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Abstract. Let Mλ(g, p),Mµ(g′, p′) be the generalized Verma modules for
g = so(p+1, q+1), g′ = so(p, q+1) induced from characters λ, µ of the standard
maximal parabolic (conformal) subalgebras p, p′ = g′∩p . Motivated by questions
about the existence of invariant differential operators in conformal geometry,
we explain, reformulate and prove an extended version of Juhl’s conjecture
on the structure of U(g′)-homomorphisms of generalized Verma modules from
Mλ(g′, p′) to Mµ(g, p). The answer has a natural formulation as a branching

problem in the BGG parabolic category Op′
rather than the set of generalized

Verma modules alone.
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1. Introduction and Motivation

The question we are going to answer in the article has its original motivation in
geometry. Let (Mn, g) be a Riemannian manifold, iΣ : Σn−1 ↪→ Mn embedded
codimension one (i.e. (n − 1)-dimensional) submanifold and i?Σ(g) the induced
metric on Σn−1 . One of the basic problems in geometrical analysis on Riemannian
or conformal manifolds defined by these data is the existence, uniqueness and
properties of natural differential (scalar) operators

DN(Mn,Σn−1, g, λ) : C∞(Mn)→ C∞(Σn−1)

of order N ∈ N and depending polynomially on λ ∈ C , which are conformally
invariant in the sense that

e−(λ−N)i∗Σ(ϕ)DN(Mn,Σn−1, e2ϕg, λ)eλϕ = DN(Mn,Σn−1, g, λ)

for each ϕ ∈ C∞(Mn).

It is difficult to handle this problem for a general metric g , but the situation
simplifies considerably in the case of a homogeneous flat domain realized on an
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open orbit of the partial flag manifold. The case of our interest in this article
corresponds to Mn = Sn resp. Mn = Rn and Σn−1 = Sn−1 resp. Σn−1 = Rn−1 in
the compact resp. non-compact models of induced representations of (conformal)
Lie algebra g(n+ 1, 1) = so(n+ 1, 1), and its signature generalizations.

For any simple Lie algebra g and its parabolic subalgebra p we have
the Langlands decomposition g = n− ⊕ l ⊕ n+ and the Iwasawa decomposition
p = l ⊕ n+ . Here l denotes the Levi factor of p , n+ its nilradical and n− the
opposite nilradical. In this article we focus on the maximal parabolic subalgebra
with abelian nilradical given by omitting the first simple root, which is the data
for the flat Cartan model of conformal geometry.

There is a well-known equivalence between invariant differential operators
acting on induced representations and homomorphisms of generalized Verma mod-
ules, realized by the pairing

IndGP (Vλ)×M(g, p,V?
λ)→ C (1)

for any finite dimensional irreducible p-module Vλ and its dual V?
λ . This allows to

turn the former motivating problem into the question of g(p, q+ 1) = so(p, q+ 1)-
homomorphisms of generalized Verma modules

M(g(p, q + 1), p(p, q + 1),Vλ1)→M(g(p+ 1, q + 1), p(p+ 1, q + 1),Vλ2), (2)

where Vλi , i = 1, 2 denote finite dimensional irreducible inducing representations
of p(p, q + 1) resp. p(p+ 1, q + 1).

Let us denote the standard inclusion

i : g(n, 1) ↪→ g(n+ 1, 1),

characterized by the fact that the highest weight vector Yn of l-module n is
preserved by i(l′), the image of the Levi factor of g(n, 1). Recently in [9], A.
Juhl constructed a collection of elements DN(λ) in

HomU(g(n,1))(M(g(n, 1), p(n, 1),Cλ−N),M(g(n+ 1, 1), p(n+ 1, 1),Cλ)),

numbered by N ∈ N and polynomially dependend on the character λ ∈ C of
p(n, 1)-module Cλ−N , such that DN(λ) ∈ U(n−(n+ 1, 1)) is induced by

U(g(n, 1))⊗ Cλ−N → U(g(n+ 1, 1))⊗ Cλ,

V ⊗ 1 7→ i(V )DN(λ). (3)

Then he formulated the following conjectures (see [9] for the case g(n, 2); the cases
of remaining signatures have, according to A. Juhl, an analogous formulation):

Conjecture 1.1. The set of families {DN(λ)}N∈N generates the space

M(g(p, q + 1), p(p, q + 1),Cλ−N)→M(g(p+ 1, q + 1), p(p+ 1, q + 1),Cλ), N ∈ N

of all homomorphisms of U(g(p, q + 1))-modules.
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This construction was then subsequently considered also in the Lorentzian
signature, [1].

