ(a) be the subalgebra of Wλ -invariant elements of S(a), and let
Hλ be the vector space of Wλ -harmonic polynomial functions on a .

Then for each element sλ in the orbit W ·λ , there exists a unique polynomial
Psλ(β)(H) in Hsλ , with coefficients depending on β , such that

Tβ(H) =
∑

sλ∈W ·λ

Psλ(β)(H) eisλ(H) (30)

for all H ∈ a . When λ is regular, the Psλ(β) are just constants (depending, of
course, on β ).

For fixed H ∈ a , the map β ∈ E(K/M) → Psλ(β)(H) is continuous, and
from this it is not hard to see that the coefficients of the polynomials Psλ(β)(H)
are distributions on K/M . More precisely, for each sλ , fix a basis Psλ,j(H)
(1 ≤ j ≤ r = |Wλ|) of Hsλ . Then

Psλ(β)(H) =
r∑

j=1

Ssλ,j(β)Psλ,j(H) (31)

Each coefficient Ssλ,j is a distribution on K/M uniquely determined, of course,
by the choice of the basis {Psλ,j} . Hence, by (28) (30), and (31), we see that

Φ̃(F ) =
∑

sλ∈W ·λ

r∑
j=1

∫
K/M

∫
a

Psλ,j(H)F (kM,H) eisλ(H) dH dSsλ,j(kM) (32)

for all F ∈ D(Ξ̃0) of the form β ⊗ α . Since the β ⊗ α span a dense subspace of

D(Ξ̃0), formula (32) holds for all F ∈ D(Ξ̃0).

When λ is regular, each Hsλ = C (so we can take 1 as its basis), and the
formula above reduces to

Φ̃(F ) =
∑
s∈W

∫
K/M

∫
a

F (kM,H) eisλ(H) dH dSsλ(kM) (33)

for all F ∈ D(Ξ̃0).

We now proceed to obtain a more explicit characterization of the eigendis-
tribution Φ ∈ D′

λ(Ξ0). For this, we note that expression (31) shows that Psλ can
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be considered as an element of D′(K/M)⊗Hsλ , with Psλ =
∑m

j=1 Ssλ,j ⊗Psλ,j , so
that (32) becomes

Φ̃(F ) =
∑

sλ∈W ·λ

∫
a

∫
K/M

F (kM,H) eisλ(H) dPsλ(kM)(H) dH (34)

We observe that by (31), each Psλ is uniquely determined by Φ.

Now the Weyl group W acts (freely) on both K/M and on Ξ̃0 = K/M × a

by s · kM = km−1
s M and s · (kM,H) = (km−1

s M, sH). Thus for each t ∈ W ,

Φ̃(F ) = Φ̃t(F )

=
∑

sλ∈W ·λ

∫
a

∫
K/M

F (km−1
t M, t ·H) eisλ(H) dPsλ(kM)(H) dH

=
∑

sλ∈W ·λ

∫
a

∫
K/M

F (kM, t ·H) eisλ(H) dP t
sλ(kM)(H) dH (35)

where we have put P t
sλ =

∑
j S

t
sλ,j⊗Psλ,j . The right hand side of (35) then equals

∑
sλ∈W ·λ

∫
a

∫
K/M

F (kM,H) eitsλ(H) t · dP t
sλ(kM)(H) dH (36)

where now t · P t
sλ =

∑
j S

t
sλ,j ⊗ (t · Psλ,j), an element of D′(K/M)⊗Htsλ . By the

uniqueness of the Psλ , it follows that

Ptsλ = t · P t
sλ

for all s, t ∈ W . In particular,

Psλ = s · P s
λ (s ∈ W )

Hence, for any ϕ ∈ D(Ξ0), we have

Φ(ϕ) = Φ̃(ϕ̃)

=
∑

sλ∈W ·λ

∫
a

∫
K/M

ϕ̃(kM,H) eisλ(H) s · dP s
λ(kM)(H) dH

=
∑

sλ∈W ·λ

∫
a

∫
K/M

ϕ̃(km−1
s M, s ·H) eiλ(H) dPλ(kM)(H) dH

= |W · λ|
∫

a

∫
K/M

ϕ̃(kM,H) eiλ(H) dPλ(kM)(H) dH

= |W · λ|
∫

a

∫
K/M

ϕ[kM,H] eiλ(H) dPλ(kM)(H) dH (37)

If we put Qλ = |W · λ|Pλ , this leads us to the following result.
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Theorem 3.2. Suppose that λ ∈ a∗c and that Φ ∈ D′
λ(Ξ0). Then there exists a

unique element Qλ ∈ D′(K/M)⊗Hλ such that

Φ(ϕ) =

∫
a

∫
K/M

ϕ[kM,H] eiλ(H) dQλ(kM)(H) dH (38)

for all ϕ ∈ D(Ξ0). Conversely, given any element Qλ ∈ D′(K/M) ⊗ Hλ , the
expression (38) defines a distribution Φ ∈ D′

λ(Ξ0).

Remarks:

1. Fix a basis P1, . . . , Pr of Hλ . (We may choose this basis to have real
coefficients.) If Φ ∈ D′

λ(Ξ0), Theorem 3.2 says that there exist unique
distributions Tj on K/M such that

Φ(ϕ) =
r∑

j=1

∫
K/M

∫
a

Pj(H)ϕ[kM,H] eiλ(H) dH dTj(kM) (39)

for all ϕ ∈ D(Ξ0). Conversely, for any distributions Tj on K/M , the right
hand side of (39) defines a distribution Φ ∈ D′

λ(Ξ0).

2. Equation (39) can also be written as

Φ(ϕ) =
m∑

j=1

∫
K/M

∂(P ∗
j )ϕ∗[kM, λ] dTj(kM), (40)

where ϕ∗ is the (well-defined) Fourier-Laplace transform of ϕ :

ϕ∗[kM, λ] =

∫
a

ϕ[kM,H] eiλ(H) dH ([kM, λ] ∈ K/M ×W a∗c)

Proof. Equation (38) follows from (37) by putting Qλ = |W · λ|Pλ . The
uniqueness of Qλ is a consequence of the uniqueness of the Psλ , and in particular,
of Pλ .

