
Journal of Lie Theory
Volume 22 (2012) 587–599
c© 2012 Heldermann Verlag

Orbits of Distal Actions on Locally Compact Groups
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Abstract. We discuss properties of orbits of (semi)group actions on locally
compact groups G , In particular, we show that if a compactly generated locally
compact abelian group acts distally on G then the closure of each of its orbits is
a minimal closed invariant set (i.e. the action has [MOC]). We also show that for
such an action distality is preserved if we go modulo any closed normal invariant
subgroup and hence [MOC] is also preserved. We also show that any semigroup
action on G has [MOC] if and only if the corresponding actions on a compact
invariant metrizable subgroup K and on the quotient space G/K have [MOC].
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22D45.
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1. Introduction

Let X be a Hausdorff space and let Γ be a (topological) semigroup acting contin-
uously on X by continuous self-maps. The action of Γ on X is said to be distal if
for any two distinct points x, y ∈ X , the closure of {(γ(x), γ(y)) | γ ∈ Γ} does not
intersect the diagonal {(a, a) | a ∈ X} . It is said to be pointwise distal if for each
γ ∈ Γ, the action of {γn}n∈N on X is distal. The Γ-action on X is said to have
[MOC] (minimal orbit closures) if the closure of every Γ-orbit is a minimal closed
Γ-invariant set, i.e. for x, y ∈ X , if y ∈ Γ(x) then Γ(y) = Γ(x). The notion of
distality was introduced by Hilbert (cf. Ellis [7], Moore [13]) and studied by many
in different contexts, (see Abels [1]-[2], Furstenberg [8], Raja-Shah [17] and the
references cited therein).

Let G be a locally compact (Hausdorff) group and let e denote the identity
of G . Let Γ be a semigroup acting continuously on G by endomorphisms. Then
the Γ-action on G is distal if and only if e 6∈ Γx for all x ∈ G \ {e} . Note that if
the Γ-action on G has [MOC], then it is distal; for if e ∈ Γx , then {e} = Γe = Γx
and hence x = e . What we are interested in is the converse: If the Γ-action on
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G is distal, does it have [MOC]? The answer is known to be affirmative in any of
the following cases: (1) G is compact (2) Γ is compact, (3) G is a connected Lie
group and Γ is a subgroup of Aut(G) (4) Γ is a group and G is discrete, or more
generally, all Γ-orbits are closed. If Γ is a group and if Γ′ is a closed co-compact
normal subgroup, then the Γ-action on G has [MOC] if and only if the Γ′ -action
on G has [MOC] (cf. [13]); it is easy to see that the same equivalence is true for
distality. For a general locally compact group G and a group Γ which acts on G
by automorphisms, the answer to the above question is not known. But in case of
a certain kind of Γ, we get the following:

Theorem 1.1. Let G be a locally compact group and let Γ be a compactly
generated locally compact abelian group such that Γ acts on G by automorphisms.
Then the following are equivalent:

1. The Γ-action on G is distal

2. The Γ-action on G has [MOC].

Let us now discuss general actions on compact spaces. For a compact space
K , let Γ be a semigroup of continuous bijective self-maps of K . Then Γ is a
subsemigroup of C(K), the group of all continuous bijective self-maps on K . Let
[Γ] be the group generated by Γ in C(K). We know that Γ acts distally on K
if and only if E(Γ), the closure of Γ in KK with weak topology, is a group (see
[7], Theorem 1 which is for group actions and it can easily be seen that the same
proof works for semigroup actions). It is obvious that E(Γ) is compact since KK

is so. When E(Γ) is a group, we have E(Γ) = E([Γ]); moreover, for any x ∈ K ,
Γ(x) = E(Γ)(x) = E([Γ])(x). In particular if K is a compact group and Γ acts
on K by automorphisms and [Γ] is as above, then the following are equivalent:

1. The Γ-action on K is distal.

2. The [Γ]-action on K is distal.

3. The Γ-action on K has [MOC].

4. The [Γ]-action on K has [MOC].

Moreover, for a closed subgroup H of the compact group K which is Γ-
invariant (i.e. γ(H) = H for all γ ∈ Γ), the above equivalence is also true for
the actions of Γ and [Γ] on K/H . Note that for such an H , the corresponding
Γ-action on the homogeneous space K/H = {xH | x ∈ K} is canonically defined
as γ(xH) = γ(x)H for all γ ∈ Γ; it is clearly well-defined.