The first aim of the article is to prove these conjectures for a generic value
of the inducing character λ in the case of any signature. The tool used to complete
this task is based on the analysis of character formulas for corresponding parabolic
subalgebras. The second aim is a direct analysis of the space of homomorphisms or,
equivalently, the space of singular vectors, for certain discrete subset of the values of
inducing character. The result is that in these special cases some of the g(p, q+1)-
generalized Verma modules which decompose a given g(p + 1, q + 1)-generalized
Verma module form non-trivial extensions, i.e. they represent objects (nontrivial
extension classes) in the BGG parabolic category Op of the pair g(p, q + 1),
p(p, q + 1). We give the complete list of modules appearing in the branching
problem, thus completing the decomposition as a task in the BGG parabolic
category Op rather then the set of Verma modules alone, see e.g. [7], [3].

Notice that in the special case corresponding to the domain of unitarity
DU for generalized Verma modules M(g(p + 1, q + 1), p(p + 1, q + 1),Cλ) of
scalar type, this decomposition was treated by geometrical techniques and orbit
methods in [11]. In the recent article [12], the author develops branching problem
for generalized Verma modules even for non-standard embeddings of smaller Lie
algebra in the bigger one. However, the decomposition is considered only if the
induction parameters belong to a certain region.

In addition, the technique of distributive Fourier transformation allows to
treat a panorama of examples of parabolic subalgebras with abelian nilradical
and their finite dimensional representations in a rather explicit way, based on the
reformulation of the action of n′+ as the system of hypergeometric differential
equations for l′ -invariants in U(n−). This line of development forms the content
of the forthcoming article, [10].

2. Basic Properties of Generalized Verma Modules, their
Homomorphisms and BGG Parabolic Category Op

Let g(p + 1, q + 1), p + q = n , denote the Lie algebra so(p + 1, q + 1) and
p(p, q + 1) = pso(p+1,q+1) its maximal parabolic subalgebra generated by all simple
roots except the first one. The parabolic Lie subalgebra p(p+ 1, q + 1) has the
Iwasawa decomposition p(p+ 1, q + 1) = m(p, q) ⊕ a ⊕ n+(p, q), where m(p, q) =
so(p, q), a = R and n+(p, q) = Rp,q . We say that two couples (so(p + 1, q + 1),
p(p+ 1, q + 1)) and (so(p, q + 1), p(p, q + 1)) are compatible (or standard) if
p(p+ 1, q + 1) ∩ so(p, q + 1) = p(p, q + 1). The compatibility of two couples
implies that the standard embedding i : so(p, q + 1) ↪→ so(p + 1, q + 1) induces
embedding ĩ : n+(p−1, q) ↪→ n(p, q) corresponding to the isomorphism n+(p, q) '
n+(p − 1, q) ⊕ R of so(p − 1, q)-modules. We denote by big latin letters the Lie
groups of corresponding Lie algebras.

Let Iλ(g) be the U(g)-submodule of U(g)⊗ Vλ generated by

(X ⊗ 1− 1⊗X · v) ∈ U(g)⊗ Vλ, X ∈ p, v ∈ Vλ. (4)

The quotient module M(g, p,Vλ) := U(g)/Iλ(g) is called the generalized Verma
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module of g induced from the finite dimensional p-module Vλ with highest weight
λ .

Let g be a simple Lie algebra. The general scheme in the classification of
homomorphisms of generalized Verma U(g)-modules looks as follows. The highest
weight vector of M(g, p,Vλ) = U(g)⊗U(p)Vλ is 1⊗vλ , with vλ the highest weight
vector of Vλ . The generalized Verma modules decompose on direct sums of their
weight spaces with finite multiplicity. By a homomorphism of generalized Verma
modules we mean left U(g)-module homomorphism

Mµ(g, p) = U(g)⊗U(p) Vµ →Mν(g, p) = U(g)⊗U(p) Vν . (5)

Neccessary conditions for the existence of such a homomorphism acting between
Mµ(g, p) and Mν(g, p) are

1. µ and ν are linked by an affine action of the Weyl group W (g) of g , i.e.
ν = w · µ for some w ∈ W (g).

2. The weights µ, ν are integral, i.e. (µ+ δ)(Hα) ∈ Z for all coroots Hα of g .

The homomorphisms of generalized Verma modules are generally not injec-
tive as in the case of homomorphisms of Verma modules, and

dim(HomU(g)(Mµ(g, p),Mν(g, p))

may be strictly bigger than one. For example, the standard homomorphisms of
generalized Verma modules (i.e. those induced from lifts of homomorphisms of
Verma modules) are easy to classify, see [13].