Conversely, suppose that Qλ ∈ D′(K/M)⊗Hλ . If we fix a basis P1, . . . , Pm

of Hλ , we can, as in Remark (1) above, write Qλ =
∑

j Sj ⊗ Pj . The distribution
Φ in (38) is then given by (39), and thus we need to prove that the right hand side
of (39) defines a distribution Φ ∈ D′

λ(Ξ0). Now the product P (H) eiλ(H) belongs
to the joint eigenspace Eiλ(a) = {α ∈ E(a) | ∂(P )α = P (iλ)α for all P ∈ I(a)} .
Hence for any Q ∈ I(a), we have

(DQ(Φ))(ϕ) =
m∑

j=1

∫
K/M

∫
a

∂(Q∗)ϕ[kM,H]Pj(H) eiλ(H) dH dTj(kM)

= Q(iλ)
m∑

j=1

∫
K/M

∫
a

ϕ[kM,H]Pj(H) eiλ(H) dH dTj(kM)

= Q(iλ) Φ(ϕ),

for all ϕ ∈ D(Ξ0), proving the theorem.
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Corollary 3.3. Suppose that λ is regular. Then there is a linear bijection from
D′(K/M) onto D′

λ(Ξ0) given by

T 7→ Φ

Φ(ϕ) =

∫
K/M

∫
a

ϕ[kM,H] eiλ(H) dH dT (kM)

=

∫
K/M

ϕ∗[kM, λ] dT (kM) (41)

4. Conical Distributions

By definition, a conical distribution on Ξ0 is an Hq -invariant eigendistribution of
D(Ξ0), where, as we recall, Hq is the isotropy subgroup of G0 fixing q : Hq =
M ′ n q .

Suppose that Φ is a conical distribution on Ξ0 belonging to D′
λ(Ξ0). (λ is

of course determined up to W -orbit.) First, for simplicity, let us assume that λ is
regular. Then we see that Φ satisfies (41), for unique T ∈ D′(K/M).

In order to determine this distribution T more explicitly, we first prove
that the collection of functions on K/M given by {ϕ∗[kM, λ] |ϕ ∈ D(Ξ0)} equals
E(K/M).

For this, we first consider the following easy lemma.

Lemma 4.1. For f ∈ D(a) and γ ∈ E(a), put (f, γ) =
∫

a
f(H) γ(H) dH .

Suppose that γ1, . . . , γm are linearly independent elements of E(a). Then there
exist functions f1, . . . , fm in D(a) such that the m × m matrix ((fi, γj)) is any
prescribed m×m matrix.

Proof. Let V be the linear span of γ1, . . . , γm . For each f ∈ D(a), let λf be
the linear functional on V given by λf (γ) = (f, γ). It suffices for us to prove that
the linear map f 7→ λf maps D(a) onto V ∗ . But if f 7→ λf were not onto, then
there would be a nonzero subspace W of V such that λf (W ) = {0} for all f .
But given any nonzero γ ∈ W , there is clearly an f ∈ D(a) such that (f, γ) 6= 0,
a contradiction.

For every h ∈ D(a), let h∗ denote its Fourier-Laplace transform

h∗(λ) =

∫
a

h(H) eiλ(H) dH (λ ∈ a∗c)

Lemma 4.2. Let λ ∈ a∗c be regular. Let R be the linear map from D(Ξ0) to
E(K/M) given by Rϕ(kM) = ϕ∗[kM, λ]. Then R is onto.

Proof. The proof requires some care since Ξ0 is not the product manifold
K/M × a but a quotient of it. Note first that Lemma 4.1 implies that for any
distinct elements λ1, . . . , λm ∈ a∗c , and any functions β1, . . . , βm ∈ E(K/M), there

exists a function F ∈ D(Ξ̃0) such that F ∗(kM, λj) = βj(kM) for all k ∈ K and
all j . In fact since the functions eiλ1 , . . . , eiλm are linearly independent elements
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of E(a), the lemma implies that there are functions h1, · · · , hm in D(a) such that
h∗i (λj) = δij for all i, j . Then put F (kM,H) =

∑
j βj(kM)hj(H).

Now fix β ∈ E(K/M). We will prove that there exists a ϕ ∈ D(Ξ0) such
that ϕ∗[kM, λ] = β(kM) for all kM ∈ K/M .

From the above we know that there exists a function F ∈ D(Ξ̃0) such that
F ∗(kM, sλ) = β(kmsM) for all kM ∈ K/M and all s ∈ W . (Here ms ∈ M ′

is any coset representative of s .) Put ϕ = Fπ , so that ϕ ∈ D(Ξ0). Then
ϕ∗[kM, µ] = (1/w) ·

∑
s∈W F ∗(km−1

s M, sµ) for all kM ∈ K/M and all µ ∈ a∗c . In
particular,

ϕ∗[kM, λ] =
1

w

∑
s∈W

F ∗(km−1
s M, sλ)

= β(kM)

for all kM ∈ K/M .

Resuming our investigation of conical distributions, let us assume, as before,
that Φ is a conical distribution in D′

λ(Ξ0), where λ is a fixed regular element in
a∗c . Let T be the unique element of D′(K/M) given by (41).

The M ′ invariance of Φ implies that∫
K/M

ϕ∗[m′kM, λ] dT (kM) =

∫
K/M

ϕ∗[kM, λ] dT (kM) (42)

for all m′ ∈M ′ . By Lemma 4.2, the functions ϕ∗[kM, λ] run through E(K/M) as
ϕ runs through D(Ξ0). Thus (42) shows that T is a left M ′ -invariant distribution
on K/M .

The q-invariance of Φ then shows that∫
K/M

ϕ∗[kM, λ] dT (kM) =

∫
K/M

ϕ∗[kM, λ] e−iλ((k−1X)a) dT (kM)

=

∫
K/M

ϕ∗[kM, λ] e−iB(kAλ,X) dT (kM) (43)

By Lemma 4.2, this implies that

T = e−iB(k·Aλ,X) T (44)

for all k ∈ K and all X ∈ q .