In [17], it is shown that distality of a semigroup action is preserved by factor
actions modulo compact invariant subgroups. We show that a similar result holds
for [MOC], (see also Remark 2.2).

Theorem 1.2. Let G be a locally compact group and let Γ be a subsemigroup
of Aut(G). Let K be a compact metrizable Γ-invariant subgroup of G. Then the
Γ-action on G has [MOC] if and only if Γ-actions on both K and G/K have
[MOC].
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The following result is about factor actions modulo closed normal invariant
subgroups.

Theorem 1.3. Let G and Γ be as in Theorem 1.1. Let H be a closed normal
Γ-invariant subgroup of G. Then the Γ-action on G has [MOC] if and only if
Γ-actions on both H and G/H have [MOC].

We will later show that a similar result holds for distality for a larger class
of Γ.

A locally compact group G is said to be distal (resp. pointwise distal) if the
conjugacy action of G on G is distal (resp. pointwise distal). A distal group is
obviously pointwise distal. Abelian groups, discrete groups and compact groups
are obviously distal. Nilpotent groups, connected groups of polynomial growth
are distal (cf. [19]) and p-adic Lie groups of type R and p-adic Lie groups of
polynomial growth are pointwise distal (cf. Raja [14] and [15]).

In [17], jointly with C. R. E. Raja, we have shown that any locally compact
group is pointwise distal if and only if it has shifted convolution property; i.e. for
any probability measure µ on G , whose concentration functions do not converge
to zero, there exists x ∈ suppµ , the support of µ , such that µnx−n → ωH , the
Haar measure of some compact group H which is normalised by suppµ . For a
probability measure µ on G , the n-th convolution function of µ is defined as
fn(µ,C) = supg∈G µ

n(Cg), for any compact subset C of G . We say that the
concentration functions of µ do not converge to zero if there exists a compact set
C such that fn(µ,C) 6→ 0 as n → ∞ , (see [17] for more details). The following
corollary is a consequence of Theorem 6.1 of [17] and Theorem 1.1.

Corollary 1.4. Let G be a locally compact group. Then the following are
equivalent:

1. G is pointwise distal.

2. G has shifted convolution property.

3. For every g ∈ G, the conjugation action of {gn}n∈Z on G has [MOC].

A locally compact group G is said to be a generalised FC− -group (resp.
FC− -nilpotent) if G has closed normal subgroups {G = G0, . . . , Gn = {e}} such
that Gi+1 ⊂ Gi and Gi/Gi+1 is a compactly generated group with relatively
compact conjugacy classes (resp. every orbit of the conjugacy action of G on
Gi/Gi+1 is relatively compact) for all i = 0, 1, . . . , n−1. Any compactly generated
abelian group (resp. any polycyclic group) is a generalised FC− -group. Any
compactly generated group G has polynomial growth if and only if it is FC− -
nilpotent; and it is a generalised FC− -group (cf. [12]). Note that generalised
FC− -groups are compactly generated (cf. [12], Proposition 2).

Recall that a subgroup Γ of Aut(G) is said to be equicontinuous (at e)
if and only if there exists a neighbourhood base at e consisting of Γ-invariant
neighbourhoods; in case of totally disconnected groups, this is equivalent to the
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existence of a neighbourhood base at e consisting of compact open Γ-invariant
subgroups. If Γ is compact, then it is easy to see that Γ is equicontinuous. If G
is a totally disconnected group and if Γ has a polycyclic subgroup of finite index
and it acts distally on G , then Γ is equicontinuous (cf. [11], Corollary 2.4). If any
group Γ acts on G by automorphisms and its image in Aut(G) is equicontinuous
then we say that the Γ-action on G is equicontinuous.

For a totally disconnected locally compact group G , we have the following:

Proposition 1.5. Let G be a totally disconnected locally compact group and
let Γ be a generalised FC− -group which acts on G by automorphisms. Then the
following are equivalent.

1. The Γ-action on G is distal.

2. The Γ-action on G has [MOC].

3. The Γ-action on G is equicontinuous.

In Section 2, we discuss factor actions modulo compact (resp. closed normal)
invariant groups and prove Theorem 1.2, Proposition 1.5 and an analogue of
Theorem 1.3 for distal actions of a more general class of groups. In Section 3, we
prove the equivalence of distality and [MOC] of certain actions, namely, Theorem
1.1. Note that if Γ acts on G by automorphisms, for convenience, Γ is often
equated with its image in Aut(G), whenever there is no loss of any generality.