For a standard parabolic subalgebra b ⊂ p ⊂ g (corresponding to the choice
of the subset of simple roots of g) the BGG parabolic category Op is defined as the
full category Mod(U(g)) of U(g)-modules whose objects M ∈Mod(U(g)) satisfy:

1. M is finitely generated U(g)-module.

2. As an U(l)-module, M is direct sum of finite dimensional simple modules.

3. M is locally n+ -finite.

Recall that there are three types of basic objects in the parabolic category
Op - the Verma modules Mλ(g, p), the simple modules Lλ(g, p) and the projective
modules Pλ(g, p). The object P in abelian category Op is called projective if the
left exact functor HomOp(P,−) is also right exact. The parabolic category Op

has enough projectives: for each M ∈ Op there is a projective object P ∈ Op and
an epimorphism P → M . Another characterization of projectivity: P ∈ Op is
projective if for an epimorphism π : M → N and a morphism ψ : P → N , there is
a morphism φ : P →M such that π◦φ = ψ . Similarly, parabolic category Op has
enough injective objects Q characterized by universal monomorphism property:
for each M ∈ Op there is an injective object Q and a monomorphism M → Q .
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3. so(p, q + 1)-homomorphisms and so(p, q + 1)-singular Vectors for
so(p + 1, q + 1)-generalized Verma Modules Induced from

Characters

In this section we construct discrete family of 1-dimensional continuous families
of U(so(p, q + 1))-homomorphisms between generalized Verma so(p, q + 1)- resp.
so(p+1, q+1)-modules induced from character. This also amounts to the construc-
tion of so(p, q+1)-singular vectors in the target generalized so(p+1, q+1)-Verma
module.

For the Lie algebra so(p+ 1, q + 1) of signature (p+ 1, q + 1) (p+ q = n),
let J be the diagonal matrix with the number of (p + 1) 1’s and (q + 1) −1’s.
The set of matrices (i, j = 1, . . . , n)

Mij =

 0 0 0
0 eTi ⊗ ej − JeTj ⊗ eiJ 0
0 0 0

 , H0 =

 −1 0 0
0 0 0
0 0 1


Y −i =

√
2

 0 ei 0
0 0 −JeTi
0 0 0

 , Y +
i =

√
2

 0 0 0
eTi 0 0
0 −eiJ 0

 (6)

gives the matrix realization of Iwasawa decomposition of so(p + 1, q + 1). Here
{ei}i is the basis of Rp,q . The following commutation relations for so(p+ 1, q+ 1)
will be useful:

[Y +
i , Y

−
j ] = 2(δijH0 +Mij),

[H0, Y
±
i ] = ±Y ±i ,

[Mij, Y
±
k ] = δjkY

±
i − δikY ±j . (7)

It is now elementary to extend the results in [9] (for the signature (n+ 1, 1)) resp.
[1] (for the signature (n, 2)) to any signature. The following identities will be
helpful:

[Y +
1 , (Y

−
1 )

2
] = −2Y −1 + 4Y −1 H0,

[Y +
1 , (Y

−
i )

2
] = 2Y −1 + 4Y −1 M1i, i = 2, . . . , n.

The next Lemma is a key step to construct continuous families of homomorphisms
of generalized Verma modules. Its proof differs from [9] and is based on suitable
inductive procedure. We use the obvious shorthand notation for Lie subalgebras
appearing in the Iwasawa decomposition of

so(p+ 1, q + 1), e.g. mn = m(so(p+ 1, q + 1)) = so(p, q) and
nn− = n−(so(p+ 1, q + 1)) ' Rp,q , etc.

As we shall see all the results are independent of signature and depend on n = p+q
only. The subscript by 4− denotes the underlying dimension.

Lemma 3.1. For any signature (p+ 1, q + 1) (p+ q = n) and j ∈ N, we have

[Y +
1 , (4−n−1)j]− 2j(p+ q − 1− 2j)Y −1 (4−n−1)j−1 − 4jY −1 (4−n−1)j−1H0

∈ U(nn−)mn. (8)
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Proof. The proof goes by induction on j . Let us recall the conventional
notation 4−n−1 :=

∑n−1
j=1 (Y −j )2 . The case j = 1 amounts to

[Y +
1 ,

p∑
j=1

(Y −j )2 +
n−1∑
j=p+1

(Y −j )2] = (−2Y −1 + 4Y −1 H0) +

(2Y −1 + 4Y −2 M1,2) + · · ·+ (2Y −1 + 4Y −p M1,p) +

(2Y −1 + 4Y −p+1M1,p+1) + · · ·+ (2Y −1 + 4Y −n−1M1,n−1) =

2(p+ q − 3)Y −1 + 4Y −1 H0 mod U(nn−)mn (9)

and the claim is proved.