We will now prove that the property (44) implies that T has support in
the discrete subset M ′/M of K/M . For this, consider any k0 ∈ K \M ′ . Since
λ is regular, k0 · Aλ /∈ a∗c . It is easy to see that there exists X ∈ q such that
B(k0 · Aλ, X) /∈ 2πZ . (This is done by scaling X if necessary.) Fixing this X ,
there exists a neighborhood U of k0M in K/M such that B(k ·Aλ, X) /∈ 2πZ for
all kM ∈ U . Hence the function kM 7→ eiB(k·Aλ,X) − 1 is never 0 on U , whereas
by (44) the distribution (eiB(k·Aλ,X) − 1)T on K/M equals 0. This implies that
T = 0 on U . Since k0M ∈ K/M is an arbitrary point in the complement of
M ′/M , this proves that T has support in the discrete set M ′/M .
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In particular, T has the form

T =
∑
s∈W

Ds δmsM (45)

where Ds is a linear differential operator on K/M . We will now prove that in fact

T = c
∑
s∈W

δmsM (46)

for some constant c . For this, it suffices to prove that near the identity coset eM
of K/M , T is a multiple of the delta function at eM . That is to say, it suffices to
prove that for all smooth functions β on K/M supported on a small neighborhood
of eM , then T (β) = c β(eM). The M ′ -invariance of T then proves (46).

To this end, we introduce local coordinates on K/M near eM . Let
T1, . . . , Tmα be an orthonormal basis (with respect to −B ) of lα . (We could
use Tα

i = 2−1/2Eα
i from the proof of Lemma 2.2.) The collection {Tj}1≤j≤mα,α∈Σ+

is then an orthonormal basis of l . We list these basis elements as T1, . . . , Tr and
assume that Tj belongs to the generalized eigenspace kαj

. Then the map

exp(t1 T1 + · · ·+ tr Tr)M 7→ (t1, . . . , tr) (47)

defines a chart on a neightborhood U of eM in K/M . We assume that
U ∩M ′/M = {eM} .

For each j let us put Xj = −i(B(αj, λ))−2 ad(Aλ)Tj . Since λ is regular, Xj is
well defined, and it is easy to see that X1, . . . , Xr is a basis of the complexification
qc of q , orthogonal with respect to the Killing form on pc .

Now suppose that β is a smooth function on K/M with support in U .
Then by (45), we have

T (β) =
∑

J

cJD
Jβ(0) (48)

where the sum runs through a finite collection of multiindices J = (j1, . . . , jr), the
cJ are constants, and DJ = ∂j1+···+jr/∂tj11 · · · ∂tjr

r .

In the sum (48), we claim that cJ = 0 when |J | > 0. Then of course
T (β) = c0 β(0), and this will prove (46). To prove this, let us assume, to the
contrary, that cJ 6= 0 for some J 6= 0. Let N = max{|J | | cJ 6= 0} . Now by (44)
we have ∑

J

cJD
Jβ(0) =

∑
J

cJD
J
(
e−iB(exp(t1T1+···+trTr)·Aλ,X) β

)
(0) (49)

for all X ∈ q and all smooth functions β supported in U . In (49) choose a β
which is identically 1 on a small neighborhood of 0. Then the left hand side of
(49) is c0 . On the other hand, if we write X = z1X1 + · · ·+ zr Xr , where zj ∈ C ,
then the right hand side is∑

J

cJD
J
(
e−iB(exp(t1T1+···+trTr)·Aλ,X)

)
(0),
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a polynomial of degree N in z1, . . . , zr . Its homogeneous component of degree N
equals ∑

|J |=N

cJ z
J ,

where we have put zJ = zj1
1 · · · zjr

r when J = (j1, . . . , jr). This yields a contradic-
tion, and we obtain the following result.

Theorem 4.3. Suppose that λ ∈ a∗c is regular. Then the space of conical
distributions in D′

λ(Ξ0) is one-dimensional, with basis given by Φλ , where

Φλ(ϕ) =
∑
s∈W

ϕ∗[msM,λ] (ϕ ∈ D(Ξ0)) (50)

Proof. If Φ is a conical distribution in D′
λ(Ξ0) then we have shown that Φ is

a multiple of Φλ .

For the converse, we first observe that Lemma 4.2 implies that there is a
ϕ ∈ D(Ξ0) such that ϕ∗[kM, λ] = 1 for all kM ∈ K/M . This shows that the
distribution Φλ is not zero. Moreover, (41) shows that Φλ belongs to D′

λ(Ξ0), with
T =

∑
s∈W δmsM ; clearly T satisfies (44) and is M ′ -invariant, so Φλ is conical.

The product manifold Ξ̃0 = K/M × a , rather than Ξ0 , is in some sense the
limiting case of the horocycle space Ξ ∼= K/M×A . Thus it makes sense to define a

conical distribution on Ξ̃0 to be a joint eigendistribution of D(Ξ̃0) invariant under

the left action of the isotropy subgroup H0
q = M×q of ξ̃0 = (eM, 0). Assume that

λ ∈ a∗c is regular. Then using Proposition 3.1, one can use an argument similar
to that used to prove Theorem 4.3 above to conclude that the space of conical
distributions in D′

λ(Ξ̃0) is w -dimensional. (We omit the details.)

Theorem 4.4. If λ ∈ a∗c is regular, then the space of conical distributions in

D′
λ(Ξ̃0) has dimension w . Any such conical distribution is given by

Ψ(ψ) =

∫
K/M

∫
a

ψ(kM,H) eiλ(H) dH dS(kM) (ψ ∈ D(Ξ̃0))

with S =
∑

s∈W cs δmsM , for arbitrary scalars cs .

The theorem above is thus a more precise analogue of Theorem 4.9 in [7],
which states that, for generic λ ∈ a∗c , the space of conical distributions in D′

λ(Ξ)
is w -dimensional.

5. Conical Distributions When λ is Non-regular

Just as in the symmetric space case, the problem of characterizing the space of
conical distributions in D′

λ(Ξ0) appears to be rather difficult, in general, when λ ∈
a∗c is not regular. One can, however, show that the space of conical distributions
corresponding to any non-regular λ is infinite-dimensional. To see this, let Kλ =
ZK(λ) = {k ∈ K | k · λ = λ} and let K ′

λ = {k ∈ K | k · λ ∈ a∗c} . For any k ∈ K ′
λ ,
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there exists an element m′ ∈ M ′ such that k · λ = m′ · λ . Thus (m′)−1k ∈ Kλ ,
and so we see that K ′

λ = M ′Kλ = ∪s∈WmsKλ = ∪s∈WKs·λms .