2. Orbits of Factor Actions

In this section we discuss [MOC] of factor actions modulo compact invariant groups
and modulo closed normal invariant groups. We first show that [MOC] is preserved
if we go modulo a compact invariant subgroup by proving Theorem 1.2. Before
that we prove a proposition which proves a special case of the theorem in case the
compact subgroup is a Lie group.

Proposition 2.1. Let G be a locally compact group and let Γ be a subsemigroup
of Aut(G). Let K and L be compact Γ-invariant subgroups of G such that L is
a normal subgroup of K and K/L is a Lie group. Then the Γ-action on G/L has
[MOC] if and only if Γ-actions on both G/K and K/L have [MOC].

Proof. Step 1. Let G , Γ, K and L be as in the hypothesis. One way
implication “only if” is easy to prove. Suppose the Γ-action on G/L has [MOC].
Then clearly the Γ-action on K/L also has [MOC], as K is closed and Γ-invariant.
Now we want to show that the Γ-action on G/K has [MOC]. Let x ∈ G and let
yK ∈ Γ(xK) in G/K for some y ∈ G . Then yK ⊂ Γ(x)K = Γ(x)K and hence
yk ∈ Γ(x) for some k ∈ K . In particular, we get that ykL ⊂ Γ(x)L = Γ(x)L as L
is compact. Hence ykL ∈ Γ(xL) in G/L . Since the Γ-action on G/L has [MOC],
we get that Γ(xL) = Γ(ykL) and hence x ∈ Γ(y)K as k ∈ K , L ⊂ K and both
L and K are Γ-invariant groups. This implies that xK ∈ Γ(yK) in G/K and
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hence the Γ-action on G/K has [MOC]. Note that the condition that K/L is a
Lie group is not used in the proof of the “only if” statement.

Step 2. Now we prove the “if” statement. Suppose Γ-actions on both G/K and
K/L have [MOC]. This implies that the Γ-action on K/L is distal as K/L is
a group. We will first show, using compactness of K , that since the Γ-action
on G/K has [MOC], it is distal. This, together with the previous assertion,
would imply that the Γ-action on G/L is distal. Let x, y, a ∈ G be such that
γd(xK)→ aK and γd(yK)→ aK in G/K for some {γd} ⊂ Γ. We need to show
that xK = yK . Since K is compact, it is easy to show that γ(y−1xK) → eK .
Since {eK} is Γ-invariant in G/K , [MOC] of the Γ-action on G/K implies that
y−1xK = eK , and hence, xK = yK .

For any g ∈ G , let g′ = gL . The map g 7→ g′ is a continuous proper
map from G to G/L . Let x ∈ G and let y′ ∈ Γ(x′) for some y ∈ G . We
want to show that x′ ∈ Γ(y′). Then yK ∈ Γ(xK), and as the Γ-action on G/K
has [MOC], xK ∈ Γ(yK). This implies that xk ∈ Γ(y) for some k ∈ K , and
hence, x′k′ ∈ Γ(y′). Let {γd} and {βd} be nets in Γ such that γd(x

′) → y′ and
βd(y

′)→ x′k′ .

Step 3. Let Γ0 be the closure of the image of Γ in Aut(K/L). Suppose Γ0 is
compact. Then Γ0 , being a compact semigroup, is a group. Let β and γ be limit
points of images of {βd} and {γd} in Γ0 respectively. Then

γd(x
′k′)→ y′γ(k′) ∈ Γ(y′) and βd(y

′γ(k′))→ x′k′α(k′) ∈ Γ(y′),

where α = βγ ∈ Aut(K/L). Similarly we get that for

kn = k′α(k′) · · ·αn−1(k′) ∈ K/L, xn = x′kn ∈ Γ(y′), for all n ∈ N.

As Γ0 is a compact group, there exists a sequence {nj} ⊂ N such that αnj → I ,
the identity of Aut(K/L). Passing to a subsequence if necessary, we may assume
that knj

→ c′ = cL ∈ K/L , for some c ∈ K . Hence x′c′ ∈ Γ(y′). Now as αnj → I ,

k2nj
= knj

αnj(knj
)→ (cL)2 = c2L.

Similarly, for all m ∈ N ,

kmnj
= knj

αnj(knj
) · · ·α(m−1)nj(knj

)→ cmL ∈ K/L

and xcmL ∈ Γ(yL). Since K/L is a compact (Lie) group, e′ = eL is in the closure
of {cmL}m∈N in K/L and hence x′ ∈ Γ(y′), i.e. Γ(x′) = Γ(y′). Hence the Γ-action
on G/L has [MOC].