Let us now assume that the claim is true for j ∈ N , i.e.

[Y +
1 , (4−n−1)j] = 2j(p+ q − 1− 2j)Y −1 (4−n−1)j−1 +

4jY −1 (4−n−1)j−1H0 mod U(nn−)mn. (10)

Then

[Y +
1 , (4−n−1)j+1] = 4−n−1[Y +

1 , (4−n−1)j] + [Y +
1 ,4−n−1](4−n−1)j =

4−n−1(2j(p+ q − 1− 2j)Y −1 (4−n−1)j−1 + 4jY −1 (4−n−1)j−1H0) +

(2(p+ q − 3)Y −1 + 4Y −1 H0)(4−n−1)j

= 2(j + 1)(p+ q − 1− 2(j + 1))Y −1 (4−n−1)j +

4(j + 1)Y −1 (4−n−1)jH0 mod U(nn−)mn (11)

and the claim follows.

A direct consequence of the previous Lemma yields the explicit form of ho-
momorphisms or, when evaluated, singular vectors in the target generalized Verma
module. The Theorem is divided into two parts according to the homogeneity of
the homomorphism.

Theorem 3.2. 1. (Families of even order) Let (so(p+ 1, q+ 1), so(p, q+ 1))
(p + q = n) be the couple of orthogonal Lie algebras. For any p, q,N ∈ N,
(p+ q) ≥ 3 and λ ∈ C, the element

D2N(λ) =
N∑
j=0

aj(λ)(4−n−1)j−1(Y −n )2N−2j ∈ U(nn+1−) (12)

satisfies

[Y +
i ,

N∑
j=0

aj(λ)(4−n−1)j−1(Y −n )2N−2j] ∈ U(nn+1−)(mn+1 ⊕ C(H0 − λ)) (13)

for i = 1, . . . , n− 1 iff the coeficients {aj}Nj=0 fulfill the recursive relations

(N − j + 1)(2N − 2j + 1)aj−1 + j(p+ q − 1 + 2λ− 4N + 2j)aj = 0, (14)

j = 1, . . . , N . In effect, the left multiplication by this element induces
U(so(p, q + 1))-homomorphism

Mλ−N(g(p, q + 1), p(p, q + 1))→Mλ(g(p+ 1, q + 1), p(p+ 1, q + 1)) (15)
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2. (Families of odd order) For any p, q,N ∈ N, p + q = n ((p + q) ≥ 3) and
λ ∈ C the element

D2N+1(λ) =
N∑
j=0

bj(λ)(4−n−1)j−1(Y −n )2N−2j+1 ∈ U(nn+1−) (16)

satisfies

[Y +
i ,

N∑
j=0

aj(λ)(4−n−1)j−1(Y −n )2N−2j+1] ∈ U(nn+1−)(mn+1 ⊕ C(H0 − λ)), (17)

i = 1, . . . , n− 1 iff the coefficients {bj}Nj=0 fulfill the recursive relations

(N − j + 1)(2N − 2j + 3)bj−1 + j(p+ q − 3 + 2λ− 4N + 2j)bj = 0, (18)

j = 1, . . . , N .

As we shall prove in the next section, this set of singular vectors (enumerated
by N ∈ N) is complete and sufficient to decompose a given generalized Verma
module with respect to a rank one less orthogonal Lie subalgebra.

4. The Composition Series for Branching Problem of Generalized
Verma Modules

In the previous section we produced a collection of so(p, q + 1)-homomorphism
from g′ = so(p, q + 1)-generalized Verma modules to a fixed g = so(p+ 1, q + 1)-
generalized Verma module (regarded as so(p, q + 1)-module via standard embed-
ding so(p, q+1) ↪→ so(p+1, q+1)) or, when evaluated, the collection of so(p, q+1)-
singular vectors in the so(p+ 1, q + 1)-generalized Verma module. The remaining
question is whether the construction in the previous section produced complete
(exhausting) family of singular vectors.