Let Σ+
λ = {α ∈ Σ+ |B(α, λ) = 0} , and as before let Wλ be the subgroup

of W fixing λ . Then Wλ is the subroup of W generated by the reflections along
the root hyperplanes in Σ+

λ , and M ′ ∩Kλ = ∪s∈Wλ
msM .

The Lie algebra of Kλ is kλ = m +
∑

α lα , where the sum is taken over all
α in Σ+

λ . If λ is not regular, then Σ+
λ is nonempty, and therefore the orbit Kλ/M

is a submanifold of K/M of positive dimension. The set M ′Kλ/M is a disjoint
union of |W |/|Wλ| translates of Kλ/M , given by msKλ/M , where s ranges over
a set of coset representatives in W/Wλ .

Let f be any continuous function on the orbit Kλ/M , invariant under left
translation by elements of msM , for all s ∈ Wλ . Such f can be obtained by
averaging any continuous function on the orbit by M and then further averaging
by the ms . The vector space of such f is infinite-dimensional, since close to the
identity coset eM , the space of M -orbits in Kλ/M is parametrized by the space
of M -orbits on a ball centered at 0 in

∑
α∈Σ+

λ
lα .

If s ∈ W , we can extend f in a well-defined way to the translated orbit
msKλ/M by setting f(mskM) = f(kM), for all k ∈ Kλ . In this way, f becomes
an M ′ -invariant function defined on the union of the translated orbits msKλ/M ,
for all s ∈ W .

Now let us define the distribution Tf on K/M by

Tf (F ) =
∑

s

∫
Kλ/M

f(mskλM)F (mskλM) d(kλ)M , (F ∈ E(K/M)) (51)

where the sum is taken over a set of representatives s of W/Wλ . It is clear from
the construction of f that Tf is independent of the choice of the ms appearing
on the right hand side above. Tf is then an M ′ -invariant distribution on K/M .

Now, in accordance with Theorem 3.2, let us define the distribution Φf in
D′

λ(Ξ0) by

Φf (ϕ) =

∫
K/M

∫
a

ϕ̃(kM,H) eiλ(H) dH dTf (kM) (52)

Since Tf is M ′ -invariant, so is Φf . To show that Φf is q-invariant, we use
the expression (51) defining Tf :

Φf (ϕ) =
∑

s

∫
Kλ/M

∫
a

ϕ̃(mskλM,H) eiλ(H) dH f(mskλM) d(kλ)M

Let X ∈ q . Then by (9) we have

Φf (ϕ
τ(X)) =

=
∑

s

∫
Kλ/M

∫
a

ϕ̃(mskλM,H) eiλ(H) eiB(mskλ·λ,X) dH f(mskλM) d(kλ)M

But mskλ · λ ∈ a∗c , and thus B(mskλ · λ,X) = 0, which shows that the right hand
side above equals Φf (ϕ).
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Since, as remarked above, the space of all continuous functions f on Kλ/M
invariant under the left action of msM , for all s ∈ Wλ , is infinite-dimensional, it
follows that the space of conical distributions in D′

λ(Ξ0) has infinite dimension.

In the case when the symmetric space X = G/K has rank one; i.e., when
dim a = 1, it is possible to obtain a complete classification of the space of all
conical distributions in D′

0(Ξ0). In this case, Σ+ has one or two elements; let α
be the indivisible element. Choose H ∈ a such that α(H) = 1, and identify R
with a by t 7→ tH .

Since we are assuming that λ = 0, then Wλ = W = {±1} , and so the space
H of Wλ -harmonic polynomials on a has basis {1, t} . Suppose that Φ ∈ D′

0(Ξ0)
is a conical distribution. Then from (39), there exist uniquely determined M ′ -
invariant distributions T0 and T1 on K/M such that

Φ(ϕ) =

∫
K/M

∫ ∞

−∞
ϕ̃(kM, tH) dt dT0(kM) +

∫
K/M

∫ ∞

−∞
ϕ̃(kM, tH) t dt dT1(kM)

(53)
Since Φ is also invariant under left translation by any X ∈ q , we have

Φ(ϕ) =

∫
K/M

∫ ∞

−∞
ϕ̃(kM, tH + (k−1 ·X)a) dt dT0(kM)

+

∫
K/M

∫ ∞

−∞
ϕ̃(kM, tH + (k−1 ·X)a) t dt dT1(kM)

=

∫
K/M

∫ ∞

−∞
ϕ̃(kM, tH) dt dT0(kM) +

∫
K/M

∫ ∞

−∞
ϕ̃(kM, tH) t dt dT1(kM)

−
∫

K/M

∫ ∞

−∞
ϕ̃(kM, tH)B(k · Aα, X)dt dT1(kM)

= Φ(ϕ)−
∫

K/M

∫ ∞

−∞
ϕ̃(kM, tH) dt B(k · Aα, X) dT1(kM)

Hence ∫
K/M

∫ ∞

−∞
ϕ̃(kM, tH) dt B(k · Aα, X) dT1(kM) = 0 (54)

for all ϕ ∈ D(Ξ0).

If T0 and T1 are M ′ -invariant distributions on K/M it is clear that the
condition (54) is also sufficient for the distribution Φ in (53) to be conical in
D′

0(Ξ0). In particular, T0 can be arbitrary.

Now it is easy to see that the map ϕ 7→
∫ ∞
−∞ ϕ̃(kM, tH) dt maps D(Ξ0) onto

the vector space EM ′(K/M) of C∞ functions F on K/M satisfying F (kM) =
F (km∗M) for all k ∈ K , where m∗ is any element in M ′ \M . Thus (54) implies
that Φ is conical if and only if the M ′ -invariant distribution T1 satisfies the
condition ∫

K/M

F (kM)B(k · Aα, X) dT1(kM) = 0 (55)

for any X ∈ q and all F ∈ EM ′(K/M). As we shall show below, it turns out that
all M ′ -invariant distributions on K/M satisfy the condition above.
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In the present case the set Σ+ consists of α , and possibly 2α , with mul-
tiplicities mα and m2α , respectively. Let H1 be the unit vector in a such that
α(H1) > 0, and let o denote the identity coset {M} in K/M . Then we can en-
dow K/M with the K -invariant Riemannian structure induced from the AdM -
invariant inner product on l ∼= To(K/M) given by

〈Tα + T2α, T
′
α + T ′

2α〉 = −α(H1)
2B(Tα, T

′
α)− 4α(H1)

2B(T2α, T
′
2α)

for Tα, T
′
α ∈ lα and T2α, T

′
2α ∈ l2α . One can easily show that the mapping

kM 7→ k · H1 is an isometry from K/M onto the unit sphere S (with respect
to B ) in p . Whenever it is convenient, we will identify K/M with S in this
manner.