Since K/L is a Lie group, K/K0L is finite, and hence, Aut(K/K0L) is
finite. Arguing as above for K0L in place of L , we get that the Γ-action on
G/K0L has [MOC] and we may assume that K = K0L , i.e. K/L is connected.

Step 4. Let Z be the subgroup of K such that L ⊂ Z and Z/L is the center of
K/L . Then Z and Z0L are closed and Γ-invariant. Moreover, K/Z is a connected
semisimple Lie group and hence its automorohism group is compact. Therefore
arguing as in Step 3 for Z in place of L , we get that the Γ-action on G/Z has
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[MOC], and since Z/Z0L is finite, the Γ-action on G/Z0L also has [MOC]. Now
replacing K by Z0L , we may assume that K/L is a connected abelian Lie group.

Let [Γ] be the group generated by Γ in Aut(K/L). Then [Γ] also acts
distally on K/L . By Lemma 2.5 of [2], there exists a finite set of compact (normal)
[Γ]-invariant subgroups {K0, . . . , Kn} in K such that K = K0 ⊃ K1 ⊃ · · · ⊃
Kn = L and the image of [Γ] in Aut(Ki/Ki+1) is finite for each i ∈ {0, . . . , n−1} .
Arguing as in Step 3 for K1 in place of L , we get that the Γ-action on G/K1 has
[MOC]. Since the image of Γ in Aut(Ki/Ki+1) is finite, using the above argument
repeatedly for Ki/Ki+1 in place of K/L , we get that the Γ-action on G/Ki+1 has
[MOC], 1 ≤ i ≤ n− 1. Since Kn = L , the Γ-action on G/L has [MOC].

Proof of Theorem 1.2. Let G , Γ and K be as in the hypothesis. The “only
if” statement follows as in Step 1 of the proof of Proposition 2.1. Now we prove the
“if” statement. Suppose that Γ-actions on both G/K and K have [MOC]. Hence
Γ-actions on G/K , K and G are distal, (see Step 2 of the proof of Proposition
2.1). Let K consist of closed (compact) Γ-invariant subgroups C of K such that
the Γ-action on G/C has [MOC]. Then K is nonempty as K belongs to K . We
put an order on K by set inclusion. Let A = {Kd} be a totally ordered subset of
K . We show that K ′ = ∩Kd ∈ K .

For any x ∈ G and y ∈ Γ(x)K ′ , we show that Γ(x)K ′ = Γ(y)K ′ . We know
that Γ(x)Kd = Γ(y)Kd for each d . First we show that ∩dΓ(x)Kd = Γ(x)K ′ . One
way inclusion is obvious. Let a ∈ ∩dΓ(x)Kd . Then Cd = Γ(x)∩aKd 6= ∅ for all d .
Here, A′ = {Cd} is a collection of compact sets and intersection of finitely many
subsets in A′ is nonempty since A is totally ordered. Hence ∩dCd is nonempty.
But

∩dCd = ∩d(Γ(x) ∩ aKd) = Γ(x) ∩ (∩daKd) = Γ(x) ∩ aK ′ 6= ∅.

Hence a ∈ Γ(x)K ′ . Therefore, ∩dΓ(x)Kd = Γ(x)K ′ . Similarly, ∩dΓ(y)Kd =
Γ(y)K ′ . This implies that Γ(x)K ′ = Γ(y)K ′ and hence the Γ-action on G/K ′ has
[MOC], i.e. K ′ ∈ K .

By Zorn’s Lemma, there exists a minimal element in K , say M . Here,
M is a compact Γ-invariant subgroup of K such that the Γ-action on G/M has
[MOC] and there is no proper subgroup of M in K . We show that M = {e} . If
possible suppose M is nontrivial. Since M ⊂ K is compact and metrizable and
since the Γ-action on M is distal, it is not ergodic and there exists a (nontrivial)
irreducible unitary representation χ of M such that χΓ is finite upto equivalence
classes (cf. [3], Theorem 2.1, see also [16] as the action of the group [Γ] generated
by Γ is also distal). Let L = ∩γ∈Γ ker(χγ). Then L is a proper closed (compact)
normal Γ-invariant subgroup of M and since χΓ is finite upto equivalence classes,
M/L is a (compact) Lie group. Moreover, the Γ-action on M/L is distal (cf.
[17], Theorem 3.1) and hence it has [MOC]. By Proposition 2.1, we get that the
Γ-action on G/L has [MOC]. Hence L ∈ K , a contradiction to the minimality of
M in K . Hence M = {e} and the Γ-action on G has [MOC]. This completes the
proof.