One way to analyze this question is based on character identities for the
restriction of generalized Verma modules with respect to a reductive subalgebra g′

for which the parabolic subalgebra p′ := g′∩p is standard (p = l+n+, p
′ = l′+n′+ ),

see e.g. [12]. Let Vλ be a finite dimensional l-module with highest weight
λ ∈ Λ+(l) and likewise Vλ′ be a finite dimensional representation of l′ , λ′ ∈ Λ+(l′).
Given a vector space V we denote S(V ) = ⊕∞l=0Sl(V ) the symmetric tensor algebra
on V . Let us extend the adjoint action of l′ on n+/(n+ ∩ g′) to S(n+/(n+ ∩ g′)).
We set

m(λ′, λ) = Homl′(Vλ′ ,Vλ|l′ ⊗ S(n+/(n+ ∩ g′))). (19)

Theorem 4.1. ([12], Theorem 3.9) Suppose p is g′ -compatible standard parabolic
subalgebra of g, λ ∈ Λ+(l). Then

1. m(λ′, λ) <∞ for all λ′ ∈ Λ+(l′).
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2. In the Grothendieck group of Op′ there is g′ -isomorphism

Mλ(g, p)|g′ '
⊕

λ′∈Λ+(l′)

m(λ′, λ)Mλ′(g
′, p′).

A consequence of this Theorem is that in the case of multiplicity free l′ -
module n+/(n+∩g′)) and for generic character λ the decomposition of generalized
Verma module Mλ(g, p) (induced from character λ) with respect to g′ is multi-
plicity free. Moreover, for any value of the character λ the following relation holds
true in the Grothendieck group of Op′ :

Corollary 4.2. For g ≡ so(p + 1, q + 1), g′ ≡ so(p, q + 1) with standard
maximal parabolic subalgebras p, p′ given by omitting the first simple root, we have
n+ ' Rp,q, n+ ∩ g′ ' Rp−1,q and n+/(n+ ∩ g′) ' R transforms as the character of
the Levi subalgebra of g′ . Then m(λ, λ′) = 1 if and only if λ′ = λ− j, j ∈ N and
m(λ, λ′) = 0 otherwise. In the Grothendieck group of Op′ holds

Mλ(g, p) '
⊕
j∈N

Mλ−j(g
′, p′).

4.1. Branching rules for the generic value λ of the inducing character
of generalized Verma modules.

In this subsection we prove that the previous observation on the relation
in the Grothendieck group corresponds, in case of a generic inducing character, to
the actual branching rule for the couple (g, g′) ≡ (so(p+ 1, q+ 1), so(p, q+ 1)) and
a generalized Verma U(g)-module induced from the character λ ∈ C of p ⊂ g .

First of all we note that for any λ there is always a direct sum decomposition
of g′ -module Mλ(g, p) into the even and odd part,

Mλ(g, p) =

(
∞∑
k=0

〈w2k〉

)
⊕

(
∞∑
k=0

〈w2k+1〉

)
= U even ⊕ U odd,

according to the homogeneity of an element in the polynomial algebra U(n−).
Here wl denotes the singular vector in Mλ(g, p) corresponding to the image of
the homomorphism Dl(λ), l ∈ N , and < wl > denotes its U(g′)-span. The spaces
〈wj〉 = U(g′)wj are invariant under the action of n′− , while under the action of n′

the spaces 〈wj〉 are mapped to the sum
∑

`∈N〈wj−2`〉. Hence

W2k =
k∑
`=0

〈w2l〉, k ∈ N

form a g′ -filtration of U even by invariant subspaces. Analogous result is true for
the odd part and consequently the spaces U even and U odd have invariant filtrations
under the g′ -action.

We shall now discuss decomposition problem of U even, U odd for λ 6= k − n
2

.
The values of λ ∈ C, λ 6= k − n

2
are henceforth termed generic.
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Theorem 4.3. Let λ ∈ C, λ 6= k − n
2

for k ∈ N, i.e. let λ be generic. Then

U even =
∞⊕
j=0

Mλ−2j(g
′, p′),

U odd =
∞⊕
i=0

Mλ−2i−1(g′, p′) (20)

gives the direct sum decomposition of the left hand side into irreducible submodules
under the restriction from g to g′ . The embedding of Mλ−2j(g

′, p′) ↪→ Mλ(g, p)
resp. Mλ−2i−1(g′, p′) ↪→Mλ(g, p) is induced by the singular vector w2j ∈Mλ(g, p)
resp. w2i+1 ∈Mλ(g, p), i, j ∈ N.

Proof. The singular vector wl generates a cyclic g′ -submodule 〈wl〉 in
Mλ−l(g, p) with the highest weight λl = (λ−l|0, . . . , 0). The vectors have mutually
different infinitesimal characters, because the difference of the quadratic Casimir
for wj resp. wi is

|λj + δ|2 − |λi + δ|2 = (i− j)(2λ+ n− (i+ j)),

which is nonzero by assumptions of Theorem. Here δ denotes the half of the sum of
simple roots of g′ . This conclusion implies direct sum decomposition in Corollary
4.2 and the result follows.