Lemma 5.1. Assume that dim a = 1. Fix m∗ ∈ M ′ . Then for every kM ∈
K/M , there exists an m ∈M such that m∗k(m∗)−1M = mkM .

Proof. If m∗ ∈M , then the result is trivial, so let us assume that m∗ is not in
M . It is easy to see that the map kM 7→ m∗k(m∗)−1M is a well-defined isometry
of K/M . By Theorem 13.2 in [17], the map T 7→ (expT )M maps l onto K/M ,
and clearly m∗(expT )(m∗)−1M = exp(Ad(m∗)T )M . Thus it suffices to prove
that for each T ∈ l , there exists m ∈M such that Ad(m∗)T = Ad(m)T .

This assertion can be proved by considering the possible cases for mα and
m2α . For convenience, let us now provide l with the inner product given by −B ,
which we note that Ad (m∗) leaves invariant. Suppose first that m2α > 1. Write
T ∈ l as T = Tα + T2α , with Tα ∈ lα, T2α ∈ l2α . For any r, s ≥ 0, AdM is
transitive on the product of spheres {T ′ + T ′′ ∈ lα + l2α | ‖T ′‖ = r, ‖T ′′‖ = s}
([15]). Since Ad (m∗) is an isometry on lα and on l2α , there exists m ∈ M such
that Ad(m)Tα = Ad(m∗)Tα and Ad(m)Tα = Ad(m∗)T2α .

Suppose next that m2α = 0 and mα > 1. Then l = lα , and since AdM is
transitive on spheres in lα , our assertion easily holds in this case.

The remaining cases are m2α = 1 (so mα > 1) and mα = 1 (so m2α = 0).
Suppose that m2α = 1. We claim that Adm∗ is the identity map on l2α . For
this, we use the decomposition g = g−2α + g−α + m + a + gα + g2α . Choose
any nonzero elements Xα ∈ gα and X2α ∈ g2α . Then Xα, θ(Xα), X2α , and
θ(X2α) generate a Lie subalgebra g∗ of g isomorphic to su(2, 1). Let G∗ be the
analytic subgroup of G with this algebra. Then G∗ has Iwasawa decomposition
G∗ = K∗AN∗ , where K∗ = G∗ ∩ K, N∗ = G∗ ∩ N . If M∗ and (M ′)∗ denote
the centralizer and normalizer of a in K∗ , we also have M∗ = G∗ ∩ M and
(M ′)∗ = G∗ ∩M ′ . Choose any element m∗

1 ∈ (M ′)∗ \M∗ . Then m∗
1 ∈ M ′ \M

so there exists an m1 ∈ M such that m∗
1 = m∗m1 . Now from [10], Chapter

IX, §3, Ad (m∗
1)X2α = θ(X2α), Ad (m∗

1) θ(X2α) = X2α , and thus Adm∗
1 fixes

X2α + θ(X2α). But this latter vector spans l2α . Since AdM is the identity map
on l±2α ([12], Chapter III, Lemma 3.8) it follows that Adm∗ = Ad (m∗

1m
−1
1 ) is

the identity map on l±2α as well. Now since AdM is transitive on spheres in lα ,
we conclude that for any T ∈ lα and T ′ ∈ l2α , there exists an m ∈ M such that
Ad (m∗)T = Ad (m)T and Ad (m∗)T ′ = Ad (m)T ′ = T ′ .

Finally, suppose that mα = 1. Choose any nonzero Xα ∈ gα . Then Xα and
θ(Xα) generate a subalgebra g∗ of g isomorphic to su (1, 1). Let G∗ be the analytic
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subgroup of G with Lie algebra g∗ , and let (m′)∗ ∈ G∗ ∩ (M ′ \M). There exists
an m1 ∈ M such that (m′)∗ = m∗m1 . If K∗ = G∗ ∩K , then K∗ is abelian, so
Ad(m′)∗ is the identity map on lα . On the other hand, by [12], Chapter III, Lemma
3.8, Ad (M) is also the identity map on lα . Thus Ad (m∗)T = Ad (m)T = T for
all m ∈M and T ∈ lα .

This covers all the cases and finishes the proof of the lemma.

We are now in a position to classify the conical distributions in D′
0(Ξ0)

when dim a = 1.

Theorem 5.2. Assume that dim a = 1. Then the conical distributions in
D′

0(Ξ0) are precisely those distributions Φ given by

Φ(ϕ) =

∫
K/M

∫ ∞

−∞
ϕ̃(kM, tH) dt dT0(kM) +

∫
K/M

∫ ∞

−∞
ϕ̃(kM, tH) t dt dT1(kM)

(56)
where T0 and T1 are M ′ -invariant distributions on K/M .

Proof. As remarked in (53), any conical distribution Φ in D′
0(Ξ0) must be of

the form (56), with T0 and T1 M ′ -invariant.

Conversely, suppose that Φ ∈ D′(Ξ0) is defined by (56) with T0 and T1

M ′ -invariant. By Theorem 3.2, Φ belongs to D′
0(Ξ0), and it is clear that Φ is

M ′ -invariant. To prove that Φ is conical, it is sufficient to verify that T1 satisfies
(55) for all F ∈ E(K/M) such that F (kM) = F (km∗M).

To this end, let us put F#(kM) =
∫

M ′ F (m′kM) dm′ for any function
F ∈ E(K/M), where dm′ is the normalized Haar measure on the compact group
M ′ . Note that since T1 is M ′ -invariant, T1(F ) = T1(F

#) for all F ∈ E(K/M).

Lemma 5.1 shows that for any kM ∈ K/M , there exists m1 ∈M such that
m∗k ·H1 = −m∗k(m∗)−1 ·H1 = −m1k ·H1 . If a : ω 7→ −ω denotes the antipodal
map on the sphere S , then a(k · H1) = k(m∗)−1 · H1 , so a corresponds to the
isometry kM 7→ k(m∗)−1M of K/M .