Remark 2.2. 1. In Theorem 1.2, if G is first countable then, K is also first
countable, and hence, it is metrizable.
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2. Theorem 1.2 holds in case Γ is a locally compact σ -compact group, (for e.g.
Γ = Z) and K is not (necessarily) metrizable. As in this case, the group M as
above is not necessarily metrizable. Here, ΓnM is locally compact and σ -compact
and hence M has arbitrarily small compact normal Γ-invariant subgroups Md such
that ∩dMd = {e} and M/Md is second countable and hence metrizable (cf. [9],
Theorem 8.7). Now from Theorem 3.1 of [17], if the Γ-action on M is distal then
the corresponding Γ-action on M/Md is also distal and hence not ergodic and we
get a proper closed normal Γ-invariant subgroup (of M/Md , and hence,) of M ,
denote it by L again, such that M/L is a Lie group. Now the assertion is obvious
from the above proof. Note that any compactly generated locally compact group
is σ -compact.

The following corollary follows from Theorem 3.1 in [17], Theorem 1.1 in
[2] and Theorem 1.2 above since every connected locally compact group has a
unique maximal compact normal (characteristic) subgroup such that the quotient
is a connected Lie group.

Corollary 2.3. Let G be a connected locally compact first countable group. Let
Γ be a subgroup of Aut(G). Then the Γ-action on G is distal if and only if it has
[MOC].

We now show that [MOC] is preserved by factors modulo closed normal
invariant groups. Before that we prove Proposition 1.5 and a Lemma which will
be useful in proving Theorem 2.5 below and also Theorem 1.1.

Proof of Proposition 1.5. Let G be a locally compact totally disconnected
group and let Γ be a generalised FC− -group acting on G by automorphisms. Let
Γ0 = {γ ∈ Γ | γ(x) = x for all x ∈ G} . Then Γ0 is a closed normal subgroup
of Γ, Γ/Γ0 is isomorphic to a subgroup of Aut(G). Also, Γ/Γ0 is a generalised
FC− -group. It is easy to see that we can replace Γ by Γ/Γ0 and assume that
Γ ⊂ Aut(G). We prove that (1)⇒ (3)⇒ (2)⇒ (1).

Suppose Γ acts distally on G . As Γ is totally disconnected, it has a
compact open normal subgroup C such that Γ/C has a polycyclic subgroup of
finite index (cf. [12]). Since C is compact, by Lemma 2.3 of [11], the Γ-action
on G is also equicontinuous, (see also ‘Note added in Proof’ in [11] for non-
metrizable groups). Now G has a neighbourhood base at e consisting of open
compact subgroups Kd which are Γ-invariant and ∩dKd = {e} . For each d ,
since G/Kd is discrete, the Γ-action on G/Kd has [MOC]. Let x ∈ G and let
y ∈ Γ(x). Then Γ(x)Kd = Γ(x)Kd = Γ(y)Kd = Γ(y)Kd as Kd is open for all d .
Γ(x) = ∩dΓ(x)Kd = ∩dΓ(y)Kd = Γ(y). This proves that the Γ-action on G has
[MOC]. We know that [MOC] implies distality.

Lemma 2.4. Let G be a locally compact group and let Γ be a group acting on G
by automorphisms. Suppose that the Γ-action on G/G0 is equicontinuous. Then
there exist open (resp. compact) Γ-invariant subgroups Hd (resp. Kd ) such that
Hd = KdG

0 , Kd is the maximal compact normal subgroup of Hd , Kd∩G0 = ∩dKd

is the maximal compact normal Γ-invariant subgroup of G0 . In particular, if G0
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has no nontrivial compact normal subgroup, then Kd is totally disconnected and
Hd = Kd ×G0 , a direct product, for all d.

Proof. Since the Γ-action on G/G0 is equicontinuous, there exist open almost
connected Γ-invariant subgroups Hd such that {Hd/G

0} form a neighbourhood
base at the identity in G/G0 consisting of compact open subgroups.