4.2. Branching rules for the non-generic value λ of inducing character
of generalized Verma module.

The remaining task is the analysis of the composition series for non-generic
values λ ∈ C of induced character in a given block of Op′ , characterized as a locus
given by special values of quadratic Casimir operator. Recall that these values
correspond to the known classification of homomorphisms of generalized Verma
so(p, q + 1)-modules induced from character, [5]. As we shall see, parabolic Op′

category naturally appears in our decomposition problem.

Because the weights used to induce generalized Verma modules are charac-
ters of reductive Levi factor of g , we are basically left with sl(2)-theory (generated
by the first simple root of g). It is then natural to remind as a motivation the
structure of Ob category for sl(2) and then return back to our former problem.

Example 4.4. Throughout this example we use the notation

Mλ =Mλ(sl(2,C), b),Lλ = Lλ(sl(2,C), b),Pλ = Pλ(sl(2,C), b).

As for g = sl(2,C), the dual of Cartan subalgebra h? is isomorphic to C . The non-
integral weights are linked by action of the Weyl group to no comparable weights
(in the standard ordering), and so the only interesting subcategories (blocks) Oλ
of the Borel category Ob are given by λ ∈ Z . Let us consider the orbit of the
Weyl group for λ, µ := w ·λ = −λ−2, λ ∈ N . There is no lower weight associated
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to µ , consequently Lµ =Mµ (dim(Lµ) = ∞). For λ ∈ N we get dim(Lλ) < ∞
and there is a short exact sequence

0→ Lµ →Mλ → Lλ → 0. (21)

For the dominant integral weight λ we have Pλ = Mλ . Its dual in Ob -category
Q(λ) := P̃λ is the injective module whose socle is Lλ and its head is Lµ . The top
quotient of Pµ is Lµ =Mµ , and it follows from the BGG reciprocity [Pµ :Mλ] =
[Mλ : Lµ] , λ, µ ∈ h? that there is a non-split short exact sequence

0→Mλ → Pµ →Mµ → 0. (22)

The dual of projective module P̃µ is Qµ ' Pµ . The (quadratic) Casimir operator
z ∈ U(g) acts by scalar λ2 + 2λ on both Mλ and Mµ . The element z− (λ2 + 2λ)
is nonzero when acting on Pµ , but (z − (λ2 + 2λ))2 is trivial on Pµ .

In conclusion, there are five isomorphism classes of indecomposable objects
in Ob

λ :

Lλ,Lµ =Mµ,Mλ = Pλ,Qλ = M̃λ,Pµ = Qµ.

We shall now analyze explicitly the first few cases when the nontrivial com-
position series emerges. We focus on the nontrivial part of the decomposition,
which means that the vector complement in the decomposition consists of general-
ized Verma modules with mutually different infinitesimal characters, hence direct
summands in the decomposition. We discuss the even case only, the discussion of
odd case goes along the same lines. Recall the convention 4′ := 4n−1 (n = p+q .)

The first non-trivial case corresponds to the value λ for which 2λ+n−3 = 0,
N = 1 and D2(λ) = (2λ + n − 3)Y −n

2
+ 4′ . Hence for this value of λ the

homomorphism reduces to 4′ and so with respect to the homogeneity of Y −n ,
the first row Mλ(g

′, p′) given by U(g′)-span of highest weight vector of Mλ(g, p)
contains the nontrivial submodule (its singular vector is generated by the image of
4′ ). Taken together with the third row Mλ−2(g, p) form the nontrivial (nonsplit)
extension class

0→Mλ(g
′, p′)→ Pλ−2(g′, p′)→Mλ−2(g′, p′)→ 0, (23)

where Pλ−2(g′, p′) is an object in the block of the parabolic category Op′ . The
picture representing such a situation is

t td@@

where (anti)diagonals represent the singular vectors and the degeneration
of particular singular vector for the previously mentioned value of λ is pictured in
such a way that the missing monomials (in Y −n

2
,4′ ) correspond to white circles

and the nontrivial present monomials to black circles. The first resp. the third
rows correspond to U(g′)-span of vλ resp. Y −n

2
vλ , where vλ is the highest weight

vector of Mλ(g, p).
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The next case is related to the appearance of a non-trivial composition
series, whose source is the fourth order operator (N = 2)

D4(λ) = (2λ+ n− 7)(2λ+ n− 5)Y −n
4

+ (2λ+ n− 5)Y −n
24′ + (4′)2.