Noting that F a(kM) = F (k(m∗)−1M), we see from the definition of F#

that that (F#)a = (F a)# . On the other hand, for any kM ∈ K/M , we put
k ·H1 = ω . Applying Lemma 5.1, we have

(F a)#(ω) =

∫
M ′
F (m′k(m∗)−1M) dm′

=

∫
M ′
F (m′m∗k(m∗)−1M) dm′

=

∫
M ′
F (m′m1kM) dm′ (for some m1 ∈M)

= F#(ω).

In particular, if F ∈ E(K/M) corresponds to an odd function on S , we have
F# = 0.

Now suppose that F ∈ E(K/M) satisfies F (km∗M) = F (kM) for all
k ∈ K . Then F corresponds to an even function on S , and for each fixed X ∈ q ,
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the function G(kM) = F (kM)B(k · Aα, X) is an odd function on S . It follows
that G# = 0 and thus∫

K/M

F (kM)B(k · Aα, X) dT1(kM) = T1(G)

= T1(G
#)

= 0.

Thus (55) holds for all such F , and we conclude that the distribution Φ in (56) is
conical.

It is curious that the M ′ -invariance of any distribution in D′
0(Ξ0) guarantees

its q-invariance.

6. Eigenspace Representations

We conclude this paper by considering the natural representation of G0 on the
eigenspaces D′

λ(Ξ0). In particular, we would like to determine the conditions
under which this representation is irreducible.

Let R denote the flat horocycle Radon transform given by (8). Then R is
the Radon transform associated with the double fibration

G0/(K ∩Hq)
p

wwnnnnnnnnnnnn
π

((QQQQQQQQQQQQ

p = G0/K Ξ0 = G0/Hq

(57)

(See [6]; for a general introduction to integral transforms associated with group
equivariant double fibrations, see [12], Chapter I, §1-3; for details on the flat
horocycle Radon transform, see [8] or [12], Chapter IV, §5.) If f ∈ Cc(p), then
Rf is given by

Rf [kM,H] =

∫
q

f(k · (H + Y )) dY (58)

where dY indicates the Euclidean measure on q . Its dual transform is the map
R∗ : C(Ξ0) → C(p) given by

R∗ϕ(X) =

∫
K

ϕ(X + k · q) dk (ϕ ∈ C(Ξ0)) (59)

where dk denotes the normalized Haar measure on the compact group K .

The transforms R and R∗ are G0 -equivariant in the sense that R(f◦l(g)) =
(Rf) ◦ l(g) and R∗(ϕ ◦ l(g)) = (R∗ϕ) ◦ l(g), where l(g) is the natural left action
by g ∈ G0 on the homogeneous spaces p and Ξ0 . They are also formal adjoints
in the sense that ∫

Ξ0

Rf(ξ)ϕ(ξ) dξ =

∫
p

f(X)R∗ϕ(x) dx (60)

for all f ∈ Cc(p), ϕ ∈ C(Ξ0), where, as in Section 2, dξ denotes the G0 -invariant

measure on Ξ0 which pulls back to dH dkM on Ξ̃0 .
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We equip D(p) and D(Ξ0) with the usual inductive limit topologies, and
their dual spaces D′(p) and D′(Ξ0) by the corresponding strong topologies. Ac-
cording to Lemma 3.5, Chapter I in [12], R is a continuous linear map from D(p)
to D(Ξ0). Thus we can extend the relation (60) by defining the dual transform
R∗Φ of any Φ ∈ D′(Ξ0) by

R∗Φ(f) = Φ(Rf) (f ∈ D(p))

The dual transform Φ 7→ R∗Φ is then a continuous linear map from D′(Ξ0) to
D′(p). This map commutes with the natural left action of G0 on distributions on
Ξ0 and p , respectively.

Lemma 6.1. Let λ ∈ a∗c , and suppose that Φ is a distribution in D′
λ(Ξ0) given

by

Φ(ϕ) =

∫
K/M

∫
a

ϕ[kM,H] eiλ(H) dH dT (kM) (ϕ ∈ D(Ξ0)) (61)

where T ∈ D′(K/M). Then R∗Φ ∈ E(p), and is given by

R∗Φ(X) =

∫
K/M

ei B(k·Aλ,X) dT (kM) (X ∈ p) (62)

Proof. If f ∈ D(p), then

(R∗Φ) (f) = Φ (Rf)

=

∫
K/M

∫
a

Rf [kM,H] eiλ(H)dH dT (kM)

=

∫
K/M

∫
a

∫
q

f(k · (H + Y )) dY ei B(Aλ,H) dH, dT (kM)

=

∫
K/M

∫
p

f(k ·X) ei B(Aλ.X) dX dT (kM)

=

∫
p

f(X)

∫
K/M

ei B(k·Aλ,X) dT (kM) dX

The inner integral on the right is clearly a smooth function of X ∈ p . Since it
agrees with R∗Φ on all test functions f on p , we obtain the lemma.

The right hand side of (62) is the flat analogue of the Poisson transform
on the symmetric space G/K . We therefore call it the Poisson transform of T
corresponding to the spectral parameter λ , and denote it by Pλ(T ):

Pλ(T )(X) =

∫
K/M

ei B(k·Aλ,X) dT (kM) (X ∈ p) (63)

The transform Pλ was introduced in [8] in connection with the study of eigenspace
representations on p . Note that the Poisson transform of the function F0 ≡ 1 is
the zonal spherical function on p corresponding to λ .
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Lemma 6.1, which relates the dual horocycle and the Poisson transforms,
is the analogue of a similar formula ([7], Proposition 4.6) for the dual horocycle
transform on G/K . If λ is regular, then according to Corollary 3.3 above, every
Φ ∈ D′

λ(Ξ0) has the form (61). However, the analogy to G/K is not completely
precise, since when λ is not regular, there are Φ ∈ D′

λ(Ξ0) which are not of the
form (61), so the dual transform R∗Φ is not necessarily a Poisson transform.

Recall that we have identified the algebra of left G0 -invariant differential
operators on p with the polynomial algebra I(p), and that the algebra homomor-
phisms α : I(p) → C are given by evaluations p 7→ p(λ) for λ ∈ a∗c , where λ is
unique up to W orbit. For λ ∈ a∗c , let

Eλ(p) = {f ∈ E(p) | ∂(p) f = p(iλ) f for all p ∈ I(p)}.