Choose H = Hd for some fixed d . Since H is almost connected, it is
Lie projective, and hence, it has a compact normal subgroup C (say) such that
H/C is a Lie group with finitely many connected components. Therefore, H/C ,
and hence, H has a maximal compact normal subgroup; we denote it by C again.
Then C is characteristic in H , and in particular, it is Γ-invariant. Let H ′ = CG0 .
Then H ′/C is the connected component of the identity in the Lie group H/C .
Therefore, H ′ is an open Γ-invariant subgroup in G and K = C ∩ G0 is the
maximal compact normal subgroup of G0 . Since H ′/G0 is compact and open
in G/G0 , passing to a subnet, we may assume that Hd ⊂ H ′ for all d . Let
Kd = C ∩ Hd . Then Kd is a compact normal Γ-invariant subgroup in Hd and
Hd = KdG

0 as G0 ⊂ Hd . Since K = C ∩G0 ⊂ Hd , K = Kd ∩G0 and Kd is the
maximal compact normal subgroup in Hd for every d . Also, since ∩dHd = G0 ,
we get that ∩dKd = K . Moreover, if Kd ∩ G0 = K is trivial, then Kd is totally
disconnected and Hd = Kd×G0 , a direct product, as both Kd and G0 are normal
in Hd , for all d .

To prove Theorem 1.3, in view of Theorem 1.1, it is enough if we prove the
same statement for distal actions. Here, we prove the following for distal actions
of a more general class of groups.

Theorem 2.5. Let G be a locally compact group and let Γ be a generalised
FC− -group which acts on G by automorphisms. Let H be a closed normal Γ-
invariant subgroup. Then the Γ-action on G is distal if and only if Γ-actions on
both H and G/H are distal.

Proof. Let G , H and Γ be as in the hypothesis. Suppose Γ-actions on G/H
and H are distal. Then it is easy to see that the Γ-action on G is distal.

Now we prove the converse. Suppose the Γ-action on G is distal. Then
the Γ-action on H is also distal. As in the proof of Theorem 1.5, we may assume
that Γ ⊂ Aut(G). We prove that the Γ-action on G/H is distal. By Theorem 3.3
of [17], the Γ-action on G/G0 is distal and hence equicontinuous (by Proposition
1.5). By Lemma 2.4, there exists an open Γ-invariant subgroup L in G such that
L = KG0 , where K is the maximal compact normal Γ-invariant subgroup of L .
We know that G/L is discrete, and hence, so is G/HL , where HL is an open
Γ-invariant subgroup. Therefore, it is enough to prove that Γ acts distally on
HL/H . Since HL/H is isomorphic to L/(L∩H), without loss of any generality,
we may assume that G = L = KG0 and K is the maximal compact normal
Γ-invariant subgroup in G . In particular, G/K is a connected Lie group.

Here, HK and K ∩ H are closed, normal and Γ-invariant subgroups.
By Theorem 3.1 of [17] we know that Γ acts distally on G/K , HK/K and on
K/(K ∩H); the latter is isomorphic to HK/H . Hence it is enough to prove that
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Γ acts distally on the group G/HK which is isomorphic to (G/K)/(HK/K).

Replacing G by G/K and H by HK/K , we may assume that G is a
connected Lie group and H is a closed normal Lie subgroup. Let G be the Lie
algebra of G . Since the Γ-action on G is distal, so is the corresponding action
of {dγ | γ ∈ Γ} on G (cf. [2], Theorem 1.1). Equivalently, the eigenvalues of dγ
are of absolute value 1, for all γ ∈ Γ (cf. [1], Theorem 1′ ). Since H is normal
and Γ-invariant, the Lie algebra H of H0 is a Lie subalgebra which is an ideal
invariant under dγ , for all γ ∈ Γ, and the Lie algebra of G/H is isomorphic to
G/H . Then the eigenvalues of dγ on G/H are also of absolute value 1 for all
γ ∈ Γ. Hence Γ acts distally on G/H (cf. [1], [2]). This completes the proof.

3. Distality and [MOC]

In this section we show that if Γ is a locally compact, compactly generated abelian
(resp. Moore) group acting on a locally compact group by automorphisms, then
distality and [MOC] of the Γ-action are equivalent. We first prove a proposition
which will be useful in proving Theorem 1.1.

Proposition 3.1. Let G and Γ be as in Theorem 1.1. Suppose that the Γ-
action on G is distal. Given a net {γd} in Γ, let

M = {g ∈ G | {γd(g)}d is relatively compact}.

Then M is a closed Γ-invariant subgroup.

Proof. It is obvious that M is a subgroup and it is Γ-invariant since Γ is
abelian. Therefore M is also a Γ-invariant subgroup. If M is trivial, then
M = M . Suppose M is a nontrivial subgroup of G . Without loss of any generality,
we may assume that G = M , i.e. M is dense in G .