The computation of infinitesimal character implies that this happens for λ ful-
filling 2λ + n − 5 = 0. For such λ , the generalized Verma U(g′)-modules
Mλ(g

′, p′),Mλ−4(g′, p′) form nontrivial extension

0→Mλ(g
′, p′)→ Pλ−4(g′, p′)→Mλ−4(g′, p′)→ 0, (24)

realizing an object Pλ−4(g′, p′). The generalized Verma module Mλ(g
′, p′) has a

nontrivial composition structure in itself - its nontrivial submodule Mλ−4(g′, p′) ⊂
Mλ(g

′, p′) is generated by the image of 4′2 . The picture in which the first and the
third row represent Pλ−4(g′, p′) and the second row has a different infinitesimal
character is drawn on the following picture:

t t td td@
@
@

@@

The last explicit case we mention corresponds to λ fulfilling 2λ+n−7 = 0.
The sixth order operator (here N = 3) generating the family of singular vector is

D6(λ) = (2λ+ n− 11)(2λ+ n− 9)(2λ+ n− 7)Y −n
6

+(2λ+ n− 9)(2λ+ n− 7)Y −n
44′

+(2λ+ n− 7)Y −n
2
(4′)2 + (4′)3. (25)

In this case we observe the emergence of two objects in the parabolic category Op′ .
The first comes from the nontrivial extension

0→Mλ(g
′, p′)→ Pλ−6(g′, p′)→Mλ−6(g′, p′)→ 0, (26)

while the second from

0→Mλ−2(g′, p′)→ Pλ−4(g′, p′)→Mλ−4(g′, p′)→ 0. (27)

Note that Mλ(g
′, p′) has nontrivial filtered structure - its submodule is a gener-

alized Verma module generated by the image of (4′)3 . Similarly, Mλ−2(g′, p′)
has nontrivial composition series - its maximal generalized Verma submodule
Mλ−4(g′, p′) is generated by the image of 4′ . The modules Pλ−6(g′, p′),Pλ−4(g′, p′)
have different infinitesimal character.

The picture in which the first and the fourth resp. the second and the third
row represent Pλ−6(g′, p′) resp. Pλ−4(g′, p′) is

t t t td t td dd
@
@
@
@@

@
@
@

@
@
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Theorem 4.5. Let Mλ(g, p) be a family of generalized Verma U(g)-modules
induced from character λ, where g = so(p + 1, q + 1) (p + q = n) and p ⊂ g its
standard maximal parabolic subalgebra given by omitting the first simple root. Let
g′ = so(p, q + 1) be the reductive subalgebra of g and p′ = g′ ∩ p.

As an U(g′)-module, Mλ(g, p) has a contribution to the non-trivial com-
position structure from both the even and odd homogeneity homomorphisms:

1. The case of even homogeneity homomorphisms corresponds to λ ∈ C fulfilling
2λ+ n = 2N + 1, N ∈ N+ . In the decomposition there are [N+1

2
] modules

Pλ−2N(g′, p′),Pλ−2N+2(g′, p′), . . . ,Pλ−2N+2[N−1
2

](g
′, p′).

These modules appear as nontrivial extensions in short exact sequences

0→Mλ−2[N−1
2

](g
′, p′)→ Pλ−2N+2[N−1

2
](g
′, p′)

→Mλ−2N+2[N−1
2

](g
′, p′)→ 0,

. . .

0→Mλ−2j(g
′, p′)→ Pλ−2N+2j(g

′, p′)→Mλ−2N+2j(g
′, p′)→ 0,

. . .

0→Mλ(g
′, p′)→ Pλ−2N(g′, p′)→Mλ−2N(g′, p′)→ 0, (28)

where j=0, 1, . . . , [N−1
2

]. The j -th module Mλ−2j(g
′, p′), j=0, 1, . . . , [N−1

2
]

has a nontrivial composition series - its maximal submodule Mλ−2N+2j(g
′, p′)

is generated by the image of 4′N−2j := 4n−1
N−2j and the quotient

Pλ−2N+2j(g
′, p′)/Mλ−2j(g

′, p′)

is simple module. The module Pλ−2N+2j(g
′, p′) is realized in the generalized

Verma so(p+1, q+1)-module by U(g′)-span of singular vectors w2j, w2N−2j .