Since the function X 7→ ei B(k·Aλ,X) belongs to Eλ(p) for each k ∈ K , it is
easy to see from (63) that the Poisson transform Pλ(T ) belongs to the joint
eigenspace Eλ(X) for all T ∈ D′(K/M). The joint eigenspace Eλ(p) is G0 -
invariant, and according to [8], Theorem 6.6, the natural representation of G0

on Eλ(p) is irreducible if and only if λ is regular.

We say that λ ∈ a∗c is simple if the Poisson transform Pλ is injective. An
easy convolution argument on K shows that λ is simple if and only if the map
F 7→ Pλ(F ) is injective on E(K/M). Now according to Theorem 6.2 in [8], λ is
simple if and only if it is regular. Thus, in view of Corollary 3.3, the dual transform
R∗ : D′

λ(Ξ0) → D′(p) is injective if and only if λ is regular.

We now fix some notation. For any g ∈ G0 and ϕ ∈ D(Ξ0), let ϕl(g) =
ϕ ◦ l(g−1). If Φ ∈ D′(Ξ0), we let Φl(g) be the distribution on Ξ given by
Φl(g)(ϕ) = Φ(ϕl(g−1)).

The left regular representation of G0 on D(Ξ0) is then given by τ(g)ϕ =
ϕl(g) for g ∈ G0, ϕ ∈ D(Ξ0), and the natural representation of G0 on D′(Ξ0) is
the contragredient representation, which is given by π(g)Φ = Φl(g) .

If λ ∈ a∗c , then the joint eigenspace D′
λ(Ξ0) is a closed subspace of D′(Ξ0)

invariant under π ; we let πλ denote the restriction of π to D′
λ(Ξ0).

Proposition 6.2. Suppose that λ ∈ a∗c is regular. Then the conical distribution
Φλ in (50) is a cyclic vector for the representation πλ .

Proof. We need to prove that the linear span of the translates Φ
l(g)
λ , for

all g ∈ G0 , is dense in D′
λ(Ξ0). Suppose that L belongs to the dual space of

D′
λ(Ξ0). Since D′

λ(Ξ0) is a closed subspace of D′(Ξ0), we may extend L to a
continuous linear functional on D′(Ξ0); then because D(Ξ0) is reflexive, there
exists a ϕ ∈ D(Ξ0) for which L(Φ) = Φ(ϕ) for all Φ ∈ D′(Ξ0).

Now suppose that L
(
Φ

l(g)
λ

)
= 0 for all g ∈ G0 . Then by (50),

L
(
Φ

l(g)
λ

)
= Φl(g)(ϕ)

= Φ
(
ϕl(g−1)

)
=

∑
s∈W

(
ϕl(g−1)

)∗
[msM,λ] (64)
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Put g = (k,X) for some k ∈ K, X ∈ p . Then by (9), l(g)([k0M,H0])
= [kk0M,H0 + ((kk0)

−1 ·X)a] . Hence for each s ∈ W ,

(
ϕl(g−1)

)∗
[msM,λ] =

∫
a

ϕ[kmsM,H + ((kms)
−1 ·X)a] e

iλ(H) dH

= e−i B(kms·Aλ,X) ϕ∗[kmsM,λ] (65)

Since g is arbitrary, we can let g = (k, k · H ′) for k ∈ K, H ′ ∈ a . Then (64)
becomes ∑

s∈W

e−i sλ(H′) ϕ∗[kmsM,λ] = 0 (66)

Since λ is regular, the functions e−isλ (s ∈ W ) are linearly independent, and thus
there exist vectors Ht ∈ a , for t ∈ W , such that the w × w matrix (e−isλ(Ht)) is
nonsingular. Replacing H ′ in (66) by each Ht , the relations∑

s∈W

e−i sλ(Ht) ϕ∗[kmsM,λ] = 0 (t ∈ W )

show in particular that ϕ∗[kM, λ] = 0 for all k ∈ K . From Corollary 3.3, we
conclude that Φ(ϕ) = 0 for all Φ ∈ D′

λ(Ξ0). Hence L = 0 on D′
λ(Ξ0), proving the

proposition.

For λ ∈ a∗c , let Kλ(Ξ0) denote the vector space of all distributions Φ ∈
D′

λ(Ξ0) given by

Φ(ϕ) =

∫
K/M

ϕ∗[kM, λ]F (kM) dkM (ϕ ∈ D(K/M)) (67)

where F ∈ L2(K/M). Note that according to Theorem 3.2, the map F 7→ Φ
is injective from L2(K/M) to Kλ(Ξ0). Thus we may endow Kλ(Ξ0) with a
Hilbert space structure, the norm ‖Φ‖λ of Φ above being the L2 norm of F
on K/M . Now a calculation similar to (65) shows that if g = (k′, X ′), then
(ϕl(g−1))∗[kM, λ] = e−i B(k′k·Aλ,X′) ϕ∗[k′kM, λ] for any ϕ ∈ D(Ξ0). Thus if Φ is
given by (67), we have

(
πλ(g)Φ

)
(ϕ) =

∫
K/M

ϕ∗[k′kM, λ] e−i B(k′k·Aλ,X′) F (kM) dkM

=

∫
K/M

ϕ∗[kM, λ] e−i B(k·Aλ,X′) F ((k′)−1kM) dkM (68)

From this one sees that Kλ(Ξ0) is invariant under πλ . Let π′λ denote the
restriction of πλ to Kλ(Ξ0). Equation (68) shows that we may identify π′λ with
the representation of G0 on L2(K/M) given by

π′λ(k
′, X ′)F (kM) = e−i B(k·Aλ,X′) F ((k′)−1kM) (69)

Thus π′λ is the representation of G0 induced from the one-dimensional represen-
tation (m,X) 7→ e−i B(Aλ,X) of the subgroup M n p ⊂ G0 . The representation π′λ
is unitary if and only if λ ∈ a∗ . If λ ∈ a∗ is regular, then Mackey’s imprimitivity



Gonzalez 433

theorem applied to semidirect products says that π′λ is unitary and irreducible.
(See e.g., [16], Chapter III.)