Step 1. By Theorem 3.3 of [17], the Γ-action on G/G0 is distal. Since Γ is a
compactly generated locally compact abelian group, it is a generalised FC− -group.
By Proposition 1.5, the Γ-action on G/G0 has [MOC] and the Γ-action on G/G0

is equicontinuous. By Lemma 2.4, there exists an open (resp. compact) Γ-invariant
subgroup H (resp. K ) such that H = KG0 , where K is the maximal compact
normal subgroup of H . Since H is open and Γ-invariant, it is enough to show
that H ⊂M and hence, we may assume that G = H . Here, since K is a maximal
compact normal Γ-invariant subgroup, K ⊂ M and G/K is a connected Lie
group without any nontrivial compact subgroup. Moreover, the Γ-action on G/K
is distal (cf. [17], Theorem 3.1). Let π : G→ G/K be the natural projection. Since
K is compact, π(M) = {gK ∈ G/K | {γd(gK)}d is relatively compact in G/K}
and M is closed if and only if π(M) is closed. Moreover, π(M) is dense in G/K .
Now, we may replace G by G/K and assume that G is a connected Lie group
without any nontrivial compact normal subgroup and Γ ⊂ Aut(G).

Step 2. Since G has no nontrivial compact central subgroup, Aut(G) is almost
algebraic (as a subgroup of GL(G)) (cf. [4]), where G is the Lie algebra of G .
Let Γ′ be the smallest almost algebraic subgroup containing Γ in Aut(G). Here
Γ′ is a an open subgroup of finite index in the Zariski closure Γ̃ of Γ in GL(G),
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hence Γ′ and Γ̃ have the same connected component of the identity. It follows
from Corollary 2.5 of [1], that the unipotent radical U of Γ̃ is a closed co-compact
normal subgroup of Γ′ . Let P (G) denote the space of all regular Borel probability
measures on G with weak* topology. Note that Aut(G) has a natural action on
P (G); namely, for any α ∈ Aut(G) and µ ∈ P (G), α(µ)(B) = µ(α−1(B)) for
all Borel sets B in G (see [10] for generalities on measures on groups). From
Corollary 3.4 of [6], we get that for any measure µ in P (G), the U -orbit of µ , and
hence, the Γ′ -orbit of µ is closed in P (G), i.e. {α(µ) | α ∈ Γ′} is closed in P (G).

Step 3. We now prove that {γd}d is relatively compact in Aut(G). Suppose
{γd}d is not relatively compact in Aut(G). Since Aut(G) is a Lie group, there
exists a divergent sequence {γ′n} in the set {γd}d , i.e. {γ′n} has no convergent
subsequence. We know that {γ′n(g)} is relatively compact for all g in a dense
subgroup M . There exists a countable subgroup M1 ⊂ M which is dense in G .
Let M1 = {gi | i ∈ N} . Passing to a subsequence if necessary, we may assume
that {γ′n(gi)}n converges for all i . Let xi ∈ G be such that γ′n(gi)→ xi , i ∈ N .

Let µ =
∑∞

i=1(1/2i)δgi and let λ =
∑∞

i=1(1/2i)δxi , where for any g ∈ G ,
δg denotes the Dirac measure at g . Then µ, λ ∈ P (G) and it is easy to see
that {γn(µ)} converges to λ . Now from Step 2, there exists γ ∈ Γ′ such that
γ′n(µ) → γ(µ) = λ . Since M1 is dense in G , the support of µ is whole of G .
Therefore the support of γ(µ) is also whole of G . Now by Theorem 1.6 of [5], we
get that {γ′n} is relatively compact and for any limit point β of it, β(µ) = γ(µ).
This implies that β(g) = γ(g) for all g ∈ M1 and hence β = γ . Therefore,
γ′n → γ , i.e. {γ′n} is convergent.

This contradicts the above assumption that {γ′n} is divergent. Hence we
have that {γd}d is relatively compact in Aut(G). Therefore, {γd(x)}d is relatively
compact for all x ∈ G and G = M , i.e. M is closed.

Remark 3.2. From the above proof it is clear that if G is a connected Lie
group without any nontrivial compact central subgroup, Γ is a subgroup of Aut(G)
acting distally on G and if {γd} ⊂ Γ is such that {γd(g)}d is relatively compact
for all g in a dense subgroup of G , then {γd} is relatively compact in Aut(G).