Let us introduce the finite set S := {λ− 2j, λ− 2N + 2j|j = 0, 1, . . . , [N−1
2

]},
so S ′ := {{λ− 2N} \S|N ∈ N} is infinite. Then we have the branching rule

Meven
λ (g, p) '

⊕
j=0,1,...,[N−1

2
]

Pλ−2N+2j(g
′, p′)

⊕
λ′∈S′
Mλ′(g

′, p′). (29)

2. The case of odd homogeneity homomorphisms corresponds to λ ∈ C fulfilling
2(λ − 1) + n = 2N + 1, N ∈ N+ . In the decomposition there are [N+1

2
]

modules

Pλ−2N−1(g′, p′),Pλ−2N+1(g′, p′), . . . ,Pλ−2N−1+2[N−1
2

](g
′, p′).

These modules appear as nontrivial extensions in short exact sequences

0→Mλ−1−2[N−1
2

](g
′, p′)→ Pλ−2N−1+2[N−1

2
](g
′, p′)

→Mλ−2N−1+2[N−1
2

](g
′, p′)→ 0,

. . .

0→Mλ−1−2j(g
′, p′)→ Pλ−2N−1+2j(g

′, p′)→Mλ−2N−1+2j(g
′, p′)→ 0,

. . .

0→Mλ−1(g′, p′)→ Pλ−2N−1(g′, p′)→Mλ−2N−1(g′, p′)→ 0, (30)
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where j = 0, 1, . . . , [N−1
2

]. The j -th module
Mλ−2j−1(g′, p′), j = 0, 1, . . . , [N−1

2
]

has nontrivial composition series - its maximal submodule Mλ−2N−1+2j(g
′, p′)

is generated by the image of Y −n 4′
N−2j and the quotient

Pλ−2N−1+2j(g
′, p′)/Mλ−1−2j(g

′, p′)

is simple module. The module Pλ−2N−1+2j(g
′, p′) is realized in the gen-

eralized Verma so(p + 1, q + 1)-module by U(g′)-span of singular vectors
w2j+1, w2N+1−2j .

Let us introduce the finite set S̃ := {λ − 1 − 2j, λ − 2N − 1 + 2j|j =
0, 1, . . . , [N−1

2
]}, so S̃ ′ := {{λ − 2N − 1} \ S̃|N ∈ N} is infinite. Then

we have the branching rule

Modd
λ (g, p) '

⊕
j=0,1,...,[N−1

2
]

Pλ−2N−1+2j(g
′, p′)

⊕
λ′∈S̃′

Mλ′(g
′, p′). (31)

Finally, we have direct sum decomposition of g′ -modules (which is even true
for any λ):

Mλ(g, p) 'Meven
λ (g, p)

⊕
Modd

λ (g, p). (32)

Proof. The general case follows the scheme indicated in the discussion of the
structure of singular vectors preceded this Theorem. Corollary 4.2 implies that
the elements constructed in Theorem 3.2 cover all singular vectors. Moreover,
for any non-generic value of the inducing character λ (determined in Theorem
4.3) there is a finite number of couples of singular vectors with equal infinitesimal
character, as follows again from Theorem 4.3. These couples are enumerated in
Equation 28 for even homogeneity resp. Equation 30 for odd homogeneity case.
The non-triviality of each extension class is an elementary direct check applied to
the singular vector (evaluated at the corresponding non-generic value λ) based on
Equation 7, Equation 8.

The techniques used in the article do not allow further analysis of con-
structed extension classes of generalized Verma modules. In [4], there are cer-
tain partial results describing (non-recursive) scheme to compute Kazhdan-Lusztig
polynomials associated to Hermitian symmetric spaces. In particular, Kazhdan-
Lusztig polynomials are determined in the case of regular block of zero weight in
Proposition 5.1., p. 288, [4], with the following result (in the even dimensional or-
thogonal case): Pwi,wj

(u) is trivial for incomparable wi, wj , Pwi,wj
(u) = 1+uj−n−1

for n+2 ≤ j ≤ 2n−1, 1 ≤ i ≤ 2n− j and Pwi,wj
(u) = 1 otherwise. In the odd or-

thogonal case, the structure of Kazhdan-Lusztig polynomials is even simpler. As
the extension classes Ext?U(g)(Mwi

,Lwj
) are the coefficients of Kazhdan-Lusztig

polynomials, they are at most one dimensional. In a basic example, taking into
account the relationship between extension classes and Lie algebra cohomology
classes for parabolic subalgebras with commutative nilradicals ([7]), one can di-
rectly compare the extension class produced in the branching rule with its geomet-
rical realization based on the Lie algebra cohomology method, see [2]. However, in



554 Somberg

many cases are our results realized in singular infinitesimal character and so the
structure of Kazhdan-Lusztig polynomials is to our best knowledge not known.

Another remark closely to the last paragraph is that in many cases the
extension classes appearing in the main Theorem are projective objects of parabolic
BGG category Op′ .
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