Since the dual transform Φ 7→ R∗Φ commutes with the left action of G0 ,
Lemma 6.1 shows the Poisson transform Pλ intertwines π′λ and the left regular
representation of G0 on Eλ(p).

Now Kλ(Ξ0) contains a unique K -invariant element (i.e., the distribution
Φ in (67) with F ≡ 1), so the family π′λ (for λ ∈ a∗c ) is the flat analogue of the
spherical principal series for the symmetric space G/K .

Theorem 6.3. Let λ ∈ a∗c . Then π′λ is irreducible if and only if λ is regular.

Proof. Theorem 6.3 is the flat analogue of Proposition 5.3 in [7], and our proof
is adapted from the proof of that result.

We first make the following observation. Let F0 be the constant function
F0(kM) ≡ 1 on K/M . If 〈 , 〉 denotes the inner product on L2(K/M), then
equation (69) implies that for any F ∈ L2(K/M),

〈π′λ(g)F0, F 〉 =

∫
K/M

e−i B(k·Aλ,X) F (kM) dkM

where g = (k,X) ∈ G0 . Thus F0 is a cyclic vector for π′λ if and only if −λ is
simple. But −λ is simple if and only if −λ is regular, so F0 is cyclic if and only
if λ is regular.

Now suppose that λ is not regular. Let N denote the kernel of the Poisson
transform Pλ on L2(K/M). The Schwartz inequality shows that N is a closed
subspace of L2(K/M). Since Pλ is G0 -equivariant, N is invariant under π′λ .
Finally, since λ is not simple, N 6= {0} , and since Pλ(F0)(0) = 1, we have
N 6= L2(K/M). This shows that π′λ is not irreducible.

Conversely, suppose that λ is regular. Let V be a nonzero closed π′λ -
invariant subspace of L2(K/M). Since λ is simple, Pλ(V ) 6= {0} , and by the G0

equivariance, there is an h ∈ Pλ(V ) such that h(0) = 1. Letting h = Pλ(F ), where
F ∈ V , we obtain

∫
K/M

F (kM) dkM = 1. Now F0(kM) =
∫

K
F ((k′)−1kM) dk′ =∫

K
π′λ(k

′)F (k) dk′ for all kM ∈ K/M , so it follows that F0 ∈ V . But since λ is
regular, F0 is a cyclic vector for π′λ , so we conclude that V = L2(K/M). Hence
π′λ is irreducible.

Theorem 6.3 now allows to determine the irreducibility of the representation
πλ of G0 on the eigenspace D′

λ(Ξ0).

Theorem 6.4. Let λ ∈ a∗c . Then πλ is irreducible if and only if λ is regular.

Proof. Suppose first that λ is not regular. Then λ is not simple, so by
Lemma 6.1, the dual transform R∗ : D′

λ(Ξ0) → E(p) is not injective. By the G0 -
equivariance and continuity of R∗ , its kernel R is thus a nonzero closed invariant
subspace of D′

λ(Ξ0). Moreover by Lemma 6.1, R 6= D′
λ(Ξ0), since Pλ(F0) 6= 0.

This shows that πλ is not irreducible.
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Next assume that λ is regular. Now Corollary 3.3 asserts that we have a
bijective linear map P : T 7→ Φ from D′(K/M) onto D′

λ(Ξ0) given by

Φ(ϕ) =

∫
K/M

ϕ∗[kM, λ] dT (kM) (ϕ ∈ D(Ξ0))

This map is continuous since it is the adjoint of the continuous map of D(Ξ0) onto
D(K/M) given by

ϕ 7→ ϕ∗[ · , λ]

In particular, this implies that the inclusion map of the Hilbert space Kλ(Ξ0) into
D′

λ(Ξ0) is continuous.

Now suppose that E is a closed subspace of D′
λ(Ξ0) invariant under πλ .

Then E ∩ Kλ(Ξ0) is a closed π′λ invariant subspace of Kλ(Ξ0). Since π′λ is
irreducible, we must have E ∩ Kλ(Ξ0) = Kλ(Ξ0) or E ∩ Kλ(Ξ0) = {0} .

Let us first consider the case E ∩ Kλ(Ξ0) = Kλ(Ξ0). Then E ⊃ Kλ(Ξ0),
the closure of Kλ(Ξ0) in D′

λ(Ξ0). But since P is continuous and surjective,
and since L2(K/M) is dense in D′(K/M), Kλ(Ξ0) = P (L2(K/M)) is dense in
D′

λ(Ξ0) = P (D′(K/M)). It follows that E = D′
λ(Ξ0).

Next we treat the case E ∩ Kλ(Ξ0) = {0} . We wish to conclude that
E = {0} . For this, we consider the natural representation π of G0 on D′(Ξ0).
Now D′(Ξ0) is a Montel space, hence is barelled and complete. Thus for any
f ∈ D(K), we obtain a well-defined continuous linear operator π(f) on D′(Ξ0)
given by

π(f) =

∫
K

f(k)π(k) dk

Now D′
λ(Ξ0) is a closed subspace of D′(Ξ0) invariant under π , so if we approximate

f by step functions, we see that π(f) Φ ∈ D′
λ(Ξ0) whenever Φ ∈ D′

λ(Ξ0). For
the same reason, since E is closed in D′

λ(Ξ0) (and hence in D′(Ξ0)), we have
π(f) Φ ∈ E whenever Φ ∈ E .

Let τ denote the natural (left) representation of K on D′(K/M). Suppose
that Φ ∈ D′

λ(Ξ0), so that Φ = P (T ) for some T ∈ D′(K/M). Since P is
continuous and linear, and commutes with the left action of K , we have

π(f) Φ =

∫
K

f(k)π(k)P (T ) dk

= P

(∫
K

f(k) τ(k)T dk

)
If f ∈ D(K), then

∫
K
f(k) τ(k)T dk ∈ D(K/M), so π(f) Φ ∈ Kλ(Ξ0). Thus

if Φ ∈ E , we must have π(f) Φ = 0. Since P is injective, this implies that∫
K
f(k) τ(k)T dk = 0. But because f is arbitrary, we obtain T = 0, and therefore

Φ = P (T ) = 0. Hence E = {0} .

This completes the two cases and shows that πλ is irreducible when λ is
regular.
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