Proof of Theorem 1.1. Let G be a locally compact group and let Γ be a
compactly generated locally compact abelian group. Suppose that the Γ-action
on G has [MOC], then we know that the Γ-action on G is distal.

Now suppose that the Γ-action on G is distal. We show that it has [MOC].
Let x ∈ G and let y ∈ Γ(x). We need to show that x ∈ Γ(y). We have that
γd(x)→ y for some {γd} ⊂ Γ. Let M = {g ∈ G | {γd(g)}d is relatively compact} .
By Proposition 3.1, M is a closed Γ-invariant subgroup and x , and hence, y
belongs to M . Without loss of any generality we may assume that M = G . In view
of Theorem 1.2 and Remark 2.2, we can go modulo the maximal compact normal
subgroup of G0 which is characteristic in G and assume that G0 is a Lie group
without any nontrivial compact normal subgroup. Note that Γ is a generalised
FC− -group and the Γ-action on G/G0 is distal (by Theorem 3.3 of [17]). Hence
from Proposition 1.5, we get that the Γ-action on G/G0 is equicontinuous. Let
Hd = Kd×G0 be open Γ-invariant subgroups, where Kd are totally disconnected
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compact Γ-invariant subgroups such that ∩dKd = {e} in G , (see Lemma 2.4).
Then passing to a subnet if necessary, we may assume that γd(x) = ykdgd = ygdkd ,
where kd ∈ Kd and gd ∈ G0 , kd → e , gd → e . In particular, we get that
γ−1
d (y) = xγ−1

d (k−1
d )γ−1

d (g−1
d ). We know that {γd|G0} is relatively compact, (see

Remark 3.2). Let γ be a limit point of {γd|G0} in Aut(G0). Then γ−1 is a limit
point of {γ−1

d |G0} in Aut(G0). Therefore, passing to a subnet if necessary, we get
that

γ−1
d (g−1

d )→ γ−1(e) = e and γ−1
d (y) = xk′dγ

−1
d (g−1

d )→ x

where k′d = γ−1
d (k−1

d ) ∈ Kd and k′d → e as Kd are Γ-invariant and ∩dKd = {e} .
In particular, x ∈ Γ(y). Since this is true for any x ∈ G and any y ∈ Γ(x), the
Γ-action on G has [MOC].

A locally compact group G is said to be a central group or a Z -group if
G/Z(G) is compact, where Z(G) is the center of G . It is said to be a Moore group if
all its irreducible unitary representations are finite dimensional. All abelain groups
and all compact groups are Z -groups and Z -groups are also Moore groups. A
Moore group has a normal subgroup H of finte index such that [H,H] is compact
(cf. [18]). It is easy to see from this, that any Moore group G is FC− -nilpotent
as G0 = G , G1 = H , G2 = [H,H] and G3 = {e} . Since G0/G1 is finite, and
G1/G2 is abelian and G2/G3 is compact, we have that the conjugacy action of G
on Gi/Gi+1 has relatively compact orbits for all i = 0, 1, 2. Hence any compactly
generated Moore group has polynomial growth and it is a generalised FC− -group
(cf. [12], Theorem 1, Lemma 1).

Corollary 3.3. Let G be a locally compact group and let Γ be a compactly
generated Moore group acting on G by auotomorphisms. Then the Γ-action on G
is distal if and only if it has [MOC].

The proof of the above corollary is essentially the same as that of Theorem
1.1. As Γ is a Moore group, it has a closed normal subgroup Γ1 of finite index
whose commutator group is relatively compact. (cf. [18], Theorem 1). Then by
Lemma 4.1 of [13], it is enough to show that the Γ1 -action on G has [MOC].
Without loss of any generality, we may assume that [Γ,Γ] is relatively compact
and hence it is easy to see that the group M defined in the above proof is Γ-
invariant. We will not repeat the proof here.

Remark 3.4. From above, it is obvious that Theorem 1.1 holds for any com-
pactly generated locally compact group Γ such that its commutator subgroup is
relatively compact. Moreover from Lemma 4.1 in [13] we know that the action of
a group Γ on G has [MOC] if the action of any co-compact subgroup of Γ on G
has [MOC]. Hence Theorems 1.1 and 1.3 hold for compact extensions of such a
group Γ mentioned above, and in particular, for compact extensions of compactly
generated abelian, or more generally, of Moore groups.

We conjecture that Theorem 1.1 holds for an action of any generalised
FC− -group. It already holds for the action of such a group on totally disconnected
groups, compact groups and connected groups.